Clinical Applications of Artificial Intelligence in Early and Accurate Detection of Low-Concentration CVD Biomarkers
Meena Laad
Search for more papers by this authorKishor Kumar Sadasivuni
Search for more papers by this authorSadiya Waseem
Search for more papers by this authorMeena Laad
Search for more papers by this authorKishor Kumar Sadasivuni
Search for more papers by this authorSadiya Waseem
Search for more papers by this authorAbstract
Cardiovascular diseases (CVDs) are a mix of several types of disorders affecting the heart and blood vessels. A biosensor is considered as a very effective analytical tool in medical diagnostics for rapid detection of CVD disease at an early stage. CVD diagnostic techniques require blood tests to assess relevant biomarker levels. This chapter discusses that there are various types of biosensor: optical biosensors, electrochemical biosensors, and magnetic biosensors. Artificial intelligence (AI) provides excellent tools for the discovery of new biosensing materials for the early and precise detection of CVDs. The chapter describes some of the AI techniques used in cardiovascular medicine and digital healthcare applications. Technological advancements in AI have opened new areas and tools in the creation of novel modeling and predictive techniques for clinical applications in CVDs and have begun to infuse and reform cardiovascular medicine.
References
- Roth , G.A. , Abate , D. , Abate , K.H. , et al. ( 2018 ). Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017 . The Lancet 392 ( 10159 ): 1736 – 1788 .
- Murray , C.J. and Lopez , A. ( 1996 ). The global burden of disease. Harvard School of Public Health . Harvard University Press 1 : 201 – 246 .
- Yao , C. , Wu , Z. , and Wu , Y. ( 1993 ). The changing pattern of cardiovascular diseases in China . World Health Statistics Quarterly. Rapport Trimestriel De Statistiquessanitairesmondiales 46 ( 2 ): 113 – 118 .
- World Bank . ( 1993 ). World Development Report: Investing in Health . New York : Oxford University Press .
- Kwan , G.F. , Mayosi , B.M. , Mocumbi , et al. ( 2016 ). Endemic cardiovascular diseases of the poorest billion . Circulation 133 ( 24 ): 2561 – 2575 .
- Duprez , D. ( 2006 ). Early detection of cardiovascular disease-the future of cardiology . EJ ESC Counc. CardiolPract 4 ( 19 ): 1 .
- Yusuf , S. , Pearson , M. , Sterry , H. , et al. ( 1984 ). The entry ECG in the early diagnosis and prognostic stratification of patients with suspected acute myocardial infarction . European Heart Journal 5 ( 9 ): 690 – 696 .
- Daniels , J.S. and Pourmand , N. ( 2007 ). Label-free impedance biosensors: Opportunities and challenges . Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 19 ( 12 ): 1239 – 1257 .
- Kwon , Y.C. , Kim , M.G. , Kim , E.M. , et al. ( 2011 ). Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I . Biotechnology Letters 33 ( 5 ): 921 – 927 .
- Krishnamoorthy , S. , Iliadis , A.A. , Bei , T. , et al. ( 2008 ). An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor . Biosensors and Bioelectronics 24 ( 2 ): 313 – 318 .
- Lorencova , L. , Sadasivuni , K.K. , Kasak , P. , and Tkac , J. ( 2020 ). Ti 3 C 2 MXene-based nanobiosensors for detection of cancer biomarkers . In Novel Nanomaterials . IntechOpen .
- Prabakaran , S. , Jeyaraj , M. , Nagaraj , A. , Sadasivuni , K.K. , and Rajan , M. ( 2019 ). Polymethyl methacrylate–ovalbumin@ graphene oxide drug carrier system for high anti-proliferative cancer drug delivery . Applied Nanoscience 9 ( 7 ): 1487 – 1500 .
- Vinothini , K. , Jeyaraj , M. , Kumar , S.K. , and Rajan , M. ( 2019 ). Dual role of lanthanum oxide nanoparticles functionalized co-polymeric micelle for extended anti-cancer drug delivery . ChemistrySelect 4 ( 18 ): 5206 – 5213 .
- Koppala , S. , Swamiappan , S. , Gangarajula , Y. , Xu , L. , Sadasivuni , K.K. , Ponnamma , D. , and Rajagopalan , V. ( 2018 ). Calcium deficiency in hydroxyapatite and its drug delivery applications . Micro & Nano Letters 13 ( 4 ): 562 – 564 .
- Praphakar , R.A. , Jeyaraj , M. , Mehnath , S. , Higuchi , A. , Ponnamma , D. , Sadasivuni , K.K. , and Rajan , M. ( 2018 ). A pH-sensitive guar gum-grafted-lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells . Journal of Materials Chemistry B 6 ( 10 ): 1519 – 1530 .
- Monson , C.F. , Driscoll , L.N. , Bennion , E. , et al. ( 2009 ). Antibody−antigen exchange equilibria in a field of an external force: Design of reagentless biosensors . Analytical Chemistry 81 ( 17 ): 7510 – 7514 .
- Altintas , Z. , Fakanya , W.M. , and Tothill , I.E. ( 2014 ). Cardiovascular disease detection using bio-sensing techniques . Talanta 128 : 177 – 186 .
- Honikel , M.M. , Lin , C.E. , Probst , D. , et al. ( 2018 ). Facilitating earlier diagnosis of cardiovascular disease through point-of-care biosensors: A review . Critical Reviews in Biomedical Engineering 46 ( 1 ).
- McDonnell , B. , Hearty , S. , Leonard , P. , et al. ( 2009 ). Cardiac biomarkers and the case for point-of-care testing . Clinical Biochemistry 42 ( 7–8 ): 549 – 561 .
- Vasan , R.S. ( 2006 ). Biomarkers of cardiovascular disease: Molecular basis and practical considerations . Circulation 113 ( 19 ): 2335 – 2362 .
- Anderson , L. ( 2005 ). Candidate-based proteomics in the search for biomarkers of cardiovascular disease . The Journal of Physiology 563 ( 1 ): 23 – 60 .
- Fan , X. , White , I.M. , Shopova , S.I. , et al. ( 2008 ). Sensitive optical biosensors for unlabeled targets: A review . Analytica Chimica Acta 620 ( 1–2 ): 8 – 26 .
- Leung , W. , Chan , C.P. , Leung , M. , et al. ( 2005 ). Novel “digital-style” rapid test simultaneously detecting heart attack and predicting cardiovascular disease risk . Analytical Letters 38 ( 3 ): 423 – 439 .
- Cho , I.H. , Paek , E.H. , Kim , Y.K. , et al. ( 2009 ). Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography . Analyticachimicaacta 632 ( 2 ): 247 – 255 .
- Darain , F. , Yager , P. , Gan , K.L. , and Tjin , S.C. ( 2009 ). On-chip detection of myoglobin based on fluorescence . Biosensors and Bioelectronics 24 ( 6 ): 1744 – 1750 .
- Park , J.P. , Cropek , D.M. , and Banta , S. ( 2010 ). High affinity peptides for the recognition of the heart disease biomarker troponin I identified using phage display . Biotechnology and Bioengineering 105 ( 4 ): 678 – 686
-
Homola , J.
and
Piliarik , M.
(
2006
).
Surface plasmon resonance (SPR) sensors
. In:
Surface Plasmon Resonance Based Sensors
J. Homola
,
45
–
67
.
Berlin, Heidelberg
:
Springer
.
10.1007/5346_014 Google Scholar
- Tweedie , M. , Subramanian , R. , Lemoine , P. , et al. ( 2006 , August). Fabrication of impedimetric sensors for label-free point-of-care immunoassay cardiac marker systems, with passive microfluidic delivery. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society , 4610 – 4614 . IEEE .
- Kunduru , V. , Bothara , M. , Grosch , J. , et al. ( 2010 ). Nanostructured surfaces for enhanced protein detection toward clinical diagnostics . Nanomedicine: Nanotechnology, Biology and Medicine 6 ( 5 ): 642 – 650 .
- Arakaki , A. , Hideshima , S. , Nakagawa , T. , et al. ( 2004 ). Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles . Biotechnology and Bioengineering 88 ( 4 ): 543 – 546 .
- Romiti , S. , Vinciguerra , M. , Saade , W. , et al. ( 2020 ). Artificial intelligence (AI) and cardiovascular diseases: An unexpected alliance . Cardiology Research and Practice 2020 https://doi.org/10.1155/2020/4972346 .
- Murdoch , T.B. and Detsky , A.S. ( 2013 ). The inevitable application of big data to health care . Jama 309 ( 13 ): 1351 – 1352 .
- World Health Organization . ( 2017 ). WHO | EHealth at WHO . [10 Apr 2017]. Available from: http://www.who.int/ehealth/about/en /.
- Johnson , K.W. , Torres Soto , J. , Glicksberg , B.S. , et al. ( 2018 ). Artificial intelligence in cardiology . Journal of the American College of Cardiology 71 ( 23 ): 2668 – 2679 .
- Rivera , J. , McPherson , A. , Hamilton , J. , et al. ( 2016 ). Mobile apps for weight management: A scoping review . JMIR mHealth and uHealth 4 ( 3 ): e87 .
- Neve , M. , Morgan , P.J. , Jones , P.R. , et al. ( 2010 ). Effectiveness of web-based interventions in achieving weight loss and weight loss maintenance in overweight and obese adults: A systematic review with meta-analysis . Obesity Reviews 11 ( 4 ): 306 – 321 .
- Walsh III , J.A. , Topol , E.J. , and Steinhubl , S.R. ( 2014 ). Novel wireless devices for cardiac monitoring . Circulation 130 ( 7 ): 573 – 581 .
- Azar , K.M. , Lesser , L.I. , Laing , B.Y. , et al. ( 2013 ). Mobile applications for weight management: Theory-based content analysis . American Journal of Preventive Medicine 45 ( 5 ): 583 – 589 .
- Perez , M.V. , Mahaffey , K.W. , Hedlin , H. , et al. ( 2019 ). Large-scale assessment of a smartwatch to identify atrial fibrillation . New England Journal of Medicine 381 ( 20 ): 1909 – 1917 .
- Kulkarni , A. and Vijaykumar , S. ( 2016 ). Application of Internet of Things in artificial heart pacemakers and its impact on security . International Journal of Current Trends in Engineering & Research (IJCTER) 2 ( 5 ): 604 – 610 .
- Stehlik , J. , Schmalfuss , C. , Bozkurt , B. , et al. ( 2020 ). Continuous wearable monitoring analytics predict heart failure hospitalization: The LINK-HF multicenter study . Circulation. Heart Failure 13 ( 3 ): e006513 .
- Perl , L. , Soifer , E. , Bartunek , J. , et al. ( 2019 ). A novel wireless left atrial pressure monitoring system for patients with heart failure, first ex-vivo and animal experience . Journal of Cardiovascular Translational Research 12 ( 4 ): 290 – 298 .
- Al'Aref , S.J. , Anchouche , K. , Singh , G. , and Slomka , P. ( 2018 ). Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging . European Heart Journal 40 ( 24 ): 10.1093/eurheartj/ehy404 .
- Miotto , R. , Wang , F. , Wang , S. , et al. ( 2018 ). Deep learning for healthcare: Review, opportunities and challenges . Briefings in Bioinformatics 19 ( 6 ): 1236 – 1246 .
- Al'Aref , S.J. , Anchouche , K. , Singh , G. , et al. ( 2019 ). Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging . European Heart Journal 40 ( 24 ): 1975 – 1986 .
- Cikes , M. , Sanchez-Martinez , S. , Claggett , B. , et al. ( 2019 ). Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy . European Journal of Heart Failure 21 ( 1 ): 74 – 85 .
- Lancaster , M.C. , Salem Omar , A.M. , Narula , S. , et al. ( 2019 ). Phenotypic clustering of left ventricular diastolic function parameters: Patterns and prognostic relevance . JACC. Cardiovascular Imaging 12 ( 7Part 1 ): 1149 – 1161 .
- Horiuchi , Y. , Tanimoto , S. , Latif , A.M. , et al. ( 2018 ). Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables . International Journal of Cardiology 262 : 57 – 63 .
- Ouyang , D. , He , B. , Ghorbani , A. , et al. ( 2020 ). Video-based AI for beat-to-beat assessment of cardiac function . Nature 580 ( 7802 ): 252 – 256 .
- Demirkiran , A. , Everaars , H. , Amier , R.P. , et al. ( 2019 ). Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury . European Heart Journal-Cardiovascular Imaging 20 ( 7 ): 723 – 734 .
- Winther , H.B. , Hundt , C. , Schmidt , B. , et al. ( 2018 ). ν-net: Deep learning for generalized biventricular mass and function parameters using multicenter cardiac MRI data . JACC. Cardiovascular Imaging 11 ( 7 ): 1036 – 1038 .
- Avendi , M.R. , Kheradvar , A. , and Jafarkhani , H. ( 2017 ). Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach . Magnetic Resonance in Medicine 78 ( 6 ): 2439 – 2448 .
- Tan , L.K. , McLaughlin , R.A. , Lim , E. , et al. ( 2018 ). Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression . Journal of Magnetic Resonance Imaging 48 ( 1 ): 140 – 152 .
- Reinstadler , S.J. , Thiele , H. , and Eitel , I. ( 2015 ). Risk stratification by cardiac magnetic resonance imaging after ST-elevation myocardial infarction . Current Opinion in Cardiology 30 ( 6 ): 681 – 689 .
- Avendi , M.R. , Kheradvar , A. , and Jafarkhani , H. ( 2017 ). Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach . Magnetic Resonance in Medicine 78 ( 6 ): 2439 – 2448 .
- Baessler , B. , Mannil , M. , Oebel , S. , et al. ( 2018 ). Subacute and chronic left ventricular myocardial scar: Accuracy of texture analysis on nonenhanced cine MR images . Radiology 286 ( 1 ): 103 – 112 .
- Medvedofsky , D. , Mor-Avi , V. , Amzulescu , M. , et al. ( 2018 ). Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: Multicentre validation study . European Heart Journal-Cardiovascular Imaging 19 ( 1 ): 47 – 58 .
- Cheema , B. , Hsieh , C. , Adams , D. , et al. ( 2019 ). Automated guidance and image capture of echocardiographic views using a deep learning-derived technology . Circulation 140 ( Suppl. 1 ): A15694 – A15694 .
- Alsharqi , M. , Woodward , W.J. , Mumith , J.A. , et al. ( 2018 ). Artificial intelligence and echocardiography . Echo Research and Practice 5 ( 4 ): R115 – R125 .
- Levin , D.C. , Parker , L. , Halpern , E.J. , et al. ( 2019 ). Coronary CT angiography: Reversal of earlier utilization trends . Journal of the American College of Radiology 16 ( 2 ): 147 – 155 .
- Coenen , A. , Kim , Y.H. , Kruk , M. , et al. ( 2018 ). Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography–based fractional flow reserve: Result from the MACHINE consortium . Circulation. Cardiovascular Imaging 11 ( 6 ): e007217 .