Coherence Transfer Pathways
David E. Korenchan
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States of America
Search for more papers by this authorAlexej Jerschow
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorDavid E. Korenchan
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States of America
Search for more papers by this authorAlexej Jerschow
Department of Chemistry, New York University, New York, NY 10003 USA
Search for more papers by this authorP.K. Madhu
Search for more papers by this authorG. Rajalakshmi
Search for more papers by this authorAbstract
In this chapter, the authors discuss coherence transfer pathways (CTPs), which represent a more abstract concept for describing pulse sequences. CTP selection can be applied in many cases in which the use of the product operator formulation is too difficult or impossible. The authors also discuss the main methods used in coherence pathway selection, phase cycling and pulsed gradients, and provide examples of how these are implemented in important classes of experiments. Cogwheel phase cycling is a type of concerted phase incrementation, but it had not been exploited until it was explicitly formulated by Levitt et al. Both phase cycling and pulsed gradients can be combined together in a single pulse sequence for gradient selection. For heteronuclear spin systems, one needs to keep track of the individual coherence orders for each nucleus. This approach is more straightforward for phase cycling than it is for pulsed-field gradients.
References
- Hatanaka , H. , Terao , T. , and Hashi , T. ( 1975 ). Excitation and detection of coherence between forbidden levels in 3-Level spin system by multistep processes . J. Phys. Soc. Japan 39 ( 3 ): 835 – 836 .
- Munowitz , M. and Pines , A. ( 1986 ). Multiple-quantum nuclear-magnetic-resonance spectroscopy . Science . 233 ( 4763 ): 525 – 531
- Hoult , D.I. ( 1973 ). The application of high field nuclear magnetic resonance . [Thesis (Ph.D.).].
- Braun , S. , Kalinowski , H-O. , and Berger , S. ( 1998 ). 150 and more basic NMR experiments: a practical course, 2nd expanded ed. Weinheim : Wiley-VCH .
- Keeler , J. ( 2010 ). Understanding NMR spectroscopy , 2e. Chichester, U.K. : John Wiley and Sons. 511 .
- Hore , P.J. , Jones , J.A. , and Wimperis S. ( 2000 ). NMR: the toolkit. Oxford; New York: Oxford University Press. 85 .
- Bain , A.D. ( 1984 ). Coherence levels and coherence pathways in NMR. A simple way to design phase cycling procedures . J. Magn. Reson . 56 ( 3 ): 418 – 427 .
- Bodenhausen , G. , Kogler , H. , and Ernst , R.R. ( 1984 ). Selection of Coherence-transfer pathways in NMR pulse experiments . J. Magn. Reson . 58 ( 3 ): 370 – 388 .
- Levitt , M.H. ( 2008 ). Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2e. Chichester, England; Hoboken, NJ : John Wiley ' Sons . 714 .
- Reichert , D. and Hempel , Gn. ( 2002 ). Receiver imperfections and CYCLOPS: an alternative description . Concepts Magn. Reson . 14 ( 2 ): 130 – 139 .
-
Torres , A.M.
and
Price , W.S.
(
2016
).
Common problems and artifacts encountered in solution-state NMR experiments
.
Concepts Magn. Reson. Part A
45A
(
2
).
10.1002/cmr.a.21387 Google Scholar
- Jerschow , A. ( 2000 ). Nonideal rotations in nuclear magnetic resonance: estimation of coherence transfer leakage . J. Chem. Phys . 113 ( 3 ): 979 – 986 .
- Levitt , M.H. , Madhu , P.K. , and Hughes , C.E. ( 2002 ). Cogwheel phase cycling . J. Magn. Reson . 155 ( 2 ): 300 – 306 .
- Jerschow , A. and Kumar , R. ( 2003 ). Calculation of coherence pathway selection and cogwheel cycles . J. Magn. Reson . 160 ( 1 ): 59 – 64 .
- Zuckerstätter , G. , Müller , N. ( 2007 ). Coherence pathway selection by cogwheel phase cycling in liquid-state NMR . Concepts Magn. Reson. A Part A 30A ( 2 ): 81 – 99 .
- Ivchenko , N. , Hughes , C.E. , and Levitt , M.H. ( 2003 ). Application of cogwheel phase cycling to sideband manipulation experiments in solid-state NMR . J. Magn. Reson . 164 ( 2 ): 286 – 293 .
- Bax , A. , Dejong , P.G. , Mehlkopf , A.F. , and Smidt , J. ( 1980 ). Separation of the different orders of NMR Multiple-Quantum transitions by the use of pulsed field gradients . Chem. Phys. Lett . 69 ( 3 ): 567 – 570 .
- Kay , L.E. ( 1995 ). Field gradient techniques in NMR spectroscopy . Curr. Opin. Struct. Biol . 5 ( 5 ): 674 – 681 .
- Jerschow , A. and Muller , N. ( 1998 ). Efficient simulation of coherence transfer pathway selection by phase cycling and pulsed field gradients in NMR . J. Magn. Reson . 134 ( 1 ): 17 – 29 .
- Zhu , J.M. and Smith , I.C.P. ( 1995 ). Selection of coherence transfer pathways by Pulsed-field gradients in NMR spectroscopy . Concepts Magn. Reson . 7 ( 4 ): 281 – 291 .
- Piotto , M. , Saudek , V. , and Sklenar , V. ( 1992 ). Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions . J Biomol. Struct. NMR . 2 ( 6 ): 661 – 665 .
- Hwang , T.L. and Shaka , A.J. ( 1995 ). Water suppression that works-excitation sculpting using arbitrary wave-forms and pulsed-field gradients . J. Magn. Reson. Series A 112 ( 2 ): 275 – 279 .
- Parella , T. , Sanchezferrando , F. , and Virgili , A. ( 1995 ). Improved HMQC-Type and HSQC-Type 1D spectra using pulsed-field gradients . J. Magn. Reson. Series A 114 ( 1 ): 32 – 38 .
- Mandal , P.K. and Majumdar , A. ( 2004 ). A comprehensive discussion of HSQC and HMQC pulse sequences . J. Concepts Magn. Reson . 20A ( 1 ): 1 – 23 .
- Jerschow , A. and Muller , N. ( 1997 ). Suppression of convection artifacts in stimulated-echo diffusion experiments. Double-stimulated-echo experiments . J. Concepts Magn. Reson . 125 ( 2 ): 372 – 375 .
- Jerschow , A. and Muller , N. ( 1998 ). Convection compensation in gradient enhanced nuclear magnetic resonance spectroscopy . J. Concepts Magn. Reson . 132 ( 1 ): 13 – 18 .
- Jerschow , A. ( 2000 ). Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection . J. Concepts Magn. Reson . 145 ( 1 ): 125 – 131 .
- Nilsson , M. and Morris , G.A. ( 2005 ). Improving pulse sequences for 3D DOSY: convection compensation . J. Concepts Magn. Reson . 177 ( 2 ): 203 – 211 .
- Thrippleton , M.J. and Keeler , J. ( 2003 ). Elimination of zero-quantum interference in two-dimensional NMR spectra . Angew. Chem., Int. Ed. Engl . 42 ( 33 ): 3938 – 3941 .
- Pileio , G. and Levitt , M.H. ( 2008 ). Isotropic filtering using polyhedral phase cycles: application to singlet state NMR . J. Concepts Magn. Reson . 191 ( 1 ): 148 – 155 .
- van Beek , J.D. , Carravetta , M. , Antonioli , G.C. , and Levitt , M.H. ( 2005 ). Spherical tensor analysis of nuclear magnetic resonance signals . J. Chem. Phys . 122 ( 24 ): 244510 .
-
Chandra Shekar , S.
,
Rong , P.
, and
Jerschow , A.
(
2008
).
Irreducible spherical tensor analysis of quadrupolar nuclei
.
Chem. Phys. Lett
.
464
(
4–6
):
235
–
239
.
10.1016/j.cplett.2008.08.072 Google Scholar