11 Multi-dimensional Methods in Biological NMR
Tobias Schneider
Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Search for more papers by this authorMichael Kovermann
Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Search for more papers by this authorTobias Schneider
Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Search for more papers by this authorMichael Kovermann
Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457 Konstanz
Search for more papers by this authorP.K. Madhu
Search for more papers by this authorG. Rajalakshmi
Search for more papers by this authorAbstract
High-resolution NMR spectroscopy provides a large variety of experimental approaches that target on the characterization of samples at atomic resolution. This capacity is of special interest when it comes to the investigation of biological molecules to obtain insights into their inherent structural and dynamical features and ultimately, their functionality. Consequently, it emerged as one of the leading methodologies in structural biology, life science, and biophysics. The correlation of different nuclear spins and an increase in the number of dimensions sort out the problem of overlapping resonance signals which is commonly present in one-dimensional NMR spectroscopy. While three- and even higher dimensional NMR experiments are usually acquired to unambiguously achieve resonance assignment, two-dimensional NMR spectra such as heteronuclear 1H-15N and 1H-13C HSQC approaches can report on subtle conformational and dynamical changes and are thus an integral part in the large variety of sophisticated experiments. This chapter aims to show the strength of NMR spectroscopy especially when it is performed in multi dimensions on biomolecules that vary in type and composition as well as in the environment in which they are existing. Thus, the importance of modern NMR techniques in the context of in vivo as well as integrative approaches is discussed. Another pillar of this Chapter comprises case studies. Here, also non-standard (“exotic”) applications of NMR correlating nuclei are highlighted. The diversity of experimental possibilities multi-dimensional high-resolution NMR spectroscopy offers suggest a continuous expansion of applications on biomolecules. This dynamic development is strongly promoted by the permanent increase in instrumental sensitivity and performance.
References
- McIntosh , L.P. , and Dahlquist , F.W. ( 1990 ). Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins . Q. Rev. Biophys. 23 : 1 – 38 .
- Marley , J. , Lu , M. , and Bracken , C. ( 2001 ). A method for efficient isotopic labeling of recombinant proteins . J. Biomol. NMR. 20 : 71 – 75 .
- Tugarinov , V. , and Kay , L.E. ( 2003 ). Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods . J. Am. Chem. Soc. 125 : 13868 – 13878 .
- Frieden , C. , Hoeltzli , S.D. , and Bann , J.G. ( 2004 ). The preparation of 19F-labeled proteins for NMR studies . Methods Enzymol. 380 : 400 – 415 .
- Studier , F.W. ( 2005 ). Protein production by auto-induction in high-density shaking cultures . Protein Expr. Purif. 41 : 207 – 234 .
- Kainosho , M. , Torizawa , T. , Iwashita , Y. , Terauchi , T. , Ono , A.M. , and Güntert , P. ( 2006 ). Optimal isotope labelling for NMR protein structure determinations . Nature. 440 : 52 – 57 .
- Lu , K. , Miyazaki , Y. , and Summers , M.F. ( 2010 ). Isotope labeling strategies for NMR studies of RNA . J. Biomol. NMR. 46 : 113 – 125 .
- Otten , R. , Chu , B. , Krewulak , K.D. , Vogel , H.J. , and Mulder , F.A.A. ( 2010 ). Comprehensive and cost-effective NMR spectroscopy of methyl groups in large proteins . J. Am. Chem. Soc. 132 : 2952 – 2960 .
- Nelissen , F.H.T. , Tessari , M. , Wijmenga , S.S. , and Heus , H.A. ( 2016 ). Stable isotope labeling methods for DNA . Prog. Nucl. Magn. Reson. Spectrosc. 96 : 89 – 108 .
- Cai , M.L. , Huang , Y. , Yang , R. , Craigie , R. , and Clore , G.M. ( 2016 ). A simple and robust protocol for high-yield expression of perdeuterated proteins in Escherichia coli grown in shaker flasks . J. Biomol. NMR. 66 : 85 – 91 .
- Welte , H. , and Kovermann , M. ( 2019 ). Targeted expression and purification of fluorine labelled cold shock protein B by using an auxotrophic strategy . Protein Expr. Purif. 157 : 86 – 91 .
- Williamson , M.P. , Havel , T.F. , and Wüthrich , K. ( 1985 ). Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry . J. Mol. Biol. 182 : 295 – 315 .
- Antuch , W. , Güntert , P. , and Wüthrich , K. ( 1996 ). Ancestral -crystallin precursor structure in a yeast killer toxin . Nat. Struct. Biol. 3 : 662 – 665 .
- Liu , G. , Shen , Y. , Atreya , H.S. , Parish , D. , Shao , Y. , Sukumaran , D.K. , Xiao , R. , Yee , A. , Lemak , A. , Bhattacharya , A. , Acton , T.A. , Arrowsmith , C.H. , Montelione , G.T. , and Szyperski , T. ( 2005 ). NMR data collection and analysis protocol for high-throughput protein structure determination . Proc. Natl. Acad. Sci. U. S. A. 102 : 10487 – 10492 .
- Gochin , M. , and Roder , H. ( 1995 ). Use of the pseudocontact shift as a structural constraint for macromolecules in solution . Bull. Magn. Reson. 17 : 298 – 299 .
- Banci , L. , Bertini , I. , Bren , K.L. , Cremonini , M.A. , Gray , H.B. , Luchinat , C. , and Turano , P. ( 1996 ). The use of pseudocontact shifts to refine solution structures of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example . J. Biol. Inorg. Chem. 1 : 117 – 126 .
- Bertini , I. , Luchinat , C. , and Parigi , G. ( 2002 ). Paramagnetic constraints: an aid for quick solution structure determination of paramagnetic metalloproteins . Concepts Magn. Reson. 14 : 259 – 286 .
- Bahramzadeh , A. , Huber , T. , and Otting , G. ( 2019 ). Three-dimensional protein structure determination using pseudocontact shifts of backbone amide protons generated by double-histidine Co 2+ -binding motifs at multiple sites . Biochemistry 58 : 3243 – 3250 .
- Tjandra , N. , Omichinski , J.G. , Gronenborn , A.M. , Clore , G.M. , and Bax , A. ( 1997 ). Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution . Nat. Struct. Biol. 4 : 732 – 738 .
- Tjandra , N. , and Bax , A. ( 1997 ). Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium . Science 278 : 1111 – 1114 .
- Lange , O.F. , Lakomek , N.A. , Fars , C. , Schröder , G.F. , Walter , K.F.A. , Becker , S. , Meiler , J. , Grubmüller , H. , Griesinger , C. , and de Groot , B.L. ( 2008 ). Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution . Science 320 : 1471 – 1475 .
- Pardi , A. , Billeter , M. , and Wüthrich , K. ( 1984 ). Calibration of the angular-dependence of the amide proton-Ca proton coupling constants, 3 JHN , in a globular protein: Use of 3 JHN for identification of helical secondary structure J. Mol. Biol. 180 : 741 – 751 .
- Salvador , P. ( 2014 ). Dependencies of J-couplings upon dihedral angles on proteins . Annu. Rep. NMR Spectrosc. 81 : 185 – 227 .
- Battiste , J.L. , and Wagner , G. ( 2000 ). Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data . Biochemistry 39 : 5355 – 5365 .
- Iwahara , J. , Schwieters , C.D. , and Clore , G.M. ( 2004 ). Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule . J. Am. Chem. Soc. 126 : 5879 – 5896 .
- Clore , G.M. , and Iwahara , J. ( 2009 ). Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes . Chem. Rev. 109 : 4108 – 4139 .
- Schwieters , C.D. , Kuszewski , J.J. , Tjandra , N. , and Clore , G.M. ( 2003 ). The Xplor-NIH NMR molecular structure determination package . J. Magn. Reson. 160 : 65 – 73 .
- Schwieters , C.D. , Kuszewski , J.J. , and Clore , G.M. ( 2006 ). Using Xplor-NIH for NMR molecular structure determination . Prog. Nucl. Magn. Reson. Spectrosc. 48 : 47 – 62 .
- Brünger , A.T. , Adams , P.D. , Clore , G.M. , DeLano , W.L. , Gros , P. , Grosse-Kunstleve , R.W. , Jiang , J.S. , Kuszewski , J. , Nilges , M. , Pannu , N.S. , Read , R.J. , Rice , L.M. , Simonson , T. , and Warren , G.L. ( 1998 ). Crystallography & NMR system: a new software suite for macromolecular structure determination . Acta Cryst. D54 : 905 – 921 .
- Brunger , A.T. ( 2007 ). Version 1.2 of the crystallography and NMR system . Nat. Protoc. 2 : 2728 – 2733 .
- Güntert , P. , Mumenthaler , C. , and Wüthrich , K. ( 1997 ). Torsion angle dynamics for NMR structure calculation with the new program DYANA . J. Mol. Biol. 273 : 283 – 298 .
- Rieping , W. , Habeck , M. , Bardiaux , B. , Bernard , A. , Malliavin , T.E. , and Nilges , M. ( 2007 ). ARIA2: automated NOE assignment and data integration in NMR structure calculation . Bioinformatics 23 : 381 – 382 .
- Ottiger , M. , Delaglio , F. , and Bax , A. ( 1998 ). Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra . J. Magn. Reson. 131 : 373 – 378 .
- Marion , D. , Driscoll , P.C. , Kay , L.E. , Wingfield , P.T. , Bax , A. , Gronenborn , A.M. , and Clore , G.M. ( 1989 ). Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser multiple quantum coherence spectroscopy: application to interleukin 1ß . Biochemistry 28 : 6150 – 6156 .
- Talluri , S. , and Wagner , G. ( 1996 ). An optimized 3D NOESY-HSQC . J. Magn. Reson. B 112 : 200 – 205 .
- Palmer III , A.G. , Rance , M., and Wright , P.E. ( 1991 ). Intramolecular motions of a zinc finger DNA-binding domain from xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy . J. Am. Chem. Soc. 113 : 4371 – 4380 .
- Mandel , A.M. , Akke , M. , and Palmer , III , A.G. ( 1995 ). Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme . J. Mol. Biol. 246 : 144 – 163 .
- Volkman , B.F. , Lipson , D. , Wemmer , D.E. , and Kern , D. ( 2001 ). Two-state allosteric behavior in a single-domain signaling protein . Science 291 : 2429 – 2433 .
- Yan , J. , Liu , Y. , Lukasik , S.M. , Speck , N.A. , and Bushweller , J.H. ( 2004 ). CBF allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium . Nat. Struct. Mol. Biol. 11 : 901 – 906 .
- Ma , D. , Tillman , T.S. , Tang , P. , Meirovitch , E. , Eckenhoff , R. , Carnini , A. , and Xu , Y. ( 2008 ). NMR studies of a channel protein without membranes: structure and dynamics of water-solubilized KcsA . Proc. Natl. Acad. Sci. U. S. A. 105 : 16537 – 16542 .
- Wang , W. , Weng , J. , Zhang , X. , Liu , M. , and Zhang , M. ( 2009 ). Creating conformational entropy by increasing interdomain mobility in ligand binding regulation: a revisit to N-terminal tandem PDZ domains of PSD-95 . J. Am. Chem. Soc. 131 : 787 – 796 .
- Carr , H.Y. , and Purcell , E.M. ( 1954 ). Effects of diffusion on free precession in nuclear magnetic resonance experiments . Phys. Rev. 94 : 630 – 638 .
- Meiboom , S. , and Gill , D. ( 1958 ). Modified spin-echo method for measuring nuclear relaxation times . Rev. Sci. Instrum. 29 : 688 – 691 .
- Luz , Z. , and Meiboom , S. ( 1963 ). Nuclear magnetic resonance study of protolysis of trimethylammonium ion in aqueous solution-order of the reaction with respect to solvent . J. Chem. Phys. 39 : 366 – 370 .
- Loria , J.P. , Rance , M. , and Palmer III , A.G. ( 1999 ). A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy . J. Am. Chem. Soc. 121 : 2331 – 2332 .
- Wolf-Watz , M. , Thai , V. , Henzler-Wildman , K. , Hadjipavlou , G. , Eisenmesser , E.Z. , and Kern , D. ( 2004 ). Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair . Nat. Struct. Mol. Biol. 11 : 945 – 949 .
- Sugase , K. , Dyson , H.J. , and Wright , P.E. ( 2007 ). Mechanism of coupled folding and binding of an intrinsically disordered protein . Nature 447 : 1021 – 1025 .
- Whittier , S.K. , Hengge , A.C. , and Loria , J.P. ( 2013 ). Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases . Science 341 : 899 – 903 .
- Karamanos , T.K. , Tugarinov , V. , and Clore , G.M. ( 2020 ). An S/T motif controls reversible oligomerization of the Hsp40 chaperone DNAJB6b through subtle reorganization of a β sheet backbone . Proc. Natl. Acad. Sci. U. S. A. 117 : 30441 – 30450 .
- Long , D. , Bouvignies , G. , and Kay , L.E. ( 2014 ). Measuring hydrogen exchange rates in invisible protein excited states . Proc. Natl. Acad. Sci. U. S. A. 111 : 8820 – 8825 .
- Deshmukh , L. , Tugarinov , V. , Louis , J.M. , and Clore , G.M. ( 2017 ). Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR . Proc. Natl. Acad. Sci. U. S. A. 114 : E9855 – E9862 .
- Gladkova , C. , Schubert , A.F. , Wagstaff , J.L. , Pruneda , J.N. , Freund , S.M.V. , and Komander , D. ( 2017 ). An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1 . EMBO J. 36 : 3555 – 3572 .
-
Xie , T.
,
Saleh , T.
,
Rossi , P.
, and
Kalodimos , C.G.
(
2020
).
Conformational states dynamically populated by a kinase determine its function
.
Science
370: eabc2754.
10.1126/science.abc2754 Google Scholar
- Gemmecker , G. , Jahnke , W. , and Kessler , H. ( 1993 ). Measurement of fast proton-exchange rates in isotopically labeled compounds . J. Am. Chem. Soc. 115 : 11620 – 11621 .
- Hwang , T.L. , Mori , S. , Shaka , A.J. , and van Zijl , P.C.M. ( 1997 ). Application of Phase-Modulated CLEAN chemical EXchange spectroscopy (CLEANEX-PM) to detect water-protein proton exchange and intermolecular NOEs . J. Am. Chem. Soc. 119 : 6203 – 6204 .
- Hwang , T.L. , van Zijl , P.C.M. , and Mori , S. ( 1998 ). Accurate quantitation of water-amide proton exchange rates using the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme . J. Biomol. NMR 11 : 221 – 226 .
- Haupt , C. , Weininger , U. , Kovermann , M. , and Balbach , J. ( 2011 ). Local and coupled thermodynamic stability of the two-domain and bifunctional enzyme SlyD from Escherichia coli . Biochemistry 50 : 7321 – 7329 .
- Chandak , M.S. , Nakamura , T. , Makabe , K. , Takenaka , T. , Mukaiyama , A. , Chaudhuri , T.K. , Kato , K. , and Kuwajima , K. ( 2013 ). The H/D-exchange kinetics of the Escherichia coli co-chaperonin GroES studied by 2D NMR and DMSO-quenched exchange methods . J. Mol. Biol. 425 : 2541 – 2560 .
- Bhunia , A. , Ilyas , H. , and Bhattacharjya , S. ( 2020 ). Salt dependence conformational stability of the dimeric SAM domain of MAPKKK Ste11 from budding yeast: a native-state H/D exchange NMR study . Biochemistry 59 : 2849 – 2858 .
- Balbach , J. , Forge , V. , van Nuland , N.A.J. , Winder , S.L. , Hore , P.J. , and Dobson , C.M. ( 1995 ). Following protein folding in real time using NMR spectroscopy . Nat. Struct. Biol. 2 : 865 – 870 .
- Feige , M.J. , Groscurth , S. , Marcinowski , M. , Yew , Z.T. , Truffault , V. , Paci , E. , Kessler , H. , and Buchner , J. ( 2008 ). The structure of a folding intermediate provides insight into differences in immunoglobulin amyloidogenicity . Proc. Natl. Acad. Sci. U. S. A. 105 : 13373 – 13378 .
- Haupt , C. , Patzschke , R. , Weininger , U. , Gröger , S. , Kovermann , M. , and Balbach , J. ( 2011 ). Transient enzyme-substrate recognition monitored by real-time NMR . J. Am. Chem. Soc. 133 : 11154 – 11162 .
- Reining , A. , Nozinovic , S. , Schlepckow , K. , Buhr , F. , Fürtig , B. , and Schwalbe , H. ( 2013 ). Three-state mechanism couples ligand and temperature sensing in riboswitches . Nature 499 : 355 – 359 .
- Macek , P. , Kerfah , R. , Erba , E.B. , Crublet , E. , Moriscot , C. , Schoehn , G. , Amero , C. , and Boisbouvier , J. ( 2017 ). Unraveling self-assembly pathways of the 468-kDa proteolytic machine TET2 . Sci. Adv. 3 : e1601601 .
- Köhn , B. , Schwarz , P. , Wittung-Stafshede , P. , and Kovermann , M. ( 2021 ). Impact of crowded environments on binding between protein and single-stranded DNA . Sci. Rep. 11: 17682.
- Welte , H. , Sinn , P. , and Kovermann , M. ( 2021 ). Fluorine NMR spectroscopy enables to quantify the affinity between DNA and proteins in cell lysate . Chembiochem 22 : 2973 – 2980 .
- Williamson , M.P. ( 2013 ). Using chemical shift perturbation to characterise ligand binding . Prog. Nucl. Magn. Reson. Spectrosc. 73 : 1 – 16 .
- Bai , Y. , Milne , J.S. , Mayne , L. , and Englander , S.W. ( 1993 ). Primary structure effects on peptide group hydrogen exchange . Proteins 17 : 75 – 86 .
- Connelly , G.P. , Bai , Y. , Jeng , M.F. , and Englander , S.W. ( 1993 ). Isotope effects in peptide group hydrogen exchange . Proteins 17 : 87 – 92 .
- Bai , Y. , Milne , J.S. , Mayne , L. , and Englander , S.W. ( 1994 ). Protein stability parameters measured by hydrogen exchange . Proteins 20 : 4 – 14 .
- Roder , H. , Elöve , G.A. , and Englander , S.W. ( 1988 ). Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR . Nature 335 : 700 – 704 .
- Udgaonkar , J.B. , and Baldwin , R.L. ( 1988 ). NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A . Nature 335 : 694 – 699 .
- Schulenburg , C. , Löw , C. , Weininger , U. , Mrestani-Klaus , C. , Hofmann , H. , Balbach , J. , Ulbrich-Hofmann , R. , and Arnold , U. ( 2009 ). The folding pathway of onconase is directed by a conserved intermediate . Biochemistry 48 : 8449 – 8457 .
- Di Paolo , A. , Balbeur , D. , De Pauw , E. , Redfield , C. , and Matagne , A. ( 2010 ). Rapid collapse into a molten globule is followed by simple two-state kinetics in the folding of lysozyme from bacteriophage . Biochemistry 49 : 8646 – 8657 .
- Dyson , H.J. , and Wright , P.E. ( 2017 ). How does your protein fold? Elucidating the apomyoglobin folding pathway . Acc. Chem. Res. 50 : 105 – 111 .
- Serber , Z. , and Dötsch , V. ( 2001 ). In-cell NMR spectroscopy . Biochemistry 40 : 14317 – 14323 .
- Zimmerman , S.B. , and Trach , S.O. ( 1991 ). Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli . J. Mol. Biol. 222 : 599 – 620 .
- Cheung , M.C. , LaCroix , R. , McKenna , B.K. , Liu , L. , Winkelman , J. , and Ehrlich , D.J. ( 2013 ). Intracellular protein and nucleic acid measured in eight cell types using deep-ultraviolet mass mapping . Cytometry A 83A : 540 – 551 .
- Köhn , B. , and Kovermann , M. ( 2019 ). Macromolecular crowding tunes protein stability by manipulating solvent accessibility . Chembiochem 20 : 759 – 763 .
- Welte , H. , and Kovermann , M. ( 2020 ). Insights into protein stability in cell lysate by 19F NMR spectroscopy . Chembiochem 21 : 3575 – 3579 .
-
Köhn , B.
, and
Kovermann , M.
(
2020
).
All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy
.
Nat. Commun.
11: 5760.
10.1038/s41467-020-19616-w Google Scholar
- Bertrand , K. , Reverdatto , S. , Burz , D.S. , Zitomer , R. , and Shekhtman , A. ( 2012 ). Structure of proteins in eukaryotic compartments . J. Am. Chem. Soc. 134 : 12798 – 12806 .
- Hamatsu , J. , O'Donovan , D. , Tanaka , T. , Shirai , T. , Hourai , Y. , Mikawa , T. , Ikeya , T. , Mishima , M. , Boucher , W. , Smith , B.O. , Laue , E.D. , Shirakawa , M. , and Ito , Y. ( 2013 ). High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system . J. Am. Chem. Soc. 135 : 1688 – 1691 .
- Banci , L. , Barbieri , L. , Bertini , I. , Luchinat , E. , Secci , E. , Zhao , Y. , and Aricescu , A.R. ( 2013 ). Atomic-resolution monitoring of protein maturation in live human cells by NMR . Nat. Chem. Biol. 9 : 297 – 299 .
- Nishida , N. , Ito , Y. , and Shimada , I. ( 2020 ). In situ structural biology using in-cell NMR . Biochim. Biophys. Acta Gen. Subj. 1864: 129364.
- Luchinat , E. , and Banci , L. ( 2017 ). In-cell NMR: a topical review . IUCrJ 4 : 108 – 118 .
- Selenko , P. , Serber , Z. , Gadea , B. , Ruderman , J. , and Wagner , G. ( 2006 ). Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes . Proc. Natl. Acad. Sci. U. S. A. 103 : 11904 – 11909 .
- Sakai , T. , Tochio , H. , Tenno , T. , Ito , Y. , Kokubo , T. , Hiroaki , H. , and Shirakawa , M. ( 2006 ). In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes . J. Biomol. NMR 36 : 179 – 188 .
- Ogino , S. , Kubo , S. , Umemoto , R. , Huang , S. , Nishida , N. , and Shimada , I. ( 2009 ). Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O . J. Am. Chem. Soc. 131 : 10834 – 10835 .
- Inomata , K. , Ohno , A. , Tochio , H. , Isogai , S. , Tenno , T. , Nakase , I. , Takeuchi , T. , Futaki , S. , Ito , Y. , Hiroaki , H. , and Shirakawa , M. ( 2009 ). High-resolution multi-dimensional NMR spectroscopy of proteins in human cells . Nature 458 : 106 – 109 .
- Freedberg , D.I. , and Selenko , P. ( 2014 ). Live cell NMR . Annu. Rev. Biophys. 43 : 171 – 192 .
- Luchinat , E. , and Banci , L. ( 2016 ). A unique tool for cellular structural biology: in-cell NMR . J. Biol. Chem. 291 : 3776 – 3784 .
- Ikeya , T. , Sasaki , A. , Sakakibara , D. , Shigemitsu , Y. , Hamatsu , J. , Hanashima , T. , Mishima , M. , Yoshimasu , M. , Hayashi , N. , Mikawa , T. , Nietlispach , D. , Wälchli , M. , Smith , B.O. , Shirakawa , M. , Güntert , P. , and Ito , Y. ( 2010 ). NMR protein structure determination in living E. coli cells using nonlinear sampling . Nat. Protoc. 5 : 1051 – 1060 .
- Sakakibara , D. , Sasaki , A. , Ikeya , T. , Hamatsu , J. , Hanashima , T. , Mishima , M. , Yoshimasu , M. , Hayashi , N. , Mikawa , T. , Wälchli , M. , Smith , B.O. , Shirakawa , M. , Güntert , P. , and Ito , Y. ( 2009 ). Protein structure determination in living cells by in-cell NMR spectroscopy . Nature 458 : 102 – 105 .
- Gauto , D.F. , Estrozi , L.F. , Schwieters , C.D. , Effantin , G. , Macek , P. , Sounier , R. , Sivertsen , A.C. , Schmidt , E. , Kerfah , R. , Mas , G. , Colletier , J.P. , Güntert , P. , Favier , A. , Schoehn , G. , Schanda , P. , and Boisbouvier , J. ( 2019 ). Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex . Nat. Commun. 10: 2697.
- Henzler-Wildman , K.A. , Thai , V. , Lei , M. , Ott , M. , Wolf-Watz , M. , Fenn , T. , Pozharski , E. , Wilson , M.A. , Petsko , G.A. , Karplus , M. , Hübner , C.G. , and Kern , D. ( 2007 ). Intrinsic motions along an enzymatic reaction trajectory . Nature 450 : 838 – 844 .
- Kovermann , M. , Grundström , C. , Sauer-Eriksson , A.E. , Sauer , U.H. , and Wolf-Watz , M. ( 2017 ). Structural basis for ligand binding to an enzyme by a conformational selection pathway . Proc. Natl. Acad. Sci. U. S. A. 114 : 6298 – 6303 .
- Kovermann , M. , Ådén, J., Grundström, C., Sauer-Eriksson, A.E., Sauer, U.H., and Wolf-Watz, M. ( 2015 ). Structural basis for catalytically restrictive dynamics of a high-energy enzyme state. Nat. Commun . 6: 11792.
- Pálmadóttir , T. , Malmendal , A. , Leiding , T. , Lund , M. , and Linse , S. ( 2021 ). Charge regulation during amyloid formation of -synuclein . J. Am. Chem. Soc. 143 : 7777 – 7791 .
- Yang , X. , Wang , B. , Hoop , C.L. , Williams , J.K. , and Baum , J. ( 2021 ). NMR unveils an N-terminal interaction interface on acetylated- -synuclein monomers for recruitment to fibrils . Proc. Natl. Acad. Sci. U. S. A. 118: e2017452118.
- Törnquist , M. , Cukalevski , R. , Weininger , U. , Meisl , G. , Knowles , T.P.J. , Leiding , T. , Malmendal , A. , Akke , M. , and Linse , S. ( 2020 ). Ultrastructural evidence for self-replication of Alzheimer-associated Aβ42 amyloid along the sides of fibrils . Proc. Natl. Acad. Sci. U. S. A. 117 : 11265 – 11273 .
- Wishart , D.S. , Bigam , C.G. , Holm , A. , Hodges , R.S. , and Sykes , B.D. ( 1995 ). 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects . J. Biomol. NMR 5 : 67 – 81 .
- Siu , H.W. , Heck , B. , Kovermann , M. , and Hauser , K. ( 2021 ). Template-assisted design of monomeric polyQ models to unravel the unique role of glutamine side chains in disease-related aggregation . Chemical Science 12 : 412 – 426 .
- Bax , A. ( 1989 ). Two-dimensional NMR and protein structure . Annu. Rev. Biochem. 58 : 223 – 256 .
- Fesik , S.W. , and Zuiderweg , E.R.P. ( 1990 ). Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules . Q. Rev. Biophys. 23 : 97 – 131 .
- Mandal , P.K. , and Majumdar , A. ( 2004 ). A comprehensive discussion of HSQC and HMQC pulse sequences . Concepts Magn. Reson. Part A 20A : 1 – 23 .
- Ebrahimi , M. , Rossi , P. , Rogers , C. , and Harbison , G.S. ( 2001 ). Dependence of 13C NMR chemical shifts on conformations of RNA nucleosides and nucleotides . J. Magn. Reson. 150 : 1 – 9 .
- Schnieders , R. , Keyhani , S. , Schwalbe , H. , and Fürtig , B. ( 2020 ). More than proton detection-new avenues for NMR spectroscopy of RNA . Chem. Eur. J. 26 : 102 – 113 .
- Richter , C. , Kovacs , H. , Buck , J. , Wacker , A. , Fürtig , B. , Bermel , W. , and Schwalbe , H. ( 2010 ). 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides . J. Biomol. NMR 47 : 259 – 269 .
- Boeszoermenyi , A. , Chhabra , S. , Dubey , A. , Radeva , D.L. , Burdzhiev , N.T. , Chanev , C.D. , Petrov , O.I. , Gelev , V.M. , Zhang , M. , Anklin , C. , Kovacs , H. , Wagner , G. , Kuprov , I. , Takeuchi , K. , and Arthanari , H. ( 2019 ). Aromatic 19F-13C TROSY: a background-free approach to probe biomolecular structure, function, and dynamics . Nat. Methods. 16 : 333 – 340 .
- Palmer , III , A. G. , Kroenke , C.D., and Loria, J.P. ( 2001 ). Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules . Methods Enzymol. 339 : 204 – 238 .
- Kleckner , I.R. , and Foster , M.P. ( 2011 ). An introduction to NMR-based approaches for measuring protein dynamics . Biochim. Biophys. Acta 1814 : 942 – 968 .
- Religa , T.L. , Sprangers , R. , and Kay , L.E. ( 2010 ). Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR . Science 328 : 98 – 102 .
- Baumeister , W. , Walz , J. , Zühl , F. , and Seemüller , E. ( 1998 ). The proteasome: paradigm of a self-compartmentalizing protease . Cell 92 : 367 – 380 .
- Gelis , I. , Bonvin , A.M.J.J. , Keramisanou , D. , Koukaki , M. , Gouridis , G. , Karamanou , S. , Economou , A. , and Kalodimos , C.G. ( 2007 ). Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR . Cell 131 : 756 – 769 .
- Farrow , N.A. , Zhang , O. , Forman-Kay , J.D. , and Kay , L.E. ( 1994 ). A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium . J. Biomol. NMR 4 : 727 – 734 .
- Wauer , T. , Swatek , K.N. , Wagstaff , J.L. , Gladkova , C. , Pruneda , J.N. , Michel , M.A. , Gersch , M. , Johnson , C.M. , Freund , S.M.V. , and Komander , D. ( 2015 ). Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis . EMBO J. 34 : 307 – 325 .
- Whitby , F.G. , Xia , G. , Pickart , C.M. , and Hill , C.P. ( 1998 ). Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes . J. Biol. Chem. 273 : 34983 – 34991 .
- Stuber , K. , Schneider , T. , Werner , J. , Kovermann , M. , Marx , A. , and Scheffner , M. ( 2021 ). Structural and functional consequences of NEDD8 phosphorylation . Nat. Commun. 12 : 5939 .
- Gillespie , J.R. , and Shortle , D. ( 1997 ). Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels . J. Mol. Biol. 268 : 158 – 169 .
- Gillespie , J.R. , and Shortle , D. ( 1997 ). Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures . J. Mol. Biol. 268 : 170 – 184 .
- Keizers , P.H.J. , and Ubbink , M. ( 2011 ). Paramagnetic tagging for protein structure and dynamics analysis . Prog. Nucl. Magn. Reson. Spectrosc. 58 : 88 – 96 .
- Madl , T. , Bermel , W. , and Zangger , K. ( 2009 ). Use of relaxation enhancements in a paramagnetic environment for the structure determination of proteins using NMR spectroscopy . Angew. Chem. Int. Ed. 48 : 8259 – 8262 .
- Kellner , R. , Mangels , C. , Schweimer , K. , Prasch , S.J. , Weiglmeier , P.R. , Rösch , P. , and Schwarzinger , S. ( 2009 ). SEMPRE: spectral editing mediated by paramagnetic relaxation enhancement . J. Am. Chem. Soc. 131 : 18016 – 18017 .
-
Hartlmüller , C.
,
Günther , J.C.
,
Wolter , A.C.
,
Wöhnert , J.
,
Sattler , M.
, and
Madl , T.
(
2017
).
RNA structure refinement using NMR solvent accessibility data
.
Sci. Rep.
7: 5393.
10.1038/s41598-017-05821-z Google Scholar
- Kooshapur , H. , Schwieters , C.D. , and Tjandra , N. ( 2018 ). Conformational ensemble of disordered proteins probed by solvent paramagnetic relaxation enhancement (sPRE) . Angew. Chem. Int. Ed. 57 : 13519 – 13522 .
- Hocking , H.G. , Zangger , K. , and Madl , T. ( 2013 ). Studying the structure and dynamics of biomolecules by using soluble paramagnetic probes . Chemphyschem 14 : 3082 – 3094 .
- Gong , Z. , Gu , X.H. , Guo , D.C. , Wang , J. , and Tang , C. ( 2017 ). Protein structural ensembles visualized by solvent paramagnetic relaxation enhancement . Angew. Chem. Int. Ed. 56 : 1002 – 1006 .
- Zhang , M. , Tanaka , T. , and Ikura , M. ( 1995 ). Calcium-induced conformational transition revealed by the solution structure of apo calmodulin . Nat. Struct. Biol. 2 : 758 – 767 .
- Kuboniwa , H. , Tjandra , N. , Grzesiek , S. , Ren , H. , Klee , C.B. , and Bax , A. ( 1995 ). Solution structure of calcium-free calmodulin . Nat. Struct. Biol. 2 : 768 – 776 .
- Gong , Z. , Schwieters , C.D. , and Tang , C. ( 2018 ). Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics . Methods 148 : 48 – 56 .
- Mori , S. , Abeygunawardana , C. , Berg , J.M. , and van Zijl , P.C.M. ( 1997 ). NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties . J. Am. Chem. Soc. 119 : 6844 – 6852 .
- Vijay-Kumar , S. , Bugg , C.E. , and Cook , W.J. ( 1987 ). Structure of ubiquitin refined at 1.8 Å resolution . J. Mol. Biol. 194 : 531 – 544 .
- Cordier , F. , and Grzesiek , S. ( 2002 ). Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR . J. Mol. Biol. 317 : 739 – 752 .
- Jurt , S. , and Zerbe , O. ( 2012 ). A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants . J. Biomol. NMR 54 : 389 – 400 .
- Schneider , T. , Berg , A. , Ulusoy , Z. , Gamerdinger , M. , Peter , C. , and Kovermann , M. ( 2019 ). Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers . Sci. Rep. 9: 19991.
- Sugiki , T. , Kobayashi , N. , and Fujiwara , T. ( 2017 ). Modern technologies of solution nuclear magnetic resonance spectroscopy for three-dimensional structure determination of proteins open avenues for life scientists . Comput. Struct. Biotechnol. J. 15 : 328 – 339 .
- Kühlbrandt , W. ( 2014 ). The resolution revolution . Science 343 : 1443 – 1444 .
- Schirò , A. , Carlon , A. , Parigi , G. , Murshudov , G. , Calderone , V. , Ravera , E. , and Luchinat , C. ( 2020 ). On the complementarity of X-ray and NMR data . J. Struct. Biol. X 4 : 100019 .
- Durá , M.A. , Receveur-Brechot , V. , Andrieu , J.P. , Ebel , C. , Schoehn , G. , Roussel , A. , and Franzetti , B. ( 2005 ). Characterization of a TET-like aminopeptidase complex from the hyperthermophilic archaeon Pyrococcus horikoshii . Biochemistry 44 : 3477 – 3486 .
- Beckonert , O. , Keun , H.C. , Ebbels , T.M.D. , Bundy , J. , Holmes , E. , Lindon , J.C. , and Nicholson , J.K. ( 2007 ). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts . Nat. Protoc. 2 : 2692 – 2703 .
- Wishart , D.S. ( 2016 ). Emerging applications of metabolomics in drug discovery and precision medicine . Nat. Rev. Drug Discov. 15 : 473 – 484 .
- O'Shea , K. , and Misra , B.B. ( 2020 ). Software tools, databases and resources in metabolomics: updates from 2018 to 2019 . Metabolomics 16 : 36 .
- Emwas , A.H. , Roy , R. , McKay , R.T. , Tenori , L. , Saccenti , E. , Gowda , G.A.N. , Raftery , D. , Alahmari , F. , Jaremko , L. , Jaremko , M. , and Wishart , D.S. ( 2019 ). NMR spectroscopy for metabolomics research . Metabolites 9 : 123 .
- Lewis , I.A. , Schommer , S.C. , Hodis , B. , Robb , K.A. , Tonelli , M. , Westler , W.M. , Sussman , M.R. , and Markley , J.L. ( 2007 ). Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra . Anal. Chem. 79 : 9385 – 9390 .
- Jagger , A.M. , Waudby , C.A. , Irving , J.A. , Christodoulou , J. , and Lomas , D.A. ( 2020 ). High-resolution ex vivo NMR spectroscopy of human Z α1-antitrypsin . Nat. Commun. 11 : 6371 .
- Lomas , D.A. , Evans , D.L. , Finch , J.T. , and Carrell , R.W. ( 1992 ). The mechanism of Z α1-antitrypsin accumulation in the liver . Nature 357 : 605 – 607 .
- Wewers , M.D. , Casolaro , M.A. , Sellers , S.E. , Swayze , S.C. , McPhaul , K.M. , Wittes , J.T. , and Crystal , R.G. ( 1987 ). Replacement therapy for alpha1-antitrypsin deficiency associated with emphysema . New Engl. J. Med. 316 : 1055 – 1062 .
- Huang , X. , Zheng , Y. , Zhang , F. , Wei , Z. , Wang , Y. , Carrell , R.W. , Read , R.J. , Chen , G.Q. , and Zhou , A. ( 2016 ). Molecular mechanism of Z α1-antitrypsin deficiency . J. Biol. Chem. 291 : 15674 – 15686 .
- Amero , C. , Schanda , P. , Dura , M.A. , Ayala , I. , Marion , D. , Franzetti , B. , Brutscher , B. , and Boisbouvier , J. ( 2009 ). Fast two-dimensional NMR spectroscopy of high molecular weight protein assemblies . J. Am. Chem. Soc. 131 : 3448 – 3449 .