An Intelligent Healthcare Monitoring System for Coma Patients
Janney J. Bethanney
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorT. Sudhakar
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorSindu Divakaran
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorH. Chandana
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorChriselda L. Caroline
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorJanney J. Bethanney
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorT. Sudhakar
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorSindu Divakaran
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorH. Chandana
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorChriselda L. Caroline
Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Search for more papers by this authorR.J. Hemalatha
Search for more papers by this authorD. Balaganesh
Search for more papers by this authorAnand Paul
Search for more papers by this authorSummary
Monitoring of changes in the real time caused by the body movement is an essential tool. Monitoring system and patient movement is the process used to track changes of motion in patients with state of coma. Coma is a profound loss of consciousness disorder, which can have multiple causes. Massively important effects can happen rapidly, consistently, and sometimes with therapeutic implications. The purpose of this work is to provide a detailed analysis of patient EEG analysis, number of eye blinks, hand movement, movement of the legs, heart rate, temperature, and oxygen saturation of the coma patients. Camera setup with integration of Raspberry Pi has been fixed to clearly differentiate any motions in the patient's eye and yawn identification. Patient records are preserved in the cloud for quick access and review for the long term. It will examine the coma patient's vital sign on a continuous basis, and in any situation, when any movement happens in the patient, the device will identify and activate the message and send it to doctor and central station through IoMT. Thereby, the vital signs are those that expose dramatic changes in coma upon processing, as well as provide precise data about causative agent and treatment plan. Consistent tracking and observation of these health issues improves medical assurance and allows for tracking coma events.
References
- Guerit , J.M. , Fischer , C. , Facco , E. , Tinuper , P. , Murri , L. , Ronne-Engstrom , E. , Nuwer , M. , Standards of clinical practice of EEG and EPs in comatose and other unresponsive states . Electroencephalogr. Clin. Neurophysiol. Suppl. , 52 , 117 – 131 , 1999 .
- Brenner , R.P. , The electroencephalogram in altered states of consciousness . Neurol. Clin. , 3 , 3 , 615 – 631 , 1985 .
- Kansal , N. and Dhillon , H.S. , Advanced Coma Patient Monitoring System . Int. J. Sci. Eng. Res. , 2 , 6 , 347 – 359 , 2011 .
- Kansal , N. and Dhillon , H.S. , Advanced Coma Patient Monitoring System . Int. J. Sci. Eng. Res. , 2 , 6 , 1 – 10 , 2011 .
- Lokesh , B. , Angulakshmi , A. , Ashwini , K.P. , Manojkumar , S. , Lokesh , M. , IoT based Coma Patient Monitoring System using wearable sensors . Int. J. Adv. Sci. Technol. , 29 , 10 , 4401 – 4409 , 2020 .
- Brenner , R.P. , The electroencephalogram in altered states of consciousness . Neurol. Clin. , 3 , 3 , 615 – 631 , 1985 .
- Norrima , B. , Hamzah , A. , Masahiro , I. , Real Time Eyeball tracking via DDTW . Int. J. Innov. Comput. Inf. Control , 7 , 7 , 146 – 161 , 2011 .
- Tipprasert , W. , Charoenpong , T. , Chianrabutra , C. , Sukjamsri , C. , A Method of Driver's Eyes Closure and Yawning Detection for Drowsiness Analysis by Infrared Camera . 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence , and Robotics (ICA-SYMP) , Bangkok , pp. 61 – 64 , 2019 .
- Saadeh , W. , Khan , F.H. , Altaf , M.A.B. , Design and Implementation of a Machine Learning Based EEG Processor for Accurate Estimation of Depth of Anesthesia . IEEE Trans. Biomed. Circuits Syst. , 13 , 4 , 658 – 669 , 2019 .
- Cui , Y. , Xu , Y. , Wu , D. , EEG-based driver drowsiness estimation using feature weighted episodic training . IEEE Trans. Neural Syst. Rehabil. Eng. , 27 , 11 , 2263 – 2273 , 2019 .
- Tripathi , V. and Shakeel , F. , Monitoring Healthcare System using Internet of Things – An Immaculate Pairing . International Conference on Next Generation Computing and Information Systems (ICNGCIS) , pp. 153 – 158 , 2017 .
- Yusuf , A.N.A. , Zulkifli , F.Y. , Mustika , I.W. , Development of monitoring and health service information system to support smart health on android platform . 4th International Conference on Nano Electronics Research and Education (ICNERE) , Hamamatsu, Japan, pp. 1 – 6 , 2018 .
- Massot , B. , Gehin , C. , Nocua , R. , Dittmar , A. , McAdams , E. , A wearable, low-power, health-monitoring instrumentation based on a programmable system-on-chipTM . 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society , Minneapolis, MN, pp. 48524855 , 2009 .
- Purnima , P.S. , Zigbee and GSM based patient health monitoring system . International Conference on Electronics and Communication Systems (ICECS) , 2014 , pp. 1 – 5 , 2014 .
- Qian , D. , Wang , B. , Qing , X. , Zhang , T. , Zhang , Y. , Wang , X. , Drowsiness Detection by Bayesian-Copula Discriminant Classifier Based on EEG Signals During Daytime Short Nap . IEEE Trans. Biomed. Eng. , 64 , 4 , 743 – 754 , 2017 .
- Park , C. , Looney , D. , Kidmose , P. , Ungstrup , M. , Mandic , D.P. , TimeFrequency Analysis of EEG Asymmetry Using Bivariate Empirical Mode Decomposition . IEEE Trans. Neural Syst. Rehabil. Eng. , 19 , 4 , 261 – 274 , 2011 .
- Pimplaskar , D. , Nagmode , M.S. , Borkar , A. , Real time eye blinking detection and tracking using opencv . Int. J. Eng. Res. Appl. , 13 , 14 , 15 – 29 , 2015 .
- Liu , G. , Su , Y. , Liu , Y. , Jiang , M. , Zhang , Y. , Zhang , Y. , Gao , D. , Predicting Outcome in Comatose Patients: The Role of EEG Reactivity to Quantifiable Electrical Stimuli . Evid.-Based Complementary Altern. Med. , 2016 , 1 – 7 , 2016.
- Gu , Y. , Shen , J. , Chen , Y. , A Smart Watch Based Health Monitoring System. 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies , Arlington , pp. 7 – 8 , 2019 .
- Fati , S.M. , Muneer , A. , Mungur , D. , Badawi , A. , Integrated Health Monitoring System using GSM and IoT . International Conference on Smart Computing and Electronic Enterprise (ICSCEE) , pp. 1 – 7 , 2018 .
- Solinski , M. , Lepek , M. , Koltowski , L. , Automatic cough detection based on airflow signals for portable spirometry system . Inform. Med. Unlocked , 100313 , 1 – 9 , 2020 .
- Maganti , M. , Vikas , B. , Subhadra , K. , Drowsiness detection using Eye-Blink frequency and Yawn count for Driver Alert . Int. J. Innov. Technol. Explor. Eng. , 9 , 2 , 314 – 317 , 2019 .
-
Ramtirthkar , A.
,
Digge , J.
,
Koli , V.R.
,
IoT based Healthcare System for Coma Patient
.
Int. J. Eng. Advanced Technol.
,
9
,
3
,
327
–
341
,
2020
.
10.35940/ijeat.A1126.029320 Google Scholar
- Su , M.-C. , Wang , K.-C. , Chen , G.-D. , An eye tracking system and its application in aids for people with severe disabilities . Biomed. Eng. Appl. Basis Commun. , 18 , 6 , 197 – 210 , 2006 .
- Goto , S. , Nakamura , M. , Uosaki , K. , On-line spectral estimation of non-stationary time series based on AR model parameter estimation and order selection with a forgetting factor . IEEE Trans. Signal Process. , 43, 6 , 15191522 , 1995 .
- Zamin , S.A. , Altaf , M.A.B. , Saadeh , W. , A Single Channel EEG-based All AASM Sleep Stages Classifier for Neurodegenerative Disorder . Biomedical Circuits and Systems Conference (BioCAS) , 2019 , IEEE, pp. 1–4 , 2019 .
- Yoo , J. , Yan , L. , El-Damak , D. , Altaf , M.A.B. , Shoeb , A.H. , Chandrakasan , A.P. , An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor . IEEE J. Solid-State Circuits , 48 , 1 , 214 – 228 , 2013 .
- Besancon , G. , Becq , G. , Voda , A. , Fractional-Order Modelling and Identification for a Phantom EEG System . IEEE Trans. Control Syst. Technol. , 28 , 1 , 130 – 138 , 2020 .
- Patel , J. , Chavda , R. , Christian , M. , Patel , S. , Gupta , R. , Image Processing based coma patient monitoring system with Feedback . Int. J. Recent Sci. Res. , 7 , 2 , 8885 – 8888 , 2016 .
- Fleischmann , A. , Pilge , S. , Kiel , T. , Kratzer , S. , Schneider , G. , Kreuzer , M. , Substance-Specific Differences in Human Electroencephalographic Burst Suppression Patterns . Front. Hum. Neurosci. , 12 , 368 – 380 , 2018 .