Fly Ash Derived Catalyst for Biodiesel Production
Trinath Biswal
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
Search for more papers by this authorKrushna Prasad Shadangi
Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India
Search for more papers by this authorPrakash Kumar Sarangi
College of Agriculture, Central Agricultural University, Imphal, Manipur, India
Search for more papers by this authorTrinath Biswal
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
Search for more papers by this authorKrushna Prasad Shadangi
Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India
Search for more papers by this authorPrakash Kumar Sarangi
College of Agriculture, Central Agricultural University, Imphal, Manipur, India
Search for more papers by this authorPrakash Kumar Sarangi
Search for more papers by this authorSummary
Fly ash produced due to burning of coal in thermal power plants for generation of energy is a significant industrial solid waste material. There are many research works carried out for eco-utilization of fly ash in various ways. This study is focused on originating, chemical composition, chemical properties, and catalytic activity of coal fly ash for production of biodiesel. The raw fly ash (RFA) after recycling can be used as a suitable solid catalyst because of various benefits as compared with other homogenous catalysts. The presence of aluminosilicate and some rare earth metals in coal burning fly ash considered it as a suitable candidate material for various catalytic, adsorption, and other extraction processes including fuel production. However, the existence of hazardous materials is a significant environmental problem, which must be resolved in order to avoid water, air, and soil contamination. Only 1-2% conversion of biodiesel was achieved from soybean oil by using RFA. The acid-treated fly ash (ATFA) was mixed with a metal hydroxide like KOH or NaOH and Ca(OH) 2 and was then calcined at a temperature of 700°C for about 3 hours to formulate the solid catalyst. This solid catalyst synthesized by the combination of NaOH with ATFA is labelled as SC-Na, which exhibits better performance compared to those obtained only by simple mixing ATFA with Ca (OH) 2 or NaOH and the optimum mass ratio of NaOH with ATFA was 3:1, which achieves 97.8% of biodiesel conversion. Most of the applied modified processes are hydrothermal, thermal treatment, and alkali activation, which enhances the structural, textural, and morphological properties. The form of active catalyst could be achieved by either ion exchange or impregnation technology. There are many catalytic systems based on fly ash used for production of biodiesel, but among these, the fly ash/CaO and zeolite derived fly ash method is more sustainable and beneficial.
References
- Abas , N. , Kalair , A. , & Khan , N. 2015 . Review of fossil fuels and future energy technologies . Futures , 69 , 31 – 49 . doi: 10.1016/j.futures.2015.03.003
-
Huang , D.
,
Zhou , H.
, &
Lin , L.
2012
.
Biodiesel: an Alternative to Conventional Fuel
.
Energy Procedia
,
16
,
1874
–
1885
. doi:
10.1016/j.egypro.2012.01.287
10.1016/j.egypro.2012.01.287 Google Scholar
- Stephen , J. L. , & Periyasamy , B. 2018 . Innovative developments in biofuels production from organic waste materials: A review . Fuel , 214 , 623 – 633 . doi: 10.1016/j.fuel.2017.11.042
- Ambat , I. , Srivastava , V. , & Sillanpää , M. 2018 . Recent advancement in biodiesel production methodologies using various feedstocks: A review . Renewable and Sustainable Energy Reviews , 90 , 356 – 369 . doi: 10.1016/j.rser.2018.03.069
- Chipurici , P. , Vlaicu , A. , Calinescu , I. , Vinatoru , M. , Vasilescu , M. , Daniela Ignat , N. , & Mason , T. J. 2019 . Ultrasonic, Hydrodynamic and Microwave Biodiesel Synthesis–A Comparative Study for Continuous Process . Ultrasonics Sonochemistry. 57 , 38 - 47 . doi: 10.1016/j.ultsonch.2019.05.011
- Jamil , F. , Al-Haj , L. , Al-Muhtaseb , A. H. , Al-Hinai , M. A. , Baawain , M. , Rashid , U. , & Ahmad , M. N. M. 2018 . Current scenario of catalysts for biodiesel production: a critical review . Reviews in Chemical Engineering , 34 ( 2 ), 267 – 297 . doi: 10.1515/revce-2016-0026
- Yao , Z. T. , Ji , X. S. , Sarker , P. K. , Tang , J. H. , Ge , L. Q. , Xia , M. S. , & Xi , Y. Q. 2015 . A comprehensive review on the applications of coal fly ash . Earth-Science Reviews , 141 , 105 – 121 . doi: 10.1016/j.earscirev.2014.11.016
- Dwivedi , A. , and Jain , M. K. 2014 . Fly ash – waste management and overview: A Review . Recent Research in Science and Technology , 6 ( 1 ), 30 - 35
- Zierold , K. M. and Odoh , C. 2020 . A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence . Reviews on Environmental Health , 35 ( 4 ), 401 – 418 . DOI: https://doi.org/ 10.1515/reveh-2019-0039
- Ahmaruzzaman , M. 2010 . A review on the utilization of fly ash . Progress in Energy and Combustion Science , 36 ( 3 ), 327 – 363 . doi: 10.1016/j.pecs.2009.11.003
- Gollakota , A. R. K. , Volli , V. , & Shu , C.-M. 2019 . Progressive utilisation prospects of coal fly ash: A review . Science of The Total Environment. 672 , 951 - 989 doi: 10.1016/j.scitotenv.2019.03.337
- Patel , H. 2020 . Environmental valorisation of bagasse fly ash:a review . RSC Adv. , 10 , 31611 - 31621 . https://doi.org/ 10.1039/D0RA06422J
- Blissett , R. S. , & Rowson , N. A. 2012 . A review of the multi-component utilisation of coal fly ash . Fuel , 97 , 1 – 23 . doi: 10.1016/j.fuel.2012.03.024
- Ohenoja , K. , Pesonen , J. , Yliniemi , J. , & Illikainen , M. 2020 . Utilization of Fly Ashes from Fluidized Bed Combustion: A Review . Sustainability , 12 ( 7 ), 2988 - 3013 . doi: 10.3390/su12072988
- Fuller , A. , Maier , J. , Karampinis , E. , Kalivodova , J. , Grammelis , P. , Kakaras , E. , & Scheffknecht , G. 2018 . Fly Ash Formation and Characteristics from (co-)Combustion of an Herbaceous Biomass and Greek Lignite (Low-Rank Coal) in a Pulverized Fuel Pilot-Scale Test Facility . Energies , 11 ( 6 ), 1581 - 1608 . doi: 10.3390/en11061581
- Boycheva , S. , Zgureva , D. , Lazarova , K. , Babeva , T. , Popov , C. , Lazarova , H. , & Popova , M. 2020 . Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications . Materials , 13 ( 9 ), 2014 - 2029 . doi: 10.3390/ma13092014
- Fauzi , A. , Nuruddin , M. F. , Malkawi , A. B. , & Abdullah , M. M. A. B. 2016 . Study of Fly Ash Characterization as a Cementitious Material . Procedia Engineering , 148 , 487 – 493 . doi: 10.1016/j.proeng.2016.06.535
- Vassilev , S. V. , & Vassileva , C. G. 2007 . A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour . Fuel , 86 ( 10-11 ), 1490 – 1512 . doi: 10.1016/j.fuel.2006.11.020
- Malik , A. , & Thapliyal , A. 2009 . Eco-friendly Fly Ash Utilization: Potential for Land Application . Critical Reviews in Environmental Science and Technology , 39 ( 4 ), 333 – 366 . doi: 10.1080/10643380701413690
- Brännvall , E. ,& Kumpiene , J. 2016 . Fly ash in landfill top covers–A review . Environmental Science: Processes & Impacts , 18 ( 1 ), 11 – 21 .
- Koshy , N. , Dondrob , K. , Hu , L. , Wen , Q. , & Meegoda J. N. 2019 . Mechanical Properties of Geopolymers Synthesized from Fly Ash and Red Mud under Ambient Conditions . Crystals , 9 ( 11 ), 572 - 585 . https://doi.org/ 10.3390/cryst9110572
- Govindasamy , B. R. , Naik , V. K. , & Balasundaram , A. ( 2020 ). Comparison of coronally advanced versus semilunar coronally repositioned flap in the management of maxillary gingival recessions . The Saudi Dental Journal . Article in press. doi: 10.1016/j.sdentj.2020.05.005
- Franus , W. , Wdowin , M. , & Franus , M. 2014 . Synthesis and characterization of zeolites prepared from industrial fly ash . Environmental Monitoring and Assessment , 186 ( 9 ), 5721 – 5729 . doi: 10.1007/s10661-014-3815-5
- Dere Ozdemir , O. , & Piskin , S. 2017 . A Novel Synthesis Method of Zeolite X From Coal Fly Ash: Alkaline Fusion Followed by Ultrasonic-Assisted Synthesis Method . Waste and Biomass Valorization , 1 - 12 . doi: 10.1007/s12649-017-0050-7
- Miricioiu , M. G. , & Niculescu , V.-C. 2020 . Fly Ash, from Recycling to Potential Raw Material for Mesoporous Silica Synthesis . Nanomaterials , 10 ( 3 ), 474 . doi: 10.3390/nano10030474
-
Bhatt , A.
,
Priyadarshini , S.
,
Acharath Mohanakrishnan , A.
,
Abri , A.
,
Sattler , M.
, &
Techapaphawit , S.
(
2019
).
Physical, chemical, and geotechnical properties of coal fly ash: A global review
.
Case Studies in Construction Materials
,
11
,
e00263
. doi:
10.1016/j.cscm.2019.e00263
10.1016/j.cscm.2019.e00263 Google Scholar
- Manique , M. C. , Lacerda , L. V. , Alves , A. K. , & Bergmann , C. P. 2017 . Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst . Fuel , 190 , 268 – 273 . doi: 10.1016/j.fuel.2016.11.016
- Ogunkunle , O. , Ahmed , N. A. 2019 . A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines . Energy Reports , 5 , 1560 - 1579 . https://doi.org/ 10.1016/j.egyr.2019.10.028
- Farid , M. A. A. , Roslan , A. M. , Hassan , M. A. , Hasan , M. Y. , Othman , M. R. , & Shirai , Y. 2020 . Net energy and techno-economic assessment of biodiesel production from waste cooking oil using a semi-industrial plant: A Malaysia perspective . Sustainable Energy Technologies and Assessments , 39 , 1-11 , 100700 . doi: 10.1016/j.seta.2020.100700
-
Ma , Y.
, &
Liu , Y.
2019
.
Biodiesel Production: Status and Perspectives
.
Biofuels: Alternative Feedstock and Conversion Processes for the Production of Liquid and Gaseous Biofuels
,
Elsevier
, Chapter-21,
503
–
522
. doi:
10.1016/b978-0-12-816856-1.00021-x
10.1016/b978?0?12?816856?1.00021?x Google Scholar
- Karmee , S. , Patria , R. , & Lin , C. 2015 . Techno-Economic Evaluation of Biodiesel Production from Waste Cooking Oil—A Case Study of Hong Kong . International Journal of Molecular Sciences , 16 ( 3 ), 4362 – 4371 . doi: 10.3390/ijms16034362
- Lee , A. F. , Bennett , J. A. , Manayil , J. C. , & Wilson , K. 2014 . Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification . Chem. Soc. Rev. , 43 ( 22 ), 7887 – 7916 . doi: 10.1039/c4cs00189c
- Semwal , S. , Arora , A. K. , Badoni , R. P. , & Tuli , D. K. 2011 . Biodiesel production using heterogeneous catalysts . Bioresource Technology , 102 ( 3 ), 2151 – 2161 . doi: 10.1016/j.biortech.2010.10.080
- Malonda Shabani , J. , Babajide , O. , Oyekola , O. , & Petrik , L. 2019 . Synthesis of Hydroxy Sodalite from Coal Fly Ash for Biodiesel Production from Waste-Derived Maggot Oil . Catalysts , 9 ( 12 ), 1052 - 165 . doi: 10.3390/catal9121052
- Changmai , B. , Vanlalveni , C. , Ingle , A. P. , Bhagatd , R. & Rokhum , L. 2020 . Widely used catalysts in biodiesel production: a review :. RSC Adv. , 10 , 41625 - 41679 . DOI: 10.1039/d0ra07931f
- Toniolo , N. , & Boccaccini , A. R. 2017 . Fly ash-based geopolymers containing added silicate waste. A review . Ceramics International , 43 ( 17 ), 14545 – 14551 . doi: 10.1016/j.ceramint.2017.07.221
- Shu , Q. , Yang , B. , Yuan , H. , Qing , S. , & Zhu , G. 2007 . Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La 3+ . Catalysis Communications , 8 ( 12 ), 2159 – 2165 . doi: 10.1016/j.catcom.2007.04.028
- Fukasawa , T. , Karisma , A. D. , Shibata , D. , Huang , A.-N. , & Fukui , K. 2017 . Synthesis of zeolite from coal fly ash by microwave hydrothermal treatment with pulverization process . Advanced Powder Technology , 28 ( 3 ), 798 – 804 . doi: 10.1016/j.apt.2016.12.006
-
Colombo , K.
,
Ender , L.
, &
Barros , A. A. C.
2017
.
The study of biodiesel production using CaO as a heterogeneous catalytic reaction
.
Egyptian Journal of Petroleum
,
26
(
2
),
341
–
349
. doi:
10.1016/j.ejpe.2016.05.006
10.1016/j.ejpe.2016.05.006 Google Scholar
- Witoon , T. , Bumrungsalee , S. , Vathavanichkul , P. , Palitsakun , S. , Saisriyoot , M. , & Faungnawakij , K. 2014 . Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macro-porous silica catalyst . Bioresource Technology , 156 , 329 – 334 . doi: 10.1016/j.biortech.2014.01.076
- Helwani , Z. , Fatra , W. , Saputra , E. , & Maulana , R. 2018 . Preparation of CaO/ Fly ash as a catalyst inhibitor for transesterification process off palm oil in biodiesel production . IOP Conf. Series : Materials Science and Engineering 334 - 344 , 012077 doi: 10.1088/1757-899X/334/1/012077
- Helwani , Z. , Ramli , M. , Saputra , E. , Putra , Y. L. , Simbolon , D. F. , Othman , M. R. , & Idroes , R. 2020 . Composite Catalyst of Palm Mill Fly Ash-Supported Calcium Oxide Obtained from Eggshells for transesterification of Off-Grade Palm Oil . Catalysts , 10 ( 7 ), 724 . doi: 10.3390/catal10070724
- Khan , I. U. , Yan , Z. , & Chen , J. 2019 . Optimization, Transesterification and Analytical Study of Rhus typhina Non-Edible Seed Oil as Biodiesel Production . Energies , 12 ( 22 ), 4290 - 4310 . doi: 10.3390/en12224290
- Volli , V. , Purkait , M. K. , & Shu , C.-M. 2019 . Preparation and characterization of animal bone powder impregnated fly ash catalyst for transesterification . Science of The Total Environment , 669 , 314 – 321 . doi: 10.1016/j.scitotenv.2019.03.080
- Biswas , S. , Katiyar , R. , Gurjar , B. R. , & Pruthia V. 2017 . Biofuels and Their Production through Different Catalytic Routes . Chem. Biochem. Eng. Q. , 31 ( 1 ), 47 – 62
- Zahan , K. , & Kano , M. 2018 . Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review . Energies , 11 ( 8 ), 2132 . doi: 10.3390/en11082132
- Widayat , Satriadi , H. , Syaiful , Khaibar , A. , & Almakhi , M. M. 2017 . Biodiesel production by using heterogeneous catalyst from fly ash and limestone . 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA) . 41 - 44 . doi: 10.1109/icseea.2017.8267685
- Hadiyanto , H. , Lestari , S.P. , Abdullah , A. 2016 . The development of fly ash-supported CaO derived from mollusk shell of Anadara granosa and Paphia undulata as heterogeneous CaO catalyst in biodiesel synthesis . International Journal of Energy Environmental Engineering 7 , 297 – 305 . https://doi.org/ 10.1007/s40095-016-0212-6
- Rizwanul Fattah IM , Ong HC , Mahlia TMI , Mofijur M , Silitonga AS , Rahman SMA and Ahmad A . 2020 . State of the Art of Catalysts for Biodiesel Production . Front. Energy Res. 8 , 101 - 117 . doi: 10.3389/fenrg.2020.00101
- Istadi , I. , Anggoro , D. D. , Buchori , L. , Rahmawati , D. A. , & Intaningrum , D. 2015 . Active Acid Catalyst of Sulphated Zinc Oxide for Transesterification of Soybean Oil with Methanol to Biodiesel . Procedia Environmental Sciences , 23 , 385 – 393 . doi: 10.1016/j.proenv.2015.01.055
- Volli , V. , & Purkait , M. K. 2015 . Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production . Journal of Hazardous Materials , 297 , 101 – 111 . doi: 10.1016/j.jhazmat.2015.04.066
- Carlucci , C. , Degennaro , L. , & Luisi , R. 2019 . Titanium Dioxide as a Catalyst in Biodiesel Production . Catalysts , 9 ( 1 ), 75 . doi: 10.3390/catal9010075
- Thanh , L. T. , Okitsu , K. , Boi , L. V. , & Maeda , Y. 2012 . Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review . Catalysts , 2 ( 1 ), 191 – 222 . doi: 10.3390/catal2010191
- Lathiya , D. R. , Bhatt , D. V. , & Maheria , K. C. 2019 . Sulfated Fly-Ash Catalyzed Biodiesel Production from Maize Acid Oil Feedstock: A Comparative Study of Taguchi and Box-Behnken Design . Chemistry Select , 4 ( 14 ), 4392 – 4397 . doi: 10.1002/slct.201803916
- Helwani , Z. , Ramli , M. , Saputra , E. , Putra , Y. L. , Simbolon , D. F. , Othman , M. R. , & Idroes , R. 2020 . Composite Catalyst of Palm Mill Fly Ash-Supported Calcium Oxide Obtained from Eggshells for Transesterification of Off-Grade Palm Oil . Catalysts , 10 ( 7 ), 724 - 739 . doi: 10.3390/catal10070724
- Mohammadhosseini , H. , AbdulAwal , ASM , & Haq Ehsan , A. 2015 Influence of palm oil fuel ash on fresh and mechanical properties of self-compacting concrete . Sadhan. 40 ( 6 ), 1989 – 1999 .
- Dahdah , E. , Estephane , J. , Haydar , R. , Youssef , Y. , El Khoury , B. , Gennequin , C. , Aouad , S. 2019 . Biodiesel production from refined sunflower oil over Ca-Mg-Al catalysts: Effect of the composition and the thermal treatment . Renewable Energy , 146 , 1246 - 1248 . doi: 10.1016/j.renene.2019.06.171
- Marinković , D. M. , Stanković , M. V. , Veličković , A. V. , Avramović , J. M. , Miladinović , M. R. , Stamenković , O. O. , Jovanović , D. M. 2016 . Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives . Renewable and Sustainable Energy Reviews , 56 , 1387 – 1408 . doi: 10.1016/j.rser.2015.12.007
- Yoosuk , B. , Udomsap , P. , Puttasawat , B. , & Krasae , P. 2010 . Improving transesterification activity of CaO with hydration technique . Bioresource Technology , 101 ( 10 ), 3784 – 3786 . doi: 10.1016/j.biortech.2009.12.114
- He , P. Y. , Zhang , Y. J. , Chen , H. , Han , Z. C. , & Liu , L. C. 2019 . Low-energy synthesis of kaliophilite catalyst from circulating fluidized bed fly ash for biodiesel production . Fuel , 257 , 116041 . doi: 10.1016/j.fuel.2019.116041
- Zahedi , M. , & Rajabipour , F. 2019 . Fluidized Bed Combustion (FBC) fly ash and its performance in concrete . ACI Materials Journal , 116 ( 4 ), 163 - 172 .
- Bhandari , R. , Volli , V. , & Purkait , M. K. 2015 . Preparation and characterization of fly ash based mesoporous catalyst for transesterification of soybean oil . Journal of Environmental Chemical Engineering , 3 ( 2 ), 906 – 914 . doi: 10.1016/j.jece.2015.04.008
- Zhuang , X. Y. , Chen , L. , Komarneni , S. , Zhou , C. H. , Tong , D. S. , Yang , H. M. , Yu , W. H. , & Wang , H. 2016 . Fly ash-based geopolymer: Clean production, properties and applications . Journal of Cleaner Production , 125 , 253 - 267 . https://doi.org/ 10.1016/j.jclepro.2016.03.019
- Zaini , I. N. , García López , C. , Pretz , T. , Yang , W. , & Jönsson , P. G. 2019 . Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere . Waste Management , 97 , 149 – 163 . doi: 10.1016/j.wasman.2019.08.001
- Wen , G. , Yan , Z. , Smith , M. , Zhang , P. , & Wen , B. 2010 . Kalsilite based heterogeneous catalyst for biodiesel production . Fuel , 89 ( 8 ), 2163 – 2165 . doi: 10.1016/j.fuel.2010.02.016
- Novembre , D. , Gimeno , D. , d’ Alessandro , N. , & Tonucci , L. 2018 . Hydrothermal synthesis and characterization of kalsilite by using a kaolinitic rock (Sardinia, Italy) and its application in the production of biodiesel . Mineralogical Magazine , 82 ( 4 ), 1 – 36 . doi: 10.1180/minmag.2017.081.080
- Novembre , D. , Gimeno , D. 2017 . The Solid-State Conversion of Kaolin to KAlSiO4 Minerals: The Effects of Time and Temperature . Clays Clay Miner. 65 , 355 – 366 . https://doi.org/ 10.1346/CCMN.2017.064077
- Galadima , A. , & Muraza , O. 2020 . Waste materials for production of biodiesel catalysts: Technological status and prospects . Journal of Cleaner Production , 121358 . doi: 10.1016/j.jclepro.2020.121358
- Aniokete , T.C. , Ozonoh , M. , & Daramola M.O. 2019 . Synthesis of Pure and High Surface Area Sodalite Catalyst from Waste Industrial Brine and Coal Fly Ash for Conversion of Waste Cooking Oil (WCO) to Biodiesel . International Journal of Renewable Energy Research. 9 ( 4 ), 1924 - 1937
- Xiao , M. , Hu , X. , Gong , Y. , Gao , D. , Zhang , P. , Liu , Q. , Wang , M. 2015 . Solid transformation synthesis of zeolites from fly ash . RSC Advances , 5 ( 122 ), 100743 – 100749 . doi: 10.1039/c5ra17856h
- Ojha , K. , Pradhan , N.C. & Samanta , A.N. 2004 . Zeolite from fly ash: synthesis and characterization . Bull Mater Sci 27 , 555 – 564 . https://doi.org/ 10.1007/BF02707285
- Amoni , B. de, C. Freitas , A.D.L. de , Loiola , A.R. , Soares , J.B. , & Soares , S., de, A. 2019 . A method for NaA zeolite synthesis from coal fly ash and its application in warm mix asphalt . Road Materials and Pavement Design , 20 ( 2 ), 1 – 10 . doi: 10.1080/14680629.2019.1633766
- Hong , J. L. X. , Maneerung , T. , Koh , S. N. , Kawi , S. , & Wang , C.-H. 2017 . Conversion of Coal Fly Ash into Zeolite Materials: Synthesis and Characterizations, Process Design, and Its Cost-Benefit Analysis . Industrial & Engineering Chemistry Research , 56 ( 40 ), 11565 – 11574 . doi: 10.1021/acs.iecr.7b02885
- Ren , X. , Qu , R. , Liu , S. , Zhao , H. , Wu , W. , Song , H. , Zheng , C. , Wu , X. , Gao X. , 2020 . Synthesis of Zeolites from Coal Fly Ash for the Removal of Harmful Gaseous Pollutants: A Review . Aerosol and Air Quality Research , 20 , 1127 – 1144 .
- Sangita , K. , Prasad , B. , & Udayabhanu , G. 2016 . Synthesis of Zeolite from Waste Fly Ash by Using Different Methods . Asian Journal of Chemistry , 28 ( 7 ), 1435 – 1439 . doi: 10.14233/ajchem.2016.19682