Chemometric Approaches to Evaluate Interspecies Relationships and Extrapolation in Aquatic Toxicity
S. Raimondo
Gulf Ecosystem Measurement and Modeling Division, US Environmental Protection Agency, Gulf Breeze, FL, USA
Search for more papers by this authorC.M. Lavelle
Gulf Ecosystem Measurement and Modeling Division, US Environmental Protection Agency, Gulf Breeze, FL, USA
Search for more papers by this authorM.G. Barron
Gulf Ecosystem Measurement and Modeling Division, US Environmental Protection Agency, Gulf Breeze, FL, USA
Search for more papers by this authorS. Raimondo
Gulf Ecosystem Measurement and Modeling Division, US Environmental Protection Agency, Gulf Breeze, FL, USA
Search for more papers by this authorC.M. Lavelle
Gulf Ecosystem Measurement and Modeling Division, US Environmental Protection Agency, Gulf Breeze, FL, USA
Search for more papers by this authorM.G. Barron
Gulf Ecosystem Measurement and Modeling Division, US Environmental Protection Agency, Gulf Breeze, FL, USA
Search for more papers by this authorKunal Roy
Professor in the Department of Pharmaceutical Technology
Jadavpur University, Kolkata, India
Search for more papers by this authorSummary
Understanding interspecies sensitivity relationships is critical to ensure that the most sensitive and vulnerable species are protected from chemical exposure. To facilitate this, applications of computational approaches in aquatic toxicology are instrumental in understanding interspecific relationships of sensitivity while addressing both global rises in the number of chemicals and initiatives to reduce whole animal testing. The diversity of approaches available for interspecies extrapolation can be confounding, and where, when, and how to use and interpret the results of these approaches reliably can be a challenge. Here, we review chemometric and cheminformatic approaches available to improve interspecies extrapolations of chemical toxicity for both acute and chronic exposure scenarios. This work highlights advancements and opportunities available for ecological risk assessment. We also discuss future development of these approaches that will aid in advancing our mechanistic understanding of aquatic toxicology.
References
-
Vighi , M.
and
Villa , S.
(
2013
).
Ecotoxicology: the challenges for the 21st century
.
Toxics
1
(
1
):
18
–
35
.
https://doi.org/10.3390/toxics1010018
.
10.3390/toxics1010018 Google Scholar
- Fairbrother , A. , Barron , M.G. , and Johnson , M.S. ( 2014 ). Methods in ecotoxicology . In: Hayes' Principles and Methods of Toxicology , 6e (eds. A.W. Hayes and C.L. Kruger ), 2024 – 2065 . Florida : Taylor & Frances .
- Ellison , C.M. , Madden , J.C. , Cronin , M.T.D. , and Enoch , S.J. ( 2015 ). Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6 . Chemosphere 139 : 146 – 154 .
- Mayo-Bean , K. , Moran , K. , Meylan , B. et al. ( 2012 ). Methodology document for the ecological structure-activity relationship model (ECOSAR) class program. Estimating toxicity of industrial chemicals to aquatic organisms using the ECOSAR (ecological structure activity relationship) class program . MS-Windows Version 1.1.11. May 2012, 46 pp.
- Elonen , C.M. ( 2020 ). ECOTOX. ECOTOXicology Knowledgebase System. User Guide – Version 5.3. U.S. Environmental Protection Agency . EPA/600/R-20/087. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100YSO7.PDF?Dockey=P100YSO7.PDF .
- Connors , K.A. , Beasley , A. , Barron , M.G. et al. ( 2019 ). Creation of a curated aquatic toxicology database: EnviroTox . Environmental Toxicology and Chemistry 38 : 1062 – 1073 .
- Lavine , B. and Workman , J. ( 2008 ). Chemometrics . Analytical Chemistry 82 ( 12 ): 4519 – 4531 . https://doi.org/10.1021/ac800728t .
- IUPAC ( 2019 ). Compendium of Chemical Terminology . In:, 2e (eds. A.D. McNaught and A. Wilkinson ). Oxford : Blackwell Scientific Publications https://doi.org/10.1351/Goldbook .
- Konemann , H. ( 1981 ). Quantitative structure–activity relationships in fish toxicity studies. 1. relationship for 50 industrial pollutants . Toxicology 19 : 209 – 221 .
- Vieth , G.D. , Call , D.J. , and Brooke , L.T. ( 1983 ). Structure–toxicity relationships for the Fathead Minnow , Pimephales promelas : narcotic industrial chemicals . Canadian Journal of Fisheries and Aquatic Sciences 40 ( 6 ): 743 – 748 . https://doi.org/10.1139/f83-096 .
- Verhaar , H.J.M. , van Leeuwen , C.J. , and Hermens , J.L.M. ( 1992 ). Classifying environmental pollutants. 1. Structure–activity-relationships for prediction of aquatic toxicity . Chemosphere 25 : 471 – 491 .
- Kenaga , E.E. and Moolenaar , R.J. ( 1979 ). Fish and daphnia toxicity as surrogates for aquatic vascular plants and algae . Environmental Science and Technology 13 ( 12 ): 1479 – 1480 .
- LeBlanc , G.A. ( 1984 ). Interspecies relationships in acute toxicity of chemicals to aquatic organisms . Environmental Toxicology and Chemistry 3 ( 1 ): 47 – 60 .
- Ankley , G.T. , Bennett , R.S. , Erickson , R.J. et al. ( 2010 ). Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment . Environmental Toxicology and Chemistry 29 ( 3 ): 730 – 741 . https://doi.org/10.1002/etc.34 .
- Raimondo , S. , Jackson , C.R. , and Barron , M.G. ( 2015 ). Web-based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual. Version 3.3, EPA/600/R-15/192 . U. S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division. Gulf Breeze, FL .
-
Schultz , T.W.
,
Diderich , R.
,
Kuseva , C.D.
, and
Mekenyan , O.G.
(
2018
).
The OECD QSAR toolbox starts its second decade
. In:
Computational Toxicology. Methods in Molecular Biology
, vol.
1800
(ed.
O. Nicolotti
),
55
–
77
.
New York
:
Humana Press
.
10.1007/978-1-4939-7899-1_2 Google Scholar
- Martin , T.M. ( 2016 ). User's Guide for T.E.S.T. (Toxicity Estimation Software Tool). U.S. Environmental Protection Agency . EPA/600/R-16/058. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
-
Sievers , F.
and
Higgins , D.G.
(
2014
).
Clustal omega
.
Current Protocols in Bioinformatics
48
(
1
):
1.25.1
–
1.25.33
.
https://doi.org/10.1002/0471250953.bi0313s48
.
10.1002/0471250953.bi0313s48 Google Scholar
- Madeira , F. , Park , Y.M. , Lee , J. et al. ( 2019 ). The EMBL-EBI search and sequence analysis tools APIs in 2019 . Nucleic Acids Research 47 ( W1 ): W636 – W641 . https://doi.org/10.1093/nar/gkz268 .
- Fornes , O. , Castro-Mondragon , J.A. , Khan , A. et al. ( 2020 ). JASPAR 2020: update of the open-access database of transcription factor binding profiles . Nucleic Acids Research 48 ( D1 ): D87 – D92 . https://doi.org/10.1093/nar/gkz1001 .
- LaLone , C.A. , Villeneuve , D.L. , Burgoon , L.D. et al. ( 2013 ). Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action . Aquatic Toxicology 144 ( 15 ): 141 – 154 . https://doi.org/10.1016/j.aquatox.2013.09.004 .
- LaLone , C.A. , Villeneuve , D.L. , Lyons , D. et al. ( 2016 ). Sequence alignment to predict across species susceptibility (SeqAPASS): a web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity . Toxicological Sciences 153 ( 2 ): 228 – 245 . https://doi.org/10.1093/toxsci/kfw119 .
- Davis , A.P. , Grondin , C.J. , Johnson , R.J. et al. ( 2019 ). The comparative toxicogenomics database: update 2019 . Nucleic Acids Research 47 ( D1 ): D948 – D954 . https://doi.org/10.1093/nar/gky868 .
- Huang , Q. , Yang , L. , Luo , J. et al. ( 2015 ). SWATH enables precise label-free quantification on proteome scale . Proteomics 15 ( 7 ): 1215 – 1223 . https://doi.org/10.1002/pmic.201400270 .
- Lamb , J. , Crawford , E.D. , Peck , D. et al. ( 2006 ). The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease . Science 313 ( 5795 ): 1929 – 1935 . https://doi.org/10.1126/science.1132939 .
- Davies , M. , Nowotka , M. , Papadatos , G. et al. ( 2015 ). ChEMBL web services: streamlining access to drug discovery data and utilities . Nucleic acids research 43 ( W1 ): W612 – W620 . https://doi.org/10.1093/nar/gkv352 .
- Chong , J. , Wishart , D.S. , and Xia , J. ( 2019 ). Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis . Current Protocols in Bioinformatics 68 : e86 . https://doi.org/10.1002/cpbi.86 .
- Williams , A.J. , Grulke , C.M. , Edwards , J. et al. ( 2017 ). The CompTox chemistry dashboard: a community data resource for environmental chemistry . Journal of Cheminformatics 9 ( 61 ) https://doi.org/10.1186/s13321-017-0247-6 .
- Wang , Z. , Walker , G.W. , Muir , D.C.G. , and Nagatani-Yoshida , K. ( 2020 ). Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories . Environmental Science and Technology 54 ( 5 ): 2575 – 2584 . https://doi.org/10.1021/acs.est.9b06379 .
- Weinberg , N. , Nelson , D. , Sellers , K. , and Byrd , J. ( 2019 ). Insights from TSCA reform: a case for identifying new emerging contaminants . Current Pollution Reports 5 : 215 – 227 . https://doi.org/10.1007/s40726-019-00117-4 .
- Stephan , C.E. , Mount , D.I. , Hansen , D.J. et al. ( 1985 ). Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses . US Environmental Protection Agency Report PB85-227049.
- Cronin , M.T.D. ( 2017 ). (Q)SARs to predict environmental toxicities: current status and future needs . Environmental Science: Processes & Impacts 19 ( 3 ): 213 – 220 . https://doi.org/10.1039/C6EM00687F .
- Chinen , K. and Malloy , T. ( 2020 ). QSAR use in REACH analyses of alternatives to predict human health and environmental toxicity of alternative chemical substances . Integrated Environmental Assessment and Management 16 : 745 . https://doi.org/10.1002/ieam.4264 .
- Dudek , A.Z. , Arodz , T. , and Galvez , J. ( 2006 ). Computational methods in developing quantitative structure-activity relationships (QSAR): a review . Combinatorial Chemistry and High Throughput Screening 9 ( 3 ): 213 – 228 . https://doi.org/10.2174/138620706776055539 .
- Khan , K. , Kar , S. , Sanderson , H. et al. ( 2018 ). Ecotoxicological modeling, ranking and prioritization of pharmaceuticals using QSTR and i-QSTTR approaches: application of 2D and fragment based descriptors . Molecular Informatics 37 : 1800078 . https://doi.org/10.1002/minf.201800078 .
- Lee , S. and Barron , M.G. ( 2018 ). 3D-QSAR study of steroidal and azaheterocyclic human aromatase inhibitors using quantitative profile of protein-ligand interactions . Journal of Cheminformatics 10 : 1 – 13 . https://doi.org/10.1186/s13321-017-0253-8 .
- Moore , D.R.J. , Breton , R.L. , and MacDonald , D.B. ( 2003 ). A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish . Environmental Toxicology and Chemistry 22 : 1799 – 1803 .
- Tropsha , A. ( 2010 ). Best practices for QSAR model development, validation, and exploitation . Molecular Informatics 29 ( 6–7 ): 476 – 488 . https://doi.org/10.1002/minf.201000061 .
- Raimondo , S. , Jackson , C.R. , and Barron , M.G. ( 2010 ). Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species . Environmental Science and Technology 44 ( 19 ): 7711 – 7716 . https://doi.org/10.1021/es101630b .
- Willming , M.M. , Lilavois , C.R. , Barron , M.G. , and Raimondo , S. ( 2016 ). Acute toxicity prediction to threatened and endangered species using interspecies correlation estimation (ICE) models . Environmental Science Technology 50 ( 19 ): 10700 – 10707 . https://doi.org/10.1021/acs.est.6b03009 .
- Kenaga , E.E. ( 1978 ). Test organisms and methods useful for early assessment of acute toxicity of chemicals . Environmental Science and Technology 12 ( 12 ): 1322 – 1329 .
- Mayer , F.L. , Deans , C.H. , and Smith , A.G. ( 1987 ). Inter-taxa correlations for toxicity to aquatic organisms . US Environmental Protection Agency Report No. EPA/600/X-87/332 .
- Slooff , W. , van Oers , J.A.M. , and de Zwart , D. ( 1986 ). Margins of uncertainty in ecotoxicological hazard assessment . Environmental Toxicology and Chemistry 5 ( 9 ): 841 – 852 . https://doi.org/10.1002/etc.5620050909 .
- Kar , S. and Roy , K. ( 2010 ). First report on interspecies quantitative correlation of ecotoxicity of pharmaceuticals . Chemosphere 81 ( 6 ): 738 – 747 . https://doi.org/10.1016/j.chemosphere.2010.07.019 .
- Raimondo , S. , Mineau , P. , and Barron , M.G. ( 2007 ). Estimation of chemical toxicity to wildlife species using interspecies correlation models . Environmental Science and Technology 41 ( 16 ): 5888 – 5894 . https://doi.org/10.1021/es070359o .
- Brill , J.L. , Belanger , S.E. , Chaney , J. et al. ( 2016 ). Development of algal inter-species correlation estimation (ICE) models for chemical hazard assessment . Environmental Toxicology and Chemistry 35 ( 9 ): 2368 – 2378 . https://doi.org/10.1002/etc.3375 .
- Dyer , S.D. , Versteeg , D.J. , Belanger , S.E. et al. ( 2008 ). Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria . Environmental Science and Technology 42 ( 8 ): 3076 – 3083 . https://doi.org/10.1021/es702302e .
- Feng , C. , Wu , F. , Mu , Y. et al. ( 2013 ). Interspecies correlation estimation – applications in water quality criteria and ecological risk assessment . Environmental Science and Technology 47 ( 20 ): 11382 – 11383 . https://doi.org/10.1021/es403933f .
- Wang , X. , Fan , B. , Fan , M. et al. ( 2020 ). Development and use of interspecies correlation estimation models in China for potential application in water quality criteria . Chemosphere 240 : 124848 . https://doi.org/10.1016/j.chemosphere.2019.124848 .
- Wu , J. , Liu , Z. , Yan , Z. , and Xianliang , Y. ( 2015 ). Derivation of water quality criteria of phenanthrene using interspecies correlation estimation models for aquatic life in China . Environmental Science and Pollution Research 22 : 9457 – 9463 . https://doi.org/10.1007/s11356-015-4091-9 .
- Wu , J. , Yan , Z. , Yi , X. et al. ( 2016 ). Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for Benzo[a]pyrene . Chemosphere 144 : 2183 – 2188 . https://doi.org/10.1016/j.chemosphere.2015.10.099 .
- Zhang , S. , Wang , L. , Wang , Z. et al. ( 2017 ). Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimation models . Chemosphere 171 : 142 – 148 . https://doi.org/10.1016/j.chemosphere.2016.12.046 .
- Bejarano , A.C. , Raimondo , S. , and Barron , M.G. ( 2017 ). Framework for optimizing selection of interspecies correlation estimation models to address species diversity gaps in an aquatic database . Environmental Science and Technology 51 ( 14 ): 8158 – 8165 . https://doi.org/10.1021/acs.est.7b01493 .
- Bejarano , A.C. ( 2019 ). Further development and refinement of interspecies correlation estimation models for current-use dispersants . Environmental Toxicology and Chemistry 38 ( 8 ): 1682 – 1691 . https://doi.org/10.1002/etc.4452 .
-
Fojut , T.L.
,
Palumbo , A.J.
, and
Tjeerdema , R.S.
(
2012
).
Aquatic life water criteria derived via the UC Davis method: II. Pyrethroid Insecticides
. In:
Review Environmental Contamination and Toxicology
(ed.
R.S. Tjeerdema
),
51
–
104
.
New York
:
Springer
.
10.1007/978-1-4614-2260-0_2 Google Scholar
-
Fojut , T.L.
,
Palumbo , A.J.
, and
Tjeerdema , R.S.
(
2012
).
Aquatic life water criteria derived via the UC Davis method: III. Diuron
. In:
Review Environmental Contamination and Toxicology
(ed.
R.S. Tjeerdema
),
105
–
142
.
New York
:
Springer
.
10.1007/978-1-4614-2260-0_3 Google Scholar
-
Palumbo , A.J.
,
TenBrook , P.L.
,
Fojut , T.L.
et al. (
2012
).
Aquatic life water criteria derived via the UC Davis method: I. Organophosphate Insecticides
. In:
Review Environmental Contamination and Toxicology
(ed.
R.S. Tjeerdema
),
1
–
50
.
New York
:
Springer
.
10.1007/978-1-4614-2260-0_1 Google Scholar
- NRC ( 2013 ). Assessing Risks to Endangered and Threatened Species from Pesticides . Washington, DC : The National Academies Press https://doi.org/10.17226/18344 .
- Bejarano , A.C. and Barron , M.G. ( 2015 ). Aqueous and tissue residue=based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds . Environmental Toxicology and Chemistry 35 ( 1 ): 56 – 64 . https://doi.org/10.1002/etc.3164 .
- Önlü , S. and Saçan , M.T. ( 2018 ). Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationships with Daphnia magna . Journal of Hazardous Materials 351 ( 5 ): 20 – 28 . https://doi.org/10.1016/j.jhazmat.2018.02.046 .
- Van Straalen , N.M. and Denneman , C.A.J. ( 1989 ). Ecotoxicological evaluation of soil quality criteria . Ecotoxicology and Environmental Safety 18 ( 3 ): 241 – 251 . https://doi.org/10.1016/0147-6513(89)90018-3 .
- Belanger , S. , Barron , M.G. , Craig , P. et al. ( 2017 ). Future needs and recommendations in the development of species sensitivity distributions: estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures . Integrated Environmental Assessment and Management 13 ( 4 ): 664 – 674 . https://doi.org/10.1002/ieam.1841 .
- Awkerman , J.A. , Raimondo , S. , Jackson , C.R. , and Barron , M.G. ( 2014 ). Augmenting species sensitivity distributions with interspecies toxicity estimation models . Environmental Toxicology and Chemistry 33 ( 3 ): 688 – 695 . https://doi.org/10.1002/etc.2456 .
- Barron , M.G. , Jackson , C.R. , and Awkerman , J.A. ( 2012 ). Evaluation of in silico development of aquatic toxicity species sensitivity distributions . Aquatic Toxicology 116–117 ( 15 ): 1 – 7 . https://doi.org/10.1016/j.aquatox.2012.02.006 .
- Douziech , M. , Ragas , A.M.J. , van Zelm , R. et al. ( 2020 ). Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations . Environment International 134 : 105334 . https://doi.org/10.1016/j.envint.2019.105334 .
- Dyer , S.D. , Versteeg , D.J. , Belanger , S.E. et al. ( 2006 ). Interspecies correlation estimates predict protective environmental concentrations . Environmental Science and Technology 40 ( 9 ): 3102 – 3111 . https://doi.org/10.1021/es051738p .
- Burgess-Herbert , S.L. and Euling , S.Y. ( 2013 ). Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: challenges, opportunities, and research needs . Toxicology and Applied Pharmacology 271 ( 3 ): 372 – 385 . https://doi.org/10.1016/j.taap.2011.11.011 .
- Piña , B. , Raldúa , D. , Barata , C. et al. ( 2018 ). Functional data analysis: omics for environmental risk assessment . Comprehensive Analytical Chemistry 82 : 583 – 611 . https://doi.org/10.1016/bs.coac.2018.07.007 .
- Smith , L.C. , Lavelle , C.M. , Silva-Sanchez , C. et al. ( 2018 ). Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow ( Pimephales promelas ) brain . Scientific Reports 8 : 10212 . https://doi.org/10.1038/s41598-018-28395-w .
- Brockmeier , E.K. , Hodges , G. , Hutchinson , T.H. et al. ( 2017 ). The role of omics in the application of adverse outcome pathways for chemical risk assessment . Toxicological Sciences 158 ( 2 ): 252 – 262 . https://doi.org/10.1093/toxsci/kfx097 .
- NRC ( 2007 ). Toxicity Testing in the 21st Century: A Vision and a Strategy . Washington DC : The National Academies Press .
- Snape , J.R. , Maund , S.J. , Pickford , D.B. , and Hutchinson , T.H. ( 2004 ). Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology . Aquatic Toxicology 67 ( 2 ): 143 – 154 . https://doi.org/10.1016/j.aquatox.2003.11.011 .
- Villeneuve , D.L. and Garcia-Reyero , N. ( 2011 ). Vision and strategy: predictive ecotoxicology in the 21st century . Environmental Toxicology and Chemistry 30 ( 1 ): 1 – 8 . https://doi.org/10.1002/etc.396 .
-
W. Benson
and
R. Giulio
(eds.) (
2006
).
Genomic Approaches for Cross-species Extrapolation in Toxicology
.
Pensacola, FL
:
SETAC Press
.
10.1201/9781420043648 Google Scholar
-
Hecker , M.
(
2018
).
Non-model species in ecological risk assessment
. In:
A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment
(eds.
N. Garcia-Reyero
and
C. Murphy
),
107
–
132
.
Cham, Switzerland
:
Springer
.
10.1007/978-3-319-66084-4_6 Google Scholar
- Perkins , E.J. , Ankley , G.T. , Crofton , K.M. et al. ( 2013 ). Current perspectives on the use of alternative species in human health and ecological hazard assessments . Environmental Health Perspectives 121 : 1002 – 1010 . https://doi.org/10.1289/ehp.1306638 .
- Cronin , M.T.D. and Richarz , A.-N. ( 2017 ). Relationship between adverse outcome pathways and chemistry-based in silico models to predict toxicity . Applied In Vitro Toxicology 3 ( 4 ): 286 – 297 . https://doi.org/10.1089/aivt.2017.0021 .
- Groh , K.J. , Carvalho , R.N. , Chipman , J.K. et al. ( 2015 ). Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. challenges and research needs in ecotoxicology . Chemosphere 120 : 764 – 777 . https://doi.org/10.1016/j.chemosphere.2014.09.068 .
- Kramer , V.J. , Etterson , M.A. , Hecker , M. et al. ( 2011 ). Adverse outcome pathways and ecological risk assessment bridging to population-level effects . Environmental Toxicology Chemistry 30 ( 1 ): 64 – 76 . https://doi.org/10.1002/etc.375 .
- Doering , J.A. , Wiseman , S. , Giesy , J.P. , and Hecker , M. ( 2018 ). A cross-species quantitative adverse outcome pathway for activation of the aryl hydrocarbon receptor leading to early life stage mortality in birds and fishes . Environmental Science & Technology 52 ( 13 ): 7524 – 7533 . https://doi.org/10.1021/acs.est.8b01438 .
- Doering , J.A. , Villeneuve , D.L. , Fay , K.A. et al. ( 2019 ). Differential sensitivity to in vitro inhibition of cytochrome P450 aromatase (CYP19) activity among 18 freshwater fishes . Toxicological Sciences 170 ( 2 ): 394 – 403 . https://doi.org/10.1093/toxsci/kfz115 .
- Gunnarsson , L. , Jauhiainen , A. , Kristiansson , E. et al. ( 2008 ). Evolutionary conservation of human drug targets in organisms used for environmental risk assessments . Environmental Science and Technology 42 ( 15 ): 5807 – 5813 . https://doi.org/10.1021/es8005173 .
- Huggett , D.B. , Cook , J.C. , Ericson , J.F. , and Williams , R.T. ( 2003 ). A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish . Human and Ecological Risk Assessment: An International Journal 9 ( 7 ): 1789 – 1799 . https://doi.org/10.1080/714044797 .
- Kostich , M.S. and Lazorchak , J.M. ( 2008 ). Risks to aquatic organisms posed by human pharmaceutical use . Science of the Total Environment 389 ( 2–3 ): 329 – 339 . https://doi.org/10.1016/j.scitotenv.2007.09.008 .
- Zhao , Y. , Zhang , K. , Giesy , J. , and Hu , J. ( 2015 ). Families of nuclear receptors in vertebrate models: characteristic and comparative toxicological perspective . Scientific Reports 5 : 8554 . https://doi.org/10.1038/srep08554 .
- Sun , Y.V. , Boverhof , D.R. , Burgoon , L.D. et al. ( 2004 ). Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences . Nucleic Acids Research 32 ( 15 ): 4512 – 4523 . https://doi.org/10.1093/nar/gkh782 .
- Kille , P. , Kay , J. , and Sweeney , G.E. ( 1993 ). Analysis of regulatory elements flanking metallothionein genes in Cd-tolerant fish (pike and stone loach) . Biochimica et Biophysica Acta 1216 ( 1 ): 55 – 64 . https://doi.org/10.1016/0167-4781(93)90037-E .
- Olsson , P.-E. and Kille , P. ( 1997 ). Functional comparison of the metal-regulated transcriptional control regions of metallothionein genes from cadmium-sensitive and tolerant fish species . Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1350 ( 3 ): 325 – 334 . https://doi.org/10.1016/S0167-4781(96)00173-X .
- Suzuki , K.T. and Iwata , H. ( 2010 ). Cytochrome P450 family 1 gene Xenopus tropicalis . In: Interdisciplinary Studies on Environmental Chemistry – Environmental Specimen Bank (eds. T. Isobe , K. Nomiyama , A. Subramanian and S. Tanabe ), 155 – 160 . Tokyo : TERRAPUB .
- Wittwehr , C. , Aladjov , H. , Ankley , G. et al. ( 2017 ). How adverse outcome pathways can aid the development of computational prediction models for regulatory toxicology . Toxicological Sciences 155 ( 2 ): 326 – 336 . https://doi.org/10.1093/toxsci/kfw207 .
- LaLone , C.A. , Villeneuve , D.L. , Cavallin , J.E. et al. ( 2013 ). Cross-species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone . Environmental Toxicology and Chemistry 32 ( 11 ): 2528 – 2541 . https://doi.org/10.1002/etc.2330 .
- James , P. ( 1997 ). Protein identification in the post-genome era: the rapid rise of proteomics . Quarterly Reviews of Biophysics 30 ( 4 ): 279 – 331 . https://doi.org/10.1017/S0033583597003399 .
- Gillet , L.C. , Navarro , P. , Tate , S. et al. ( 2012 ). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis . Molecular and Cellular Proteomics 11 ( 6 ): 1 – 17 . https://doi.org/10.1074/mcp.O111.016717 .
- Kruger , F.A. and Overington , J.P. ( 2012 ). Global analysis of small molecule binding to related protein targets . PLoS Computational Biology 8 ( 1 ): e1002333 . https://doi.org/10.1371/journal.pcbi.1002333 .
- Wright , M. and Sieber , S. ( 2016 ). Chemical proteomics approaches for identifying the cellular targets of natural products . Natural Product Reports 33 ( 5 ): 681 – 708 .
- Hall , D.R. and Peng , H. ( 2020 ). Characterizing physical protein targets of chemical contaminants with chemical proteomics: is it time to fill a crucial environmental toxicology knowledge gap? Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 34 : 100655 . https://doi.org/10.1016/j.cbd.2020.100655 .
- Shao , X. , Ji , F. , Wang , Y. et al. ( 2018 ). Integrative chemical proteomics-metabolomics approach reveals Acaca/Acacb as direct molecular targets of PFOA . Analytical Chemistry 90 ( 18 ): 11092 – 11098 . https://doi.org/10.1021/acs.analchem.8b02995 .
- Morris , P.J. , Medina-Cleghorn , D. , Heslin , A. et al. ( 2014 ). Organophorphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia . ACS Chemical Biology 9 ( 5 ): 1097 – 1103 . https://doi.org/10.1021/cb500014r .
- Eriksson , L. , Antti , H. , Gottfries , J. et al. ( 2004 ). Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm) . Analytical and Bioanalytical Chemistry 380 : 419 – 429 . https://doi.org/10.1007/s00216-004-2783-y .
- Grootveld , M. ( 2012 ). Introduction to the applications of chemometric techniques in ‘omics’ research: common pitfalls, misconceptions and ‘rights and wrongs’ . In: Metabolic Profiling: Disease and Xenobiotics (ed. M. Grootveld ), 1 – 34 . Cambridge : Royal Society of Chemistry .
- Tjeerdema , R.S. ( 2008 ). Application of NMR-based techniques in aquatic toxicology: Brief examples . Marine Pollution Bulletin 57 ( 6–12 ): 275 – 279 . https://doi.org/10.1016/j.marpolbul.2008.01.002 .
- Viant , M.R. and Sommer , U. ( 2013 ). Mass spectrometry based environmental metabolomics: a primer and review . Metabolomics 9 : 144 – 158 . https://doi.org/10.1007/s11306-012-0412-x .
- Ueda , H. , Ikenaka , Y. , Nakayama , S.M.M. et al. ( 2011 ). Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences . Aquatic Toxicology 105 ( 3–4 ): 337 – 343 . https://doi.org/10.1016/j.aquatox.2011.07.004 .
- Doyle , M. , Bosker , T. , Martyniuk , C. , and Munkittrick , K.R. ( 2013 ). The effects of 17-α-ethinylestradiol (EE2) on molecular signaling cascades in mummichog ( Fundulus heteroclitus ) . Aquatic Toxicology 134 ( 15 ): 34 – 46 . https://doi.org/10.1016/j.aquatox.2013.03.001 .
- Martyniuk , C.J. , Gerrie , E.R. , Popesku , J.T. et al. ( 2007 ). Microarray analysis in the zebrafish (Danio rerio) liver and telencephalon after exposure to low concentration of 17alpha-ethinylestradiol . Aquatic Toxicology 84 ( 1 ): 38 – 49 . https://doi.org/10.1016/j.aquatox.2007.05.012 .
- Huang , D.W. , Sherman , B.T. , and Lempicki , R.A. ( 2009 ). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources . Nature Protocols 4 ( 1 ): 44 – 57 . https://doi.org/10.1038/nprot.2008.211 .
- Jukosky , J.A. , Watzin , M.C. , and Leiter , J.C. ( 2008 ). Elevated concentrations of ethinylestradiol, 17β-estradiol, and medroxyprogesterone have little effect on reproduction and survival of Ceriodaphnia dubia . Bulletin of Environmental Contamination and Toxicology 81 : 230 – 235 . https://doi.org/10.1007/s00128-008-9462-118636214 .
- Thomson , S.A. , Baldwin , W.S. , Wang , Y.H. et al. ( 2009 ). Annotation, phylogenetics, and expression of the nuclear receptors in Daphnia pulex . BMC Genomics 10 : 500 . https://doi.org/10.1186/1471-2164-10-50019863811 .
- Chou , C. , Huang , H. , Huang , W. et al. ( 2018 ). The aquatic animals’ transcriptome resource for comparative functional analysis . BMC Genomics 19 ( 2 ): 103 . https://doi.org/10.1186/s12864-018-4463-x .
- Antczak , P. , Ortega , F. , Chipman , J.K. , and Falciani , F. ( 2010 ). Mapping drug physico-chemical features to pathway activity reveals molecular networks linked to toxicity outcome . PloS One 5 ( 8 ): e12385 . https://doi.org/10.1371/journal.pone.0012385 .
- Lamb , J. ( 2007 ). The connectivity map: a new tool for biomedical research . Nature Reviews Cancer 7 : 54 – 60 .
- Smalley , J.L. , Gant , T.W. , and Zhang , S.D. ( 2010 ). Application of connectivity mapping in predictive toxicology based on gene-expression similarity . Toxicology 268 ( 3 ): 143 – 146 . https://doi.org/10.1016/j.tox.2009.09.014 .
- Wang , R.L. , Bencic , D.C. , Garcia-Reyero , N. et al. ( 2014 ). Natural variation in fish transcriptomes: comparative analysis of the Fathead Minnow ( Pimephales promelas ) and Zebrafish ( Danio rerio ) . PLoS One 9 ( 12 ): e114178 . https://doi.org/10.1371/journal.pone .
- Wang , R. , Biales , A.D. , Garcia-Reyero , N. et al. ( 2016 ). Fish connectivity mapping: linking chemical stressors by their mechanisms of action-driven transcriptomic profiles . BMC Genomics 17 : 84 . https://doi.org/10.1186/s12864-016-2406-y .
- Awkerman , J.A. , Raimondo , S. , and Barron , M.G. ( 2008 ). Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models . Environmental Science and Technology 42 ( 9 ): 3447 – 3452 . https://doi.org/10.1021/es702861u .
- Mattes , W.B. ( 2006 ). Cross-species comparative toxicogenomics as an aid to safety assessment . Expert Opinion on Drug Metabolism and Toxicology 2 ( 6 ): 859 – 874 . https://doi.org/10.1517/17425255.2.6.859 .
- Monroe , D. ( 2009 ). Genomic clues to DNA treasure sometimes lead nowhere . Science 325 ( 5937 ): 142 – 143 . https://doi.org/10.1126/science.325_142 .
- Nikinmaa , M. and Rytkonen , K.T. ( 2011 ). Functional genomics in aquatic toxicology–do not forget the function . Aquatic Toxicology 105 ( 3–4 ): 16 – 24 . https://doi.org/10.1016/j.aquatox.2011.05.019 .
- Tagu , D. , Colbourne , J.K. , and Nègre , N. ( 2014 ). Genomic data integration for ecological and evolutionary traits in non-model organisms . BMC Genomics 15 : 490 . https://doi.org/10.1186/1471-2164-15-490 .
- Prior , H. , Casey , W. , Kimber , I. et al. ( 2019 ). Reflections on the progress towards non-animal methods for acute toxicity testing of chemicals . Regulatory Toxicology and Pharmacology 102 : 30 – 33 . https://doi.org/10.1016/j.yrtph.2018.12.008 .