Angioimmunoblastic T-cell Lymphoma
Jehan Dupuis
Lymphoid Malignancies Unit, Henri Mondor University Hospital, Créteil, France
Search for more papers by this authorFranck Morschhauser
Department of Hematology, Lille University Hospital, Lille, France
Search for more papers by this authorJehan Dupuis
Lymphoid Malignancies Unit, Henri Mondor University Hospital, Créteil, France
Search for more papers by this authorFranck Morschhauser
Department of Hematology, Lille University Hospital, Lille, France
Search for more papers by this authorOwen A. O'Connor M.D., Ph.D.
American Cancer Society Research Professor Professor of Medicine
Department of Medicine, Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, Department of Microbiology, Immunology, and Cancer Research, University of Virginia Cancer Center, Charlottesville, VA, USA
Search for more papers by this authorWon Seog Kim
Sungkyunkwan University School of Medicine, Seoul, Korea
Search for more papers by this authorPier Luigi Zinzani M.D., Ph.D.
Professor of Hematology
Department of Medicine, Program for Lymphomas and Chronic Lymphocytic Leukemia, University of Bologna, Bologna, Italy
Search for more papers by this authorSummary
The disease today referred to as angioimmunoblastic T-cell lymphoma (AITL) was first described in the 1970s. The clinical presentation has some particularities that play a role in defining AITL as a distinct clinicopathological entity. As AITL is associated with recurrent genetic mutations related to clonal hematopoiesis, it is probable that clonal hematopoiesis of indeterminate potential represents the major risk factor for the development of AITL. The cellular derivation of AITL from Tfh cells provides a rational model to explain several of the peculiar pathological and biological features inherent to AITL. Several conventional chemotherapy regimens used in the treatment of relapsed or refractory B-cell malignancies have been specifically explored in the treatment of T-cell lymphomas. Several drugs have obtained approval in the United States and/or other countries for the treatment of relapsed or refractory T-cell lymphomas.
References
- Lukes, R.J. and Tindle, B.H. (1975). Immunoblastic lymphadenopathy. A hyperimmune entity resembling Hodgkin's disease. N Engl J Med 292 (1): 1–8.
- Frizzera, G., Moran, E.M., and Rappaport, H. (1975). Angio-immunoblastic lymphadenopathy. Diagnosis and clinical course. Am J Med 59 (6): 803–818.
- Swerdlow, S.H., Campo, E., Harris, N.L. et al. (2017). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Rev. 4e. Lyon: International Agency for Research on Cancer.
- Mourad, N., Mounier, N., Brière, J. et al. (2008). Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d'Etude des Lymphomes de l'Adulte (GELA) trials. Blood 111 (9): 4463–4470.
- Lachenal, F., Berger, F., Ghesquières, H. et al. (2007). Angioimmunoblastic T-cell lymphoma: clinical and laboratory features at diagnosis in 77 patients. Medicine (Baltimore) 86 (5): 282–292.
- Tokunaga, T., Shimada, K., Yamamoto, K. et al. (2012). Retrospective analysis of prognostic factors for angioimmunoblastic T-cell lymphoma: a multicenter cooperative study in Japan. Blood 119 (12): 2837–2843.
- Federico, M., Rudiger, T., Bellei, M. et al. (2013). Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J Clin Oncol 31 (2): 240–246.
- Ortonne, N., Dupuis, J., Plonquet, A. et al. (2007). Characterization of CXCL13+ neoplastic t cells in cutaneous lesions of angioimmunoblastic T-cell lymphoma (AITL). Am J Surg Pathol 31 (7): 1068–1076.
- Crickx, E., Poullot, E., Moulis, G. et al. (2019). Clinical spectrum, evolution, and management of autoimmune cytopenias associated with angioimmunoblastic T-cell lymphoma. Eur J Haematol 103 (1): 35–42.
- Anderson, J.R., Armitage, J.O., and Weisenburger, D.D. (1998). Epidemiology of the non-Hodgkin's lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin's lymphoma classification project. Ann Oncol 9 (7): 717–720.
- Vose, J., Armitage, J., and Weisenburger, D. (2008). International T-cell lymphoma project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26 (25): 4124–4130.
- de Leval, L., Parrens, M., Le Bras, F. et al. (2015). Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets. Haematologica 100 (9): e361–e364.
- Busque, L., Patel, J.P., Figueroa, M. et al. (2012). Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44 (11): 1179–1181.
- Jaiswal, S., Fontanillas, P., Flannick, J. et al. (2014). Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371 (26): 2488–2498.
- Genovese, G., Kähler, A.K., Handsaker, R.E. et al. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371 (26): 2477–2487.
- Tiacci, E., Venanzi, A., Ascani, S. et al. (2018). High-risk clonal hematopoiesis as the origin of AITL and NPM1-mutated AML. N Engl J Med 379 (10): 981–984.
- Willenbrock, K., Renné, C., Gaulard, P., and Hansmann, M.L. (2005). In angioimmunoblastic T-cell lymphoma, neoplastic T cells may be a minor cell population: a molecular single-cell and immunohistochemical study. Virchows Arch 446 (1): 15–20.
- Crotty, S. (2019). T follicular helper cell biology: a decade of discovery and diseases. Immunity 50 (5): 1132–1148.
- Lemonnier, F., Couronné, L., Parrens, M. et al. (2012). Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120 (7): 1466–1469.
- Sakata-Yanagimoto, M., Enami, T., Yoshida, K. et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.
- Dogan, A., Attygalle, A.D., and Kyriakou, C. (2003). Angioimmunoblastic T-cell lymphoma. Br J Haematol 121 (5): 681–691.
- Heavican, T.B., Bouska, A., Yu, J. et al. (2019). Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133 (15): 1664–1676.
- Murakami, Y.I., Yatabe, Y., Sakaguchi, T. et al. (2007). c-Maf expression in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 31 (11): 1695–1702.
- Nakajima, H. and Kunimoto, H. (2014). TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci 105 (9): 1093–1099.
- Abdel-Wahab, O. and Levine, R.L. (2013). Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 121 (18): 3563–3572.
- Ko, M., Huang, Y., Jankowska, A.M. et al. (2010). Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468 (7325): 839–843.
- Delhommeau, F., Dupont, S., Valle, V.D. et al. (2009). Mutation in TET2 in myeloid cancers. N Engl J Med 360 (22): 2289–2301.
- Kim, E. and Abdel-Wahab, O. (2013). Focus on the epigenome in the myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2013 (1): 538–544.
- Quivoron, C., Couronné, L., Della Valle, V. et al. (2011). TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20(2): 276.
- Odejide, O., Weigert, O., Lane, A.A. et al. (2014). A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123 (9): 1293–1296.
- Palomero, T., Couronné, L., Khiabanian, H. et al. (2014). Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46 (2): 166–170.
- Wang, C., McKeithan, T.W., Gong, Q. et al. (2015). IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126 (15): 1741–1752.
- Schwartz, F.H., Cai, Q., Fellmann, E. et al. (2017). TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J Pathol 242 (2): 129–133.
- Yan, H., Parsons, D.W., Jin, G. et al. (2009). IDH1 and IDH2 mutations in gliomas. N Engl J Med 360 (8): 765–773.
- Krell, D., Mulholland, P., Frampton, A.E. et al. (2013). IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncol 9 (12): 1923–1935.
- Chowdhury, R., Yeoh, K.K., Tian, Y.M. et al. (2011). The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12 (5): 463–469.
- Cairns, R.A., Iqbal, J., Lemonnier, F. et al. (2012). IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119 (8): 1901–1903.
- Couronné, L., Bastard, C., and Bernard, O.A. (2012). TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 366 (1): 95–96.
- Yoo, H.Y., Sung, M.K., Lee, S.H. et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46 (4): 371–375.
- Cortes, J.R., Ambesi-Impiombato, A., Couronné, L. et al. (2018). RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell 33 (2): 259–273.e7.
- Fujisawa, M., Sakata-Yanagimoto, M., Nishizawa, S. et al. (2018). Activation of RHOA-VAV1 signaling in angioimmunoblastic T-cell lymphoma. Leukemia 32 (3): 694–702.
- Vallois, D., Dobay, M.P.D., Morin, R.D. et al. (2016). Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128 (11): 1490–1502.
- Lee, S.H., Kim, J.S., Kim, J. et al. (2015). A highly recurrent novel missense mutation in CD28 among angioimmunoblastic T-cell lymphoma patients. Haematologica 100 (12): e505–e507.
- Rohr, J., Guo, S., Huo, J. et al. (2016). Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia 30 (5): 1062–1070.
- Yoo, H.Y., Kim, P., Kim, W.S. et al. (2016). Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma. Haematologica 101 (6): 757–763.
- Gong, Q., Wang, C., Rohr, J. et al. (2016). Comment on: frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma, by Yoo et al. Haematologica 101 (6): e269–e270.
- Vallois, D., Dupuy, A., Lemonnier, F. et al. (2018). RNA fusions involving CD28 are rare in peripheral T-cell lymphomas and concentrate mainly in those derived from follicular helper T cells. Haematologica 103 (8): e360–e363.
- Abouyabis, A.N., Shenoy, P.J., Sinha, R. et al. (2011). A systematic review and meta-analysis of front-line Anthracycline-based chemotherapy regimens for peripheral T-cell lymphoma. ISRN Hematol 2011: 623924.
- Gleeson, M., Peckitt, C., To, Y.M. et al. (2018). CHOP versus GEM-P in previously untreated patients with peripheral T-cell lymphoma (CHEMO-T): a phase 2, multicentre, randomised, open-label trial. Lancet Haematol 5 (5): e190–e200.
- Fossard, G., Broussais, F., Coelho, I. et al. (2018). Role of up-front autologous stem-cell transplantation in peripheral T-cell lymphoma for patients in response after induction: an analysis of patients from LYSA centers. Ann Oncol 29 (3): 715–723.
- Le Gouill, S., Milpied, N., Buzyn, A. et al. (2008). Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Société Francaise de Greffe de Moëlle et de Thérapie Cellulaire. J Clin Oncol 26 (14): 2264–2271.
- Damaj, G., Gressin, R., Bouabdallah, K. et al. (2012). Results from a prospective, open-label, phase II trial of Bendamustine in refractory or relapsed T-cell lymphomas: the BENTLY trial. J Clin Oncol 31 (1): 104–110.
- O'Connor, O.A., Pro, B., Pinter-Brown, L. et al. (2011). Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol 29 (9): 1182–1189.
- Advani, R.H., Ansell, S.M., Lechowicz, M.J. et al. (2016). A phase II study of cyclophosphamide, etoposide, vincristine and prednisone (CEOP) alternating with pralatrexate (P) as front line therapy for patients with peripheral T-cell lymphoma (PTCL): final results from the T-cell consortium trial. Br J Haematol 172 (4): 535–544.
- Coiffier, B., Pro, B., Prince, H.M. et al. (2012). Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol 30 (6): 631–636.
- Pro, B., Horwitz, S.M., Prince, H.M. et al. (2017). Romidepsin induces durable responses in patients with relapsed or refractory angioimmunoblastic T-cell lymphoma. Hematol Oncol 35 (4): 914–917.
- Dupuis, J., Morschhauser, F., Ghesquières, H. et al. (2015). Combination of romidepsin with cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated patients with peripheral T-cell lymphoma: a non-randomised, phase 1b/2 study. Lancet Haematol 2 (4): e160–e165.
- Amengual, J.E., Lichtenstein, R., Lue, J. et al. (2018). A phase 1 study of romidepsin and pralatrexate reveals marked activity in relapsed and refractory T-cell lymphoma. Blood 131 (4): 397–407.
- O'Connor, O.A., Horwitz, S., Masszi, T. et al. (2015). Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol 33 (23): 2492–2499.
- Zinzani, P.L., Pellegrini, C., Broccoli, A. et al. (2011). Lenalidomide monotherapy for relapsed/refractory peripheral T-cell lymphoma not otherwise specified. Leuk Lymphoma 52 (8): 1585–1588.
- Zinzani, P.L., Alinari, L., Tani, M. et al. (2005). Preliminary observations of a phase II study of reduced-dose alemtuzumab treatment in patients with pretreated T-cell lymphoma. Haematologica 90 (5): 702–703.
- O'Connor, O.A., Özcan, M., Jacobsen, E.D. et al. (2019). Randomized phase III study of alisertib or investigator's choice (selected single agent) in patients with relapsed or refractory peripheral T-cell lymphoma. J Clin Oncol 37 (8): 613–623.
- Mak, V., Hamm, J., Chhanabhai, M. et al. (2013). Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol 31 (16): 1970–1976.
- Bellei, M., Foss, F.M., Shustov, A.R. et al. (2018). The outcome of peripheral T-cell lymphoma patients failing first-line therapy: a report from the prospective, international T-cell project. Haematologica 103 (7): 1191–1197.
- Stein, E.M., DiNardo, C.D., Pollyea, D.A. et al. (2017). Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130 (6): 722–731.
- Lemonnier, F., Dupuis, J., Sujobert, P. et al. (2018). Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood 132 (21): 2305–2309.
- O'Connor, O.A., Falchi, L., Lue, J.K. et al. (2019). Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study. Blood 134 (17): 1395–1405.