T-Prolymphocytic Leukemia
Dima El-Sharkawi
Department of Haematology, The Royal Marsden NHS Foundation Trust, Sutton, UK
Search for more papers by this authorClaire Dearden
Department of Haematology, The Royal Marsden NHS Foundation Trust, Sutton, UK
Search for more papers by this authorDima El-Sharkawi
Department of Haematology, The Royal Marsden NHS Foundation Trust, Sutton, UK
Search for more papers by this authorClaire Dearden
Department of Haematology, The Royal Marsden NHS Foundation Trust, Sutton, UK
Search for more papers by this authorOwen A. O'Connor M.D., Ph.D.
American Cancer Society Research Professor Professor of Medicine
Department of Medicine, Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, Department of Microbiology, Immunology, and Cancer Research, University of Virginia Cancer Center, Charlottesville, VA, USA
Search for more papers by this authorWon Seog Kim
Sungkyunkwan University School of Medicine, Seoul, Korea
Search for more papers by this authorPier Luigi Zinzani M.D., Ph.D.
Professor of Hematology
Department of Medicine, Program for Lymphomas and Chronic Lymphocytic Leukemia, University of Bologna, Bologna, Italy
Search for more papers by this authorSummary
T-prolymphocytic leukemia (T-PLL) is a rare post-thymic T-cell leukemia characterized by rapidly progressive disease and poor survival rates. Clinical features typical of T-PLL can help differentiate it from other mature T-cell leukemias. Typical findings on the blood film reveal medium sized lymphocytes, with a high nuclear to cytoplasmic ratio. Evidence for optimal treatment is limited to small single-arm studies or retrospective data from tertiary centers with expertise in the management of T-PLL. If a good response is achieved with alemtuzumab upfront, there may be a rationale for retreatment, with one study showing that of 12 patients who were retreated, 5 achieved a second complete response, with one a partial response; however, flow cytometry should be repeated, as T-PLL cells can lose CD52 expression.
References
- Swerdlow, S.H., Campo, E., Harris, N. et al. (2017). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer.
- Herling, M., Khoury, J.D., Washington, L.T. et al. (2004). A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood 104 (2): 328–335.
- Matutes, E., Brito-Babapulle, V., Swansbury, J. et al. (1991). Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood 78 (12): 3269–3274.
- Hu, Z., Medeiros, L.J., Fang, L. et al. (2017). Prognostic significance of cytogenetic abnormalities in T-cell prolymphocytic leukemia. Am J Hematol 92 (5): 441–447.
- Sun, Y., Tang, G., Hu, Z. et al. (2018). Comparison of karyotyping, TCL1 fluorescence in situ hybridisation and TCL1 immunohistochemistry in T cell prolymphocytic leukaemia. J Clin Pathol 71 (4): 309–315.
- Jain, P., Aoki, E., Keating, M. et al. (2017). Characteristics, outcomes, prognostic factors and treatment of patients with T-cell prolymphocytic leukemia (T-PLL). Ann Oncol 28 (7): 1554–1559.
- Suarez, F., Mahlaoui, N., Canioni, D. et al. (2015). Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French National Registry of primary immune deficiencies. J Clin Oncol 33 (2): 202–208.
- Britobabapulle, V. and Catovsky, D. (1991). Inversions and tandem translocations involving chromosome 14q11 and 14q32 in T-prolymphocytic leukemia and T-cell leukemias in patients with ataxia telangiectasia☆. Cancer Genet Cytogenet 55 (1): 1–9.
- Taylor, A., Metcalfe, J., Thick, J., and Mak, Y. (1996). Leukemia and lymphoma in ataxia telangiectasia. Blood 87 (2): 423–438.
- Cervera, P., Gilhot, A., Marzac, C. et al. (2017). T-cell prolymphocytic leukemia and tuberculosis: a puzzling association. Clin Case Rep 5 (9): 1536–1541.
- Salim, O., Salim, D., Berker, S., and Undar, L. (2015). T-cell prolymphocytic leukemia presenting with leukemic serous effusion in a prostate cancer patient. J Cancer Res Ther 11 (4): 950–953.
- Paul, R.N., Alizadeh, L., Ajayi, O.I. et al. (2012). A case report of T cell prolymphocytic leukemia and Kaposi sarcoma and a review of T cell Prolymphocytic leukemia. Acta Haematol 127 (4): 235–243.
- Singhal, M., Raina, V., Gupta, R., and Das, P. (2010). T cell-prolymphocytic leukemia detected in a patient of breast cancer at the time of recurrence: a case report. Cases J 3 (1): 4.
- Michallet, A.S., Lesca, G., Radford-Weiss, I. et al. (2003). T-cell prolymphocytic leukemia with autoimmune manifestations in Nijmegen breakage syndrome. Ann Hematol 82 (8): 515–517.
- Zhou, G., He, B., Chen, T. et al. (2017). Modified hyper-CVAD regimen followed by autologous peripheral blood stem cell transplantation successfully treated synchronous T-cell prolymphocytic leukemia and gastric cancer in a 68-year-old female. Indian J Hematol Blood Transfus 33 (3): 434–435.
- Liao, H., Jin, Y., Yu, J., and Jiang, N. (2018). Concomitant T-cell prolymphocytic leukemia and visceral leishmaniasis: a case report. Medicine (Baltimore) 97 (38): e12410.
- Garand, R., Goasguen, J., Brizard, A. et al. (1998). Indolent course as a relatively frequent presentation in T-prolymphocytic leukaemia. Br J Haematol 103 (2): 488–494.
- Adediran, S., Cornfield, D., Bagg, A., and Agostino, N. (2016). An extremely indolent T-cell leukemia: an 18-year follow-up. J Community Support Oncol 14 (2): 76–78.
- Malkan, U.Y., Gunes, G., Yayar, O. et al. (2015). A T-cell prolymphocytic leukemia case with central nervous system involvement. Int J Clin Exp Med 8 (8): 14207–14209.
- His, A.C., Robirds, D.H., Luo, J. et al. (2014). T-cell prolymphocytic leukemia frequently shows cutaneous involvement and is associated with gains of MYC, loss of ATM, and TCL1A rearrangement. Am J Surg Pathol 38 (11): 1468–1483.
- Chen, X. and Cherian, S. (2013). Immunophenotypic characterization of T-cell prolymphocytic leukemia. Am J Clin Pathol 140 (5): 727–735.
- Johansson, P., Klein-Hitpass, L., Choidas, A. et al. (2018). SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J 8 (1): 11.
- Brito-Babapulle, V., Pomfret, M., Matutes, E., and Catovsky, D. (1987). Cytogenetic studies on prolymphocytic leukemia. II. T cell prolymphocytic leukemia. Blood 70 (4): 926–931.
- Herling, M., Patel, K.A., Teitell, M.A. et al. (2008). High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood 111 (1): 328–337.
- Pekarsky, Y., Hallas, C., and Croce, C.M. (2001). The role of TCL1 in human T-cell leukemia. 20 (40): 5638–5643.
- Laine, J., Künstle, G., Obata, T. et al. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 6 (2): 395–407.
- Stern, M.H., Soulier, J., Rosenzwajg, M. et al. (1993). MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene 8 (9): 2475–2483.
- Stengel, A., Kern, W., Zenger, M. et al. (2016). Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer 55 (1): 82–94.
- Madani, A., Choukroun, V., Soulier, J. et al. (1996). Expression of p13MTCP1 is restricted to mature T-cell proliferations with t(X;14) translocations. Blood 87 (5): 1923–1927.
- Patil, P., Cieslak, A., Bernhart, S.H. et al. (2019). Reconstruction of rearranged T-cell receptor loci by whole genome and transcriptome sequencing gives insights into the initial steps of T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 2020 59 (4): 261–267.
- Gritti, C., Dastot, H., Soulier, J. et al. (1998). Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia. Blood 92 (2): 368–373.
- Virgilio, L., Lazzeri, C., Bichi, R. et al. (1998). Deregulated expression of TCL1 causes T cell leukemia in mice. Proc Natl Acad Sci U S A 95 (7): 3885–3889.
- Maljaei, S.H., Brito-Babapulle, V., Hiorns, L.R., and Catovsky, D. (1998). Abnormalities of chromosomes 8, 11, 14, and X in T-Prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet Cytogenet 103 (2): 110–116.
- Brito-Babapulle, V., Hamoudi, R., Matutes, E. et al. (2000). p53 allele deletion and protein accumulation occurs in the absence of p53 gene mutation in T-prolymphocytic leukaemia and Sezary syndrome. Br J Haematol 110 (1): 180–187.
- Costa, D. (2003). High levels of chromosomal imbalances in typical and small-cell variants of T-cell prolymphocytic leukemia. Cancer Genet Cytogenet 147 (1): 36–43.
- Nowak, D., Le Toriellec, E., Stern, M.H. et al. (2009). Molecular allelokaryotyping of T-cell prolymphocytic leukemia cells with high density single nucleotide polymorphism arrays identifies novel common genomic lesions and acquired uniparental disomy. 94 (4): 518–527.
- Soulier, J., Pierron, G.L., Vecchione, D. et al. (2001). A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 31 (3): 248–254.
- Staber, P.B., Herling, M., Bellido, M. et al. (2019). Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia. Blood 134 (14): 1132–1143.
- Yuille, M.A., Coignet, L.J., Abraham, S.M. et al. (1998). ATM is usually rearranged in T-cell prolymphocytic leukaemia. Oncogene 16 (6): 789–796.
- Kiel, M.J., Velusamy, T., Rolland, D. et al. (2014). Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood 124 (9): 1460–1472.
- Schrader, A., Crispatzu, G., Oberbeck, S. et al. (2018). Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun 9 (1): 697.
- López, C., Bergmann, A.K., Paul, U. et al. (2016). Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia. Br J Haematol 173 (2): 265–273.
- Stengel, A., Kern, W., Zenger, M. et al. (2016). Genetic characterization of T-PLL reveals two major biologic subgroups andJAK3mutations as prognostic marker. Genes Chromosomes Cancer 55 (1): 82–94.
- Bellanger, D., Jacquemin, V., Chopin, M. et al. (2014). Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia. Leukemia 28 (2): 417–419.
- Andersson, E.I., Pützer, S., Yadav, B. et al. (2018). Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia 32 (3): 774–787.
- Röth, A., Dürig, J., Himmelreich, H. et al. (2007). Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia 21 (12): 2456–2462.
- Shi, Z., Yu, J., Shao, H. et al. (2018). Exploring the molecular pathogenesis associated with T-cell prolymphocytic leukemia based on a comprehensive bioinformatics analysis. Oncol Lett 16 (1): 301–307.
- Damlaj, M., Sulai, N.H., Oliveira, J.L. et al. (2015). Impact of Alemtuzumab therapy and route of administration in T-Prolymphocytic leukemia: a single-center experience. Clin Lymphoma Myeloma Leuk 15 (11): 699–704.
- Herbaux, C., Genet, P., Bouabdallah, K. et al. (2015). Bendamustine is effective in T-cell prolymphocytic leukaemia. Br J Haematol 168 (6): 916–919.
- Gandhi, V., Tam, C., O'Brien, S. et al. (2008). Phase I trial of nelarabine in indolent leukemias. J Clin Oncol 26 (7): 1098–1105.
- Babu Mc, S., Anand, A., Lakshmaiah, K.C. et al. (2018). T-cell prolymphocytic leukemia: an experience from a tertiary cancer centre in South India. Int J Hematol Oncol Stem Cell Res 12 (2): 132–135.
- Mercieca, J., Matutes, E., Dearden, C. et al. (1994). The role of pentostatin in the treatment of T-cell malignancies: analysis of response rate in 145 patients according to disease subtype. J Clin Oncol 12 (12): 2588–2593.
- Ho, A.D., Suciu, S., Stryckmans, P. et al. (1999). Pentostatin in T-cell malignancies--a phase II trial of the EORTC. Leukemia Cooperative Group. Ann Oncol 10 (12): 1493–1498.
- Dearden, C.E., Khot, A., Else, M. et al. (2011). Alemtuzumab therapy in T-cell prolymphocytic leukemia: comparing efficacy in a series treated intravenously and a study piloting the subcutaneous route. Blood 118 (22): 5799–5802.
- Pflug, N., Cramer, P., Robrecht, S. et al. (2019). New lessons learned in T-PLL: results from a prospective phase-II trial with fludarabine-mitoxantrone-cyclophosphamide-alemtuzumab induction followed by alemtuzumab maintenance. Leuk Lymphoma 60 (3): 649–657.
- Hopfinger, G., Busch, R., Pflug, N. et al. (2013). Sequential chemoimmunotherapy of fludarabine, mitoxantrone, and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T-cell prolymphocytic leukemia. Cancer 119 (12): 2258–2267.
- Cross, M. and Dearden, C. (2019). B and T cell prolymphocytic leukaemia. Best Pract Res Clin Haematol 32 (3): 217–228.
- Alsawah, F., Benitez, L., Choi, S. et al. (2019). Intrathecal alemtuzumab: a potential treatment of refractory leptomeningeal T-cell prolymphocytic leukemia. Blood Adv 3 (21): 3333–3336.
- Dearden, C. (2012). How I treat prolymphocytic leukemia. Blood 120 (3): 538–551.
- Dearden, C.E., Matutes, E., Cazin, B. et al. (2001). High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood 98 (6): 1721–1726.
- Renaudon-Smith, E., Gribben, J.G., and Agrawal, S.G. (2014). Primary refractory T-cell prolymphocytic leukaemia treated with daily administration of alemtuzumab plus high-dose methylprednisolone. Eur J Haematol 92 (4): 360–361.
- Ravandi, F., Aribi, A., O'Brien, S. et al. (2009). Phase II study of alemtuzumab in combination with pentostatin in patients with T-cell neoplasms. J Clin Oncol 27 (32): 5425–5430.
- Hasanali, Z.S., Saroya, B.S., Stuart, A. et al. (2015). Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia. Sci Transl Med 7 (293): 293ra102–293ra110.
- Krishnan, B., Else, M., Tjonnfjord, G.E. et al. (2010). Stem cell transplantation after alemtuzumab in T-cell prolymphocytic leukaemia results in longer survival than after alemtuzumab alone: a multicentre retrospective study. Br J Haematol 149 (6): 907–910.
- Wiktor-Jedrzejczak, W., Dearden, C., De Wreede, L. et al. (2012). Hematopoietic stem cell transplantation in T-prolymphocytic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation and the Royal Marsden Consortium. Leukemia 26 (5): 972–976.
- Wiktor-Jedrzejczak, W., Drozd-Sokolowska, J., Eikema, D.J. et al. (2019). EBMT prospective observational study on allogeneic hematopoietic stem cell transplantation in T-prolymphocytic leukemia (T-PLL). Bone Marrow Transplant 54 (9): 1391–1398.
- Guillaume, T., Beguin, Y., Tabrizi, R. et al. (2015). Allogeneic hematopoietic stem cell transplantation for T-prolymphocytic leukemia: a report from the French society for stem cell transplantation (SFGM-TC). Eur J Haematol 94 (3): 265–269.
- Dholaria, B.R., Ayala, E., Sokol, L. et al. (2018). Allogeneic hematopoietic cell transplantation in T-cell prolymphocytic leukemia: a single-center experience. Leuk Res 67: 1–5.
- Yamasaki, S., Nitta, H., Kondo, E. et al. (2019). Effect of allogeneic hematopoietic cell transplantation for patients with T-prolymphocytic leukemia: a retrospective study from the Adult Lymphoma Working Group of the Japan Society for hematopoietic cell transplantation. Ann Hematol 98 (9): 2213–2220.
- Kalaycio, M.E., Kukreja, M., Woolfrey, A.E. et al. (2010). Allogeneic hematopoietic cell transplant for prolymphocytic leukemia. Biol Blood Marrow Transplant 16 (4): 543–547.
- Keating, M.J., Cazin, B., Coutre, S. et al. (2002). Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol 20 (1): 205–213.
- Pawson, R., Dyer, M.J., Barge, R. et al. (1997). Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. J Clin Oncol 15 (7): 2667–2672.
- He, L., Tang, J., Andersson, E.I. et al. (2018). Patient-customized drug combination prediction and testing for T-cell Prolymphocytic leukemia patients. Cancer Res 78 (9): 2407–2418.
- Borate, U., Norris, B.A., Lo, P. et al. (2017). Identification of targeted therapies for rare adult mature T -cell leukemia using functional ex vivo screening of primary patient samples. Am J Hematol 92 (5): E64–E66.
- Boidol, B., Kornauth, C., Van Der Kouwe, E. et al. (2017). First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocytic leukemia. Blood 130 (23): 2499–2503.
- Li, G., Waite, E., and Wolfson, J. (2017). T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib). Blood Adv 1 (27): 2724–2728.
- Gomez-Arteaga, A., Margolskee, E., Wei, M.T. et al. (2019). Combined use of tofacitinib (pan-JAK inhibitor) and ruxolitinib (a JAK1/2 inhibitor) for refractory T-cell prolymphocytic leukemia (T-PLL) with a JAK3 mutation. Leuk Lymphoma 60 (7): 1626–1631.
- Pratt, G., Yap, C., Oldreive, C. et al. (2018). A multi-centre phase I trial of the PARP inhibitor olaparib in patients with relapsed chronic lymphocytic leukaemia, T-prolymphocytic leukaemia or mantle cell lymphoma. Br J Haematol 182 (3): 429–433.
-
Kornauth, C.F., Herbaux, C., Boidol, B. et al. (2019). The combination of Venetoclax and Ibrutinib is effective in relapsed/refractory T-prolymphocytic leukemia and influences Bcl-2-family member dependencies. Hematol Oncol
37: 482–484.
10.1002/hon.161_2631 Google Scholar
-
Cross, M.J., Else, M., Morilla, R. et al. (2019). No improvement in survival for T-PLL patients over the last two decades. Blood
134 (Suppl 1): 1552.
10.1182/blood-2019-122094 Google Scholar