Pre-Processing of Non-Printable Foods
C. Anandharamakrishnan
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorJeyan A. Moses
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorT. Anukiruthika
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorC. Anandharamakrishnan
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorJeyan A. Moses
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorT. Anukiruthika
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorSummary
Traditionally, nonprintable food materials are a class of food ingredients that often require additives to enhance printability. Nonprintable foods are those food ingredients of our day-to-day life that comprises a complex association of macro and microelements in a fibrous matrix. It is essential to understand the key factors that impart nonprintability. This chapter describes the underlying biophysics of nonprintable food ingredients and various preprocessing steps employed in improving printability. Various hydrocolloids of plants, animals, and microbial origin that are used to enhance printability and their associated binding mechanism are detailed. The effect of heat on the chemical transition of materials such as hydration, gelation, gelatinization, colloidal formation, and emulsion on the poststability of the 3D printed construct in imparting the printability is described. Certainly, the present chapter provides a broad discussion on the printability of various food ingredients of nonprintable categories and their scope in the food industry. Further, the synergistic effects of natively printable materials in enhancing the printability of nonprintable foods are highlighted with possible postprocessing requirements to yield edible 3D printed foods. Hence proper understanding of the biophysics of nonprintable foods results in a promising solution in adding up a variety of novel cuisines from nonprintable foods using 3D printing.
References
- Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). 3D printing of egg yolk and white with rice flour blends . Journal of Food Engineering 265 : 109691 . https://doi.org/10.1016/j.jfoodeng.2019.109691 .
- Azam , R.S.M. , Zhang , M. , Bhandari , B. , and Yang , C. ( 2018a ). Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate . Food Biophysics 13 ( 3 ): 250 – 262 .
- Azam , S.M.R. , Zhang , M. , Mujumdar , A.S. , and Yang , C. ( 2018b ). Study on 3D printing of orange concentrate and material characteristics . Journal of Food Process Engineering 41 ( 5 ): 1 – 10 . https://doi.org/10.1111/jfpe.12689 .
- Baiano , A. ( 2020 ). 3D printed foods: a comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues . Food Reviews International , pp. 1 – 31 .
- Burey , P. , Bhandari , B.R. , Howes , T. , and Gidley , M.J. ( 2008 ). Hydrocolloid gel particles: formation, characterization, and application . Critical Reviews in Food Science and Nutrition 48 ( 5 ): 361 – 377 .
-
Burnside , E.
(
2014
).
Hydrocolloids and gums as encapsulating agents
. In:
Microencapsulation in the Food Industry
(eds.
A.G. Gaonkar
,
N. Vasisht
,
A.R. Khare
and
R. Sobel
),
241
–
252
.
Elsevier
.
10.1016/B978-0-12-404568-2.00021-2 Google Scholar
- Cao , L. , Lu , W. , Mata , A. et al. ( 2020 ). Egg-box model-based gelation of alginate and pectin: a review . Carbohydrate Polymers 242 : 116389 .
- Cao , Y. , Fang , Y. , Nishinari , K. , and Phillips , G.O. ( 2016 ). Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening . Scientific Reports 6 : 23739 .
- Cao , Y. , Wang , L. , Zhang , K. et al. ( 2015 ). Mapping the complex phase behaviors of aqueous mixtures of κ-carrageenan and type B gelatin . The Journal of Physical Chemistry B 119 ( 30 ): 9982 – 9992 .
- Dalbhagat , C.G. , Mahato , D.K. , and Mishra , H.N. ( 2019 ). Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: a review . Trends in Food Science and Technology 85 : 226 – 240 . https://doi.org/10.1016/j.tifs.2019.01.001 .
- Damodaran , S. , Parkin , K.L. , and Fennema , O.R. ( 2007 ). Fennema's Food Chemistry . CRC press .
- Dankar , I. , Haddarah , A. , Omar , F.E.L. et al. ( 2018 ). 3D printing technology: the new era for food customization and elaboration . Trends in Food Science and Technology 75 : 231 – 242 . https://doi.org/10.1016/j.tifs.2018.03.018 .
- Derossi , A. , Caporizzi , R. , Azzollini , D. , and Severini , C. ( 2018 ). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children . Journal of Food Engineering 220 : 65 – 75 .
-
Derossi , A.
,
Caporizzi , R.
,
Ricci , I.
, and
Severini , C.
(
2019
).
Critical variables in 3D food printing
. In:
Fundamentals of 3D Food Printing and Applications
(eds.
F.C. Godoi
,
B.R. Bhandari
,
S. Prakash
and
M. Zhang
), pp.
41
–
91
.
Elsevier
.
10.1016/B978-0-12-814564-7.00003-1 Google Scholar
- Derossi , A. , Husain , A. , Caporizzi , R. , and Severini , C. ( 2020 ). Manufacturing personalized food for people uniqueness. An overview from traditional to emerging technologies . Critical Reviews in Food Science and Nutrition 60 ( 7 ): 1141 – 1159 .
- Dick , A. , Bhandari , B. , Dong , X. , and Prakash , S. ( 2020 ). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food . Food Hydrocolloids 107 : 105940 .
- Dick , A. , Bhandari , B. , and Prakash , S. ( 2019a ). 3D printing of meat . Meat Science 153 : 35 – 44 . https://doi.org/10.1016/j.meatsci.2019.03.005 .
- Dick , A. , Bhandari , B. , and Prakash , S. ( 2019b ). Post-processing feasibility of composite-layer 3D printed beef . Meat Science 153 : 9 – 18 . https://doi.org/10.1016/j.meatsci.2019.02.024 .
- Dickinson , E. ( 2009 ). Hydrocolloids as emulsifiers and emulsion stabilizers . Food Hydrocolloids 23 ( 6 ): 1473 – 1482 .
- Dong , X. , Huang , Y. , Pan , Y. et al. ( 2019 ). Investigation of sweet potato starch as structural enhancer for 3D printing of Scomberomorus niphonius surimi . Journal of Texture Studies 50 : 316 – 324 . https://doi.org/10.1111/jtxs.12398 .
- Fan , M. , Hu , T. , Zhao , S. et al. ( 2017 ). Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites . Food Chemistry 218 : 221 – 230 .
- Gao , Z. , Fang , Y. , Cao , Y. et al. ( 2017 ). Hydrocolloid-food component interactions . Food Hydrocolloids 68 : 149 – 156 .
-
Godoi , F.C.
,
Bhandari , B.R.
,
Prakash , S.
, and
Zhang , M.
(
2019
).
An introduction to the principles of 3D food printing
. In:
Fundamentals of 3D Food Printing and Applications
(eds.
F.C. Godoi
,
B.R. Bhandari
,
S. Prakash
and
M. Zhang
), pp.
1
–
18
.
Elsevier
.
10.1016/B978-0-12-814564-7.00001-8 Google Scholar
- Godoi , F.C. , Prakash , S. , and Bhandari , B.R. ( 2016 ). 3D printing technologies applied for food design: status and prospects . Journal of Food Engineering 179 : 44 – 54 .
- Hamilton , C.A. , Alici , G. , and Panhuis , M. ( 2018 ). 3D printing vegemite and marmite: redefining “breadboards.” . Journal of Food Engineering 220 : 83 – 88 .
- He , C. , Zhang , M. , and Fang , Z. ( 2019 ). 3D printing of food: pretreatment and post-treatment of materials . Critical Reviews in Food Science and Nutrition 60 : 1 – 14 .
- Huang , C.Y. ( 2018 ). Extrusion-based 3D printing and characterization of edible materials [University of Waterloo] . https://uwspace.uwaterloo.ca/handle/10012/12899 (accessed 23 August 2020).
- Huang , S. , Tu , Z. , Sha , X. et al. ( 2020 ). Gelling properties and interaction analysis of fish gelatin—low-methoxyl pectin system with different concentrations of Ca2+ . LWT 132 : 109826 .
- Jagadiswaran , B. , Alagarasan , V. , Palanivelu , P. et al. ( 2021 ). Valorization of food industry waste and by-products using 3D printing: a study on the development of value-added functional cookies . Future Foods 4 : 100036 .
- Jiang , H. , Zheng , L. , Zou , Y. et al. ( 2019 ). 3D food printing: main components selection by considering rheological properties . Critical Reviews in Food Science and Nutrition 59 ( 14 ): 2335 – 2347 .
-
Kailash , M.
,
Kavitha , L.
,
Madan , S.V.
, and
Ravichandran , C.
(
2020
).
3D food printing: a technology for fabricating customized artistic food
. In:
Emerging Technologies in Food Science
(eds.
M. Thakur
and
V. Modi
).
Singapore
:
Springer
https://doi.org/10.1007/978-981-15-2556-8_25
.
10.1007/978-981-15-2556-8_25 Google Scholar
- Keerthana , K. , Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). Development of fiber-enriched 3D printed snacks from alternative foods: a study on button mushroom . Journal of Food Engineering 287 : 110116 . https://doi.org/10.1016/j.jfoodeng.2020.110116 .
- Kim , H.W. , Lee , I.J. , Park , S.M. et al. ( 2019 ). Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough . LWT 101 : 69 – 75 .
- Kim , H.W. , Lee , J.H. , Park , S.M. et al. ( 2018 ). Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing . Journal of Food Science 83 ( 12 ): 2923 – 2932 .
- Krishnaraj , P. , Anukiruthika , T. , Choudhary , P. et al. ( 2019 ). 3D extrusion printing and post-processing of fibre-rich snack from indigenous composite flour . Food and Bioprocess Technology 12 ( 10 ): 1776 – 1786 . https://doi.org/10.1007/s11947-019-02336-5 .
- Lai , K.M. , Chuang , Y.S. , Chou , Y.C. et al. ( 2010 ). Changes in physicochemical properties of egg white and yolk proteins from duck shell eggs due to hydrostatic pressure treatment . Poultry Science 89 ( 4 ): 729 – 737 .
- Lee , J.H. , Won , D.J. , Kim , H.W. , and Park , H.J. ( 2019 ). Effect of particle size on 3D printing performance of the food-ink system with cellular food materials . Journal of Food Engineering 256 : 1 – 8 . https://doi.org/10.1016/j.jfoodeng.2019.03.014 .
- Lille , M. , Nurmela , A. , Nordlund , E. et al. ( 2018 ). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing . Journal of Food Engineering 220 : 20 – 27 .
- Lipton , J. , Arnold , D. , Nigl , F. et al. ( 2010 ). Multi-material food printing with complex internal structure suitable for conventional post-processing . Solid Freeform Fabrication Symposium 9 : 809 – 815 .
-
Liu , C.
,
Ho , C.
, and
Wang , J.
(
2018a
).
The development of 3D food printer for printing fibrous meat materials
.
IOP Conference Series: Materials Science and Engineering
284
(
1
):
012019
.
https://doi.org/10.1088/1757-899X/284/1/012019
.
10.1088/1757?899X/284/1/012019 Google Scholar
- Liu , Y. , Liang , X. , Saeed , A. et al. ( 2019 ). Properties of 3D printed dough and optimization of printing parameters . Innovative Food Science & Emerging Technologies 54 : 9 – 18 . https://doi.org/10.1016/J.IFSET.2019.03.008 .
- Liu , Y. , Tang , T. , Duan , S. et al. ( 2020a ). Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste . LWT 127 : 109360 .
- Liu , Z. , Dick , A. , Prakash , S. et al. ( 2020b ). Texture modification of 3D printed air-fried potato snack by varying its internal structure with the potential to reduce oil content . Food and Bioprocess Technology 13 ( 3 ): 564 – 576 .
- Liu , Z. , Zhang , M. , and Yang , C. ( 2018b ). Dual extrusion 3D printing of mashed potatoes/strawberry juice gel . LWT 96 : 589 – 596 .
- Lu , W. , Nishinari , K. , Matsukawa , S. , and Fang , Y. ( 2020 ). The future trends of food hydrocolloids . Food Hydrocolloids 103 : 105713 .
-
Madhumitha , M.
,
Abinash , V.
,
Rahul , T.
et al. (
2021
).
Valorization of food industry waste streams using 3D printing: a study on noodles prepared from potato peel waste
.
Food and Bioprocess Technology
https://doi.org/10.1007/s11947-021-02675-2
.
10.1007/s11947?021?02675?2 Google Scholar
- Majerska , J. , Michalska , A. , and Figiel , A. ( 2019 ). A review of new directions in managing fruit and vegetable processing by-products . Trends in Food Science & Technology 88 : 207 – 219 .
- Nachal , N. , Moses , J.A. , Karthik , P. , and Anandharamakrishnan , C. ( 2019 ). Applications of 3D printing in food processing . Food Engineering Reviews 11 ( 3 ): 123 – 141 . https://doi.org/10.1007/s12393-019-09199-8 .
- Nida , S. , Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2021 ). 3D printing of grinding and milling fractions of rice husk . Waste Biomass Valorization 12 : 81 – 90 . https://doi.org/10.1007/s12649-020-01000-w .
- Oliveira , S.M. , Fasolin , L.H. , Vicente , A.A. et al. ( 2020 ). Printability, microstructure, and flow dynamics of phase-separated edible 3D inks . Food Hydrocolloids 109 : 106120 .
- Park , S.M. , Kim , H.W. , and Park , H.J. ( 2020 ). Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production . Journal of Food Engineering 271 : 109781 .
- Patel , A. ( 2013 ). Novel colloidal structures from food-grade materials for applications in functional foods . In: InsideFood symposium: book of proceedings. Presented at the COST FA1001 workshop: InsideFood symposium (eds. B. Nicolai and L. Piazza ). Leuven, Belgium : KU Leuven .
- Patel , A.R. , Heussen , P.C.M. , Dorst , E. et al. ( 2013 ). Colloidal approach to prepare colour blends from colourants with different solubility profiles . Food Chemistry 141 ( 2 ): 1466 – 1471 .
- Perez , B. , Nykvist , H. , Brogger , A.F. et al. ( 2019 ). Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: a review . Food Chemistry 287 ( October 2018 ): 249 – 257 . https://doi.org/10.1016/j.foodchem.2019.02.090 .
-
Prakash , S.
,
Bhandari , B.R.
,
Godoi , F.C.
, and
Zhang , M.
(
2019
).
Future outlook of 3D food printing
. In:
Fundamentals of 3D Food Printing and Applications
(eds.
F.C. Godoi
,
B.R. Bhandari
,
S. Prakash
and
M. Zhang
), pp.
373
–
381
.
Elsevier
.
10.1016/B978-0-12-814564-7.00013-4 Google Scholar
-
Ricci , I.
,
Derossi , A.
, and
Severini , C.
(
2019
).
3D printed food from fruits and vegetables
. In:
Fundamentals of 3D Food Printing and Applications
, vol.
153
(eds.
F.C. Godoi
,
B.R. Bhandari
,
S. Prakash
and
M. Zhang
), pp.
117
–
149
.
Elsevier Ltd
https://doi.org/10.1016/b978-0-12-814564-7.00005-5
.
10.1016/B978-0-12-814564-7.00005-5 Google Scholar
-
Rubio , E.
and
Hurtado , S.
(
2019
).
3D food printing technology at home, domestic application
. In:
Fundamentals of 3D Food Printing and Applications
(eds.
F.C. Godoi
,
B.R. Bhandari
,
S. Prakash
and
M. Zhang
),
289
–
329
.
Elsevier
.
10.1016/B978-0-12-814564-7.00010-9 Google Scholar
-
Saha , D.
(
2020
).
Food processing: understanding common threads
. In:
Economics of the Food Processing Industry. Themes in Economics (Theory, Empirics, and Policy)
.
Singapore
:
Springer
https://doi.org/10.1007/978-981-13-8554-4_2
.
10.1007/978-981-13-8554-4_2 Google Scholar
- Saleh , M. ( 2018 ). Wheat batter physical properties as influenced by starch/flour types and egg contents . Journal of Food Measurement and Characterization 12 ( 2 ): 800 – 807 . https://doi.org/10.1007/s11694-017-9694-z .
- Severini , C. , Derossi , A. , Ricci , I. et al. ( 2018 ). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects . Journal of Food Engineering 220 : 89 – 100 . https://doi.org/10.1016/j.jfoodeng.2017.08.025 .
- Singh , J.P. , Kaur , A. , Shevkani , K. , and Singh , N. ( 2016 ). Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables . Journal of Food Science and Technology 53 ( 11 ): 4056 – 4066 .
- Ström , A. , Schuster , E. , and Goh , S.M. ( 2014 ). Rheological characterization of acid pectin samples in the absence and presence of monovalent ions . Carbohydrate Polymers 113 : 336 – 343 .
-
Sun , J.
,
Zhou , W.
,
Huang , D.
, and
Yan , L.
(
2018a
).
3D food printing: perspectives
. In:
Polymers for Food Applications
(ed.
T.J. Gutierrez
), pp.
725
–
755
.
Springer
.
10.1007/978-3-319-94625-2_26 Google Scholar
- Sun , J. , Zhou , W. , Yan , L. et al. ( 2018b ). Extrusion-based food printing for digitalized food design and nutrition control . Journal of Food Engineering 220 : 1 – 11 .
-
Tahergorabi , R.
and
Hosseini , S.V.
(
2017
).
Proteins, peptides, and amino acids
. In:
Nutraceutical and Functional Food Components
(ed.
C.M. Galanakis
), pp.
15
–
38
.
Elsevier
.
10.1016/B978-0-12-805257-0.00002-8 Google Scholar
- Theagarajan , R. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). 3D extrusion printability of rice starch and optimization of process variables . Food and Bioprocess Technology 13 : 1048 – 1062 . https://doi.org/10.1007/s11947-020-02453-6 .
-
Van Wijk , A.J.M.
and
Van Wijk , I.
(
2015
).
3D Printing with Biomaterials: Towards a Sustainable and Circular Economy
.
IOS press
.
10.3233/978-1-61499-486-2-i Google Scholar
- Vancauwenberghe , V. , Katalagarianakis , L. , Wang , Z. et al. ( 2017 ). Pectin based food-ink formulations for 3-D printing of customizable porous food simulants . Innovative Food Science and Emerging Technologies 42 ( June ): 138 – 150 . https://doi.org/10.1016/j.ifset.2017.06.011 .
- Voon , S.L. , An , J. , Wong , G. et al. ( 2019 ). 3D food printing: a categorised review of inks and their development . Virtual and Physical Prototyping 14 ( 3 ): 203 – 218 .
- Wang , L. , Zhang , M. , Bhandari , B. , and Yang , C. ( 2018 ). Investigation on fish surimi gel as promising food material for 3D printing . Journal of Food Engineering 220 : 101 – 108 . https://doi.org/10.1016/j.jfoodeng.2017.02.029 .
- Wegrzyn , T.F. , Golding , M. , and Archer , R.H. ( 2012 ). Food layered manufacture: a new process for constructing solid foods . Trends in Food Science & Technology 27 ( 2 ): 66 – 72 .
-
Williams , P.A.
and
Phillips , G.O.
(
2009
).
Introduction to food hydrocolloids
. In:
Handbook of Hydrocolloids
(eds.
G.O. Philips
and
P.A. Williams
), pp.
1
–
22
.
Elsevier
.
10.1533/9781845695873.1 Google Scholar
- Wilson , A. , Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). Customized shapes for chicken meat–based products: feasibility study on 3D-printed nuggets . Food and Bioprocess Technology 13 : 1 – 16 .
- Wilson , A. , Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2021 ). Preparation of fiber-enriched chicken meat constructs using 3D printing . Journal of Culinary Science & Technology , pp. 1 – 12 .
- Wu , B. , Degner , B. , and McClements , D.J. ( 2014 ). Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation . Journal of Physics: Condensed Matter 26 ( 46 ): 464104 .
- Xu , L. , Gu , L. , Su , Y. et al. ( 2020 ). Impact of thermal treatment on the rheological, microstructural, protein structures and extrusion 3D printing characteristics of egg yolk . Food Hydrocolloids 100 : 105399 .
- Yang , F. , Zhang , M. , Prakash , S. , and Liu , Y. ( 2018a ). Physical properties of 3D printed baking dough as affected by different compositions . Innovative Food Science & Emerging Technologies 49 : 202 – 210 . https://doi.org/10.1016/j.ifset.2018.01.001 .
- Yang , F. , Guo , C. , Zhang , M. et al. ( 2019 ). Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation . LWT 102 : 89 – 99 .
- Yang , F. , Zhang , M. , Bhandari , B. , and Liu , Y. ( 2018b ). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters . LWT- Food Science and Technology 87 : 67 – 76 . https://doi.org/10.1016/j.lwt.2017.08.054 .
-
Yegin , S.
,
Kopec , A.
,
Kitts , D.D.
, and
Zawistowski , J.
(
2020
).
Dietary fiber: a functional food ingredient with physiological benefits
. In:
Dietary Sugar, Salt and Fat in Human Health
(eds.
H.G. Preuss
and
D. Bagchi
), pp,
531
–
555
.
Elsevier
.
10.1016/B978-0-12-816918-6.00024-X Google Scholar
-
Zhang , H.
,
Zhang , F.
, and
Yuan , R.
(
2020
).
Applications of natural polymer-based hydrogels in the food industry
. In:
Hydrogels Based on Natural Polymers
(ed.
Y. Chen
), pp,
357
–
410
.
Elsevier
.
10.1016/B978-0-12-816421-1.00015-X Google Scholar