Natively Printable Foods
C. Anandharamakrishnan
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorJeyan A. Moses
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorT. Anukiruthika
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorC. Anandharamakrishnan
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorJeyan A. Moses
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorT. Anukiruthika
National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology - IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
Search for more papers by this authorSummary
3D printing as a reforming food processing technique aid in the customized design of foods with precise control over nutrition. Printability dictates the ability of the material supplies to withstand their weight on layered deposition. The success of printing is determined by the nature of the material which in turn is related to rheological and mechanical attributes. Broadly, the materials used for 3D printing have been categorized as natively printable, non-printable, and alternative food ingredients. On considering printability, the natively printable materials are those foods that possess the inherent ability of printable attributes on their own. The present chapter discusses the various food materials that are categorized as natively printable. Understanding of molecular interaction and chemical behavior of natively printable materials is crucial in improving the mechanical stability of the 3D printed construct without adding additives. Despite the inherent tendency towards printability, few of the natively printable material supplies requires pre-processing step for enhancing printability. In addition, this work describes the underlying science of natively printable materials to exert printability and delivers valuable insights on the scope of applications of natively printable food ingredients in enhancing the printability of non-printable material supplies. As a standalone technology, 3D food printing can be conveniently used for the utilization of staple food crops to deliver customized and nutritious 3D printed foods.
References
- Álvarez-Castillo , E. , Oliveira , S. , Bengoechea , C. et al. ( 2020 ). A rheological approach to 3D printing of plasma protein based doughs . Journal of Food Engineering 288 : 110255 .
- Anukiruthika , T. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). 3D printing of egg yolk and white with rice flour blends . Journal of Food Engineering 265 : 109691 . https://doi.org/10.1016/j.jfoodeng.2019.109691 .
- Banerjee , S. and Bhattacharya , S. ( 2012 ). Food gels: gelling process and new applications . Critical Reviews in Food Science and Nutrition 52 ( 4 ): 334 – 346 .
- Bocchetta , P. ( 2020 ). Ionotropic gelation of chitosan for next-generation composite proton conducting flat structures . Molecules 25 ( 7 ): 1632 .
- Cao , Y. and Mezzenga , R. ( 2020 ). Design principles of food gels . Nature Food 1 ( 2 ): 106 – 118 .
- Cao , L. , Lu , W. , Mata , A. et al. ( 2020 ). Egg-box model-based gelation of alginate and pectin: a review . Carbohydrate Polymers 1 : 116389 .
- Chen , J. , Mu , T. , Goffin , D. et al. ( 2019a ). Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing . Journal of Food Engineering https://doi.org/10.1016/j.jfoodeng.2019.03.016 .
- Chen , H. , Xie , F. , Chen , L. , and Zheng , B. ( 2019b ). Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors . Journal of Food Engineering 244 : 150 – 158 . https://doi.org/10.1016/j.jfoodeng.2018.09.011 .
- Chen , H.-z. , Zhang , M. , and Yang , C. ( 2020 ). Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics . Journal of Food Engineering 292 : 110278 .
-
Co , E.D.
and
Marangoni , A.G.
(
2018
).
Oleogels: an introduction
. In:
Edible Oleogels
(eds.
A.G. Marangoni
and
N. Garti
), pp.
1
–
29
.
Elsevier
.
10.1016/B978-0-12-814270-7.00001-0 Google Scholar
- Cohen , D.L. , Lipton , J.I. , Cutler , M. et al. ( 2009 ). Hydrocolloid printing: a novel platform for customized food production . Solid Freeform Fabrication Symposium, pp. 807 – 818 .
- Cotabarren , I.M. , Cruces , S. , and Palla , C.A. ( 2019 ). Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures . Food Research International 126 : 108676 .
- Daffner , K. , Vadodaria , S. , Ong , L. et al. ( 2020 ). Design and characterization of casein-whey protein suspensions via the pH-temperature-route for application in extrusion-based 3D-Printing . Food Hydrocolloids 112 : 105850 .
- Dankar , I. , Haddarah , A. , Sepulcre , F. , and Pujolà , M. ( 2020 ). Assessing mechanical and rheological properties of potato puree: effect of different ingredient combinations and cooking methods on the feasibility of 3D printing . Foods 9 ( 1 ): 21 .
- Dick , A. , Bhandari , B. , and Prakash , S. ( 2019 ). Post-processing feasibility of composite-layer 3D printed beef . Meat Science 153 : 9 – 18 . https://doi.org/10.1016/j.meatsci.2019.02.024 .
- Dick , A. , Bhandari , B. , Dong , X. , and Prakash , S. ( 2020 ). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food . Food Hydrocolloids 107 : 105940 .
- Fahmy , A.R. , Becker , T. , and Jekle , M. ( 2020 ). 3D printing and additive manufacturing of cereal-based materials: quality analysis of starch-based systems using a camera-based morphological approach . Innovative Food Science & Emerging Technologies 63 : 102384 .
- Feng , C. , Zhang , M. , Bhandari , B. , and Ye , Y. ( 2020 ). Use of potato processing by-product: effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks . LWT 125 : 109265 .
- Fuh , J.Y.H. , Hong , G.S. , Zhou , W. et al. ( 2015 ). An overview of 3D printing technologies for food fabrication . Food and Bioprocess Technology 8 ( 8 ): 1605 – 1615 . https://doi.org/10.1007/s11947-015-1528-6 .
- Garcia-Segovia , P. , Garcia-Alcaraz , V. , Balasch-Parisi , S. , and Martinez-Monzó , J. ( 2020 ). 3D printing of gels based on xanthan/konjac gums . Innovative Food Science & Emerging Technologies 64 : 102343 .
- Gholamipour-Shirazi , A. , Norton , I.T. , and Mills , T. ( 2019 ). Designing hydrocolloid based food-ink formulations for extrusion 3D printing . Food Hydrocolloids 95 : 161 – 167 . https://doi.org/10.1016/j.foodhyd.2019.04.011 .
- Gouton , M.-A. , Dacremont , C. , Trystram , G. , and Blumenthal , D. ( 2020 ). Validation of food visual attribute perception in virtual reality . Food Quality and Preference 87 : 104016 .
-
Gulrez , S.K.H.
,
Al-Assaf , S.
, and
Phillips , G.O.
(
2011
).
Hydrogels: methods of preparation, characterisation and applications
. In:
Progress in Molecular and Environmental Bioengineering-from Analysis and Modeling to Technology Applications
(ed.
A. Carpi
), pp.
117
–
150
.
Croatia
:
InTech
.
10.5772/24553 Google Scholar
- Guo , C. , Zhang , M. , and Devahastin , S. ( 2020 ). 3D extrusion-based printability evaluation of selected cereal grains by computational fluid dynamic simulation . Journal of Food Engineering 286 : 110113 .
-
Hao , L.
,
Mellor , S.
,
Seaman , O.
et al. (
2010
).
Material characterisation and process development for chocolate additive layer manufacturing
.
Virtual and Physical Prototyping
5
(
2
):
57
–
64
.
10.1080/17452751003753212 Google Scholar
- Hu , W.-X. , Chen , J. , Zhao , J.-W. et al. ( 2020 ). Effect of the addition of modified starch on gelatinization and gelation properties of rice flour . International Journal of Biological Macromolecules 153 : 26 – 35 .
-
Huang , V.T.
and
Perdon , A.A.
(
2020
).
Major changes in cereal biopolymers during ready-to-eat cereal processing
. In:
Breakfast Cereals and How They Are Made
(eds.
A.A. Perdon
,
S.L. Schonauer
and
K.S. Poutanen
), pp.
109
–
140
.
Elsevier
.
10.1016/B978-0-12-812043-9.00006-0 Google Scholar
- Huang , M. , Zhang , M. , and Bhandari , B. ( 2019 ). Assessing the 3D printing precision and texture properties of brown rice induced by infill levels and printing variables . Food and Bioprocess Technology 12 : 1 – 12 . https://doi.org/10.1007/s11947-019-02287-x .
- Huang , M. , Zhang , M. , and Guo , C. ( 2020 ). 3D printability of brown rice gel modified by some food hydrocolloids . Journal of Food Processing and Preservation 44 : e14502 .
-
Kailash , M.
,
Kavitha , L.
,
Madan , S.V.
, and
Ravichandran , C.
(
2020
).
3D food printing: a technology for fabricating customized artistic food
. In:
Emerging Technologies in Food Science
(eds.
M. Thakur
and
V.K. Modi
), pp.
273
–
287
.
Springer
.
10.1007/978-981-15-2556-8_25 Google Scholar
- Karyappa , R. and Hashimoto , M. ( 2019 ). Chocolate-based ink three-dimensional Printing (Ci3DP) . Scientific Reports 9 ( 1 ): 1 – 11 .
- Kern , C. , Weiss , J. , and Hinrichs , J. ( 2018 ). Additive layer manufacturing of semi-hard model cheese: effect of calcium levels on thermo-rheological properties and shear behavior . Journal of Food Engineering 235 : 89 – 97 . https://doi.org/10.1016/j.jfoodeng.2018.04.029 .
- Kim , H.W. , Bae , H. , and Park , H.J. ( 2018 ). Classification of the printability of selected food for 3D printing: development of an assessment method using hydrocolloids as reference material . Journal of Food Engineering 215 : 23 – 32 .
- Krishnaraj , P. , Anukiruthika , T. , Choudhary , P. et al. ( 2019 ). 3D extrusion printing and post-processing of fibre-rich snack from indigenous composite flour . Food and Bioprocess Technology 12 ( 10 ): 1776 – 1786 . https://doi.org/10.1007/s11947-019-02336-5 .
- Lanaro , M. , Forrestal , D.P. , Scheurer , S. et al. ( 2017 ). 3D printing complex chocolate objects: platform design, optimization and evaluation . Journal of Food Engineering 215 : 13 – 22 . https://doi.org/10.1016/j.jfoodeng.2017.06.029 .
-
Lanaro , M.
,
Desselle , M.R.
, and
Woodruff , M.A.
(
2019
).
3D printing chocolate: Properties of formulations for extrusion, sintering, binding and ink jetting
. In:
Fundamentals of 3D Food Printing and Applications
(eds.
F.C. Godoi
,
B.R. Bhandari
,
S. Prakash
and
M. Zhang
), pp.
151
–
173
.
Elsevier
.
10.1016/B978-0-12-814564-7.00006-7 Google Scholar
- Le Tohic , C. , O'Sullivan , J.J. , Drapala , K.P. et al. ( 2018 ). Effect of 3D printing on the structure and textural properties of processed cheese . Journal of Food Engineering 220 : 56 – 64 .
- Lee , K.Y. and Mooney , D.J. ( 2012 ). Alginate: properties and biomedical applications . Progress in Polymer Science 37 ( 1 ): 106 – 126 .
- Lipton , J. , Arnold , D. , Nigl , F. et al. ( 2010 ). Multi-material food printing with complex internal structure suitable for conventional post-processing . Solid Freeform Fabrication Symposium, pp. 809 – 815 .
- Liu , Z. , Zhang , M. , Bhandari , B. , and Wang , Y. ( 2017 ). 3D printing: printing precision and application in food sector . Trends in Food Science & Technology 69 : 83 – 94 .
- Liu , Z. , Zhang , M. , Bhandari , B. , and Yang , C. ( 2018a ). Impact of rheological properties of mashed potatoes on 3D printing . Journal of Food Engineering 220 : 76 – 82 . https://doi.org/10.1016/j.jfoodeng.2017.04.017 .
- Liu , Z. , Zhang , M. , and Yang , C. ( 2018b ). Dual extrusion 3D printing of mashed potatoes/strawberry juice gel . LWT 96 : 589 – 596 .
- Liu , Y. , Liu , D. , Wei , G. et al. ( 2018c ). 3D printed milk protein food simulant: improving the printing performance of milk protein concentration by incorporating whey protein isolate . Innovative Food Science and Emerging Technologies 49 : 116 – 126 . https://doi.org/10.1016/j.ifset.2018.07.018 .
- Liu , Y. , Yu , Y. , Liu , C. et al. ( 2019a ). Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing . LWT 102 : 338 – 346 . https://doi.org/10.1016/j.lwt.2018.12.053 .
- Liu , Y. , Zhang , W. , Wang , K. et al. ( 2019b ). Fabrication of gel-like emulsions with whey protein isolate using microfluidization: rheological properties and 3D printing performance . Food and Bioprocess Technology 12 ( 12 ): 1967 – 1979 .
- Liu , Y. , Liang , X. , Saeed , A. et al. ( 2019c ). Properties of 3D printed dough and optimization of printing parameters . Innovative Food Science & Emerging Technologies https://doi.org/10.1016/J.IFSET.2019.03.008 .
- Liu , Z. , Bhandari , B. , Prakash , S. et al. ( 2019d ). Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing . Food Hydrocolloids 87 : 413 – 424 . https://doi.org/10.1016/j.foodhyd.2018.08.026 .
- Liu , Y. , Tang , T. , Duan , S. et al. ( 2020 ). Applicability of rice doughs as promising food materials in extrusion-based 3D printing . Food and Bioprocess Technology 13 ( 3 ): 548 – 563 .
- Maniglia , B.C. , Lima , D.C. , Junior , M.D.M. et al. ( 2019 ). Hydrogels based on ozonated cassava starch: effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications . International Journal of Biological Macromolecules 138 : 1087 – 1097 .
- Maniglia , B.C. , Lima , D.C. , Junior , M.D.M. et al. ( 2020 ). Preparation of cassava starch hydrogels for application in 3D printing using dry heating treatment (DHT): a prospective study on the effects of DHT and gelatinization conditions . Food Research International 128 : 108803 .
- Mantihal , S. , Prakash , S. , Godoi , F.C. , and Bhandari , B. ( 2017 ). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling . Innovative Food Science and Emerging Technologies 44 : 21 – 29 . https://doi.org/10.1016/j.ifset.2017.09.012 .
- Mantihal , S. , Prakash , S. , and Bhandari , B. ( 2019a ). Textural modification of 3D printed dark chocolate by varying internal infill structure . Food Research International 121 : 648 – 657 .
- Mantihal , S. , Prakash , S. , Godoi , F.C. , and Bhandari , B. ( 2019b ). Effect of additives on thermal, rheological and tribological properties of 3D printed dark chocolate . Food Research International 119 : 161 – 169 .
- Martínez-Monzó , J. , Cárdenas , J. , and García-Segovia , P. ( 2019 ). Effect of temperature on 3D printing of commercial potato puree . Food Biophysics : 1 – 10 . https://doi.org/10.1007/s11483-019-09576-0 .
- Nachal , N. , Moses , J.A. , Karthik , P. , and Anandharamakrishnan , C. ( 2019 ). Applications of 3D printing in food processing . Food Engineering Reviews 11 ( 3 ): 123 – 141 . https://doi.org/10.1007/s12393-019-09199-8 .
-
Nazir , A.
,
Asghar , A.
, and
Maan , A.A.
(
2017
).
Food gels: gelling process and new applications
. In:
Advances in Food Rheology and Its Applications
(ed.
J. Ahmed
),
335
–
353
.
Elsevier
.
10.1016/B978-0-08-100431-9.00013-9 Google Scholar
- Oskay , W. and Edman , L. ( 2009 ). The CandyFab Project . Evil Scientist Laboratories .
- Oyinloye , T.M. and Yoon , W.B. ( 2020 ). Stability of 3D printing using a mixture of pea protein and alginate: precision and application of additive layer manufacturing simulation approach for stress distribution . Journal of Food Engineering 288 : 110127 .
- Pallottino , F. , Hakola , L. , Costa , C. et al. ( 2016 ). Printing on food or food printing: a review . Food and Bioprocess Technology 9 ( 5 ): 725 – 733 .
- Park , S.M. , Kim , H.W. , and Park , H.J. ( 2020 ). Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production . Journal of Food Engineering 271 : 109781 .
- Pérez , B. , Nykvist , H. , Brøgger , A.F. et al. ( 2019 ). Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review . Food Chemistry 287 ( October 2018 ): 249 – 257 . https://doi.org/10.1016/j.foodchem.2019.02.090 .
- Phuhongsung , P. , Zhang , M. , and Devahastin , S. ( 2020 ). Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics . LWT 122 : 109019 .
- Piyush , C. , Kumar , R. , and Kumar , R. ( 2020 ). 3D printing of food materials: a state of art review and future applications . Materials Today: Proceedings 33 : 1463 – 1467 .
- Pulatsu , E. , Su , J.-W. , Lin , J. , and Lin , M. ( 2020 ). Factors affecting 3D printing and post-processing capacity of cookie dough . Innovative Food Science & Emerging Technologies 61 : 102316 .
-
Rebaka , V.P.
,
Rachamalla , A.K.
,
Batra , S.
, and
Subbiah , N.
(
2020
).
State of the art and new perspectives in oleogels and applications
. In:
Sustainable Green Chemical Processes and their Allied Applications
, pp.
151
–
182
.
Springer
.
10.1007/978-3-030-42284-4_6 Google Scholar
- Serizawa , R. , Shitara , M. , Gong , J. et al. ( 2014 ). 3D jet printer of edible gels for food creation . Behavior and Mechanics of Multifunctional Materials and Composites 2014 ( 9058 ): 90580A .
- Severini , C. , Derossi , A. , and Azzollini , D. ( 2016 ). Variables affecting the printability of foods: preliminary tests on cereal-based products . Innovative Food Science and Emerging Technologies 38 : 281 – 291 . https://doi.org/10.1016/j.ifset.2016.10.001 .
- Sol , I.E.J. , der Linden , D. , & Van Bommel , K.J.C. ( 2015 ). 3D food printing: the barilla collaboration . Feb-2015.
- Southerland , D. , Walters , P. , and Huson , D. ( 2011 ). Edible 3D printing . NIP & Digital Fabrication Conference 2011 ( 2 ): 819 – 822 .
- Strother , H. , Moss , R. , and McSweeney , M.B. ( 2020 ). Comparison of 3D printed and molded carrots produced with gelatin, guar gum and xanthan gum . Journal of Texture Studies 51 : 852 – 860 .
- Sun , J. , Peng , Z. , Yan , L. et al. ( 2015 ). 3D food printing—an innovative way of mass customization in food fabrication . International Journal of Bioprinting 1 ( 1 ): 27 – 38 .
-
Sun , J.
,
Zhou , W.
,
Huang , D.
, and
Yan , L.
(
2018a
).
3D food printing: perspectives
. In:
Polymers for Food Applications
(ed.
T.J. Gutierrez
), pp.
725
–
755
.
Springer
.
10.1007/978-3-319-94625-2_26 Google Scholar
- Sun , J. , Zhou , W. , Yan , L. et al. ( 2018b ). Extrusion-based food printing for digitalized food design and nutrition control . Journal of Food Engineering 220 : 1 – 11 . https://doi.org/10.1016/j.jfoodeng.2017.02.028 .
- Sun , Y. , Zhang , M. , and Chen , H. ( 2020 ). LF-NMR intelligent evaluation of rheology and printability for 3D printing of cookie dough pretreated by microwave . LWT 132 : 109752 .
- Takagishi , K. , Suzuki , Y. , and Umezu , S. ( 2018 ). The high precision drawing method of chocolate utilizing electrostatic ink-jet printer . Journal of Food Engineering 216 : 138 – 143 .
- Theagarajan , R. , Moses , J.A. , and Anandharamakrishnan , C. ( 2020 ). 3D extrusion printability of rice starch and optimization of process variables . Food and Bioprocess Technology https://doi.org/10.1007/s11947-020-02453-6 .
- Vancauwenberghe , V. , Delele , M.A. , Vanbiervliet , J. et al. ( 2018 ). Model-based design and validation of food texture of 3D printed pectin-based food simulants . Journal of Food Engineering 231 : 72 – 82 . https://doi.org/10.1016/j.jfoodeng.2018.03.010 .
- Voon , S.L. , An , J. , Wong , G. et al. ( 2019 ). 3D food printing: a categorised review of inks and their development . Virtual and Physical Prototyping 14 ( 3 ): 203 – 218 .
- Wang , S. , Chao , C. , Xiang , F. et al. ( 2018 ). New insights into gelatinization mechanisms of cereal endosperm starches . Scientific Reports 8 ( 1 ): 1 – 8 .
- Yang , F. , Zhang , M. , Prakash , S. , and Liu , Y. ( 2018 ). Physical properties of 3D printed baking dough as affected by different compositions . In: Innovative Food Science and Emerging Technologies , vol. 49 , Issue 2017. Elsevier Ltd. https://doi.org/10.1016/j.ifset.2018.01.001 .
- Yang , F. , Zhang , M. , Fang , Z. , and Liu , Y. ( 2019a ). Impact of processing parameters and post-treatment on the shape accuracy of 3D-printed baking dough . International Journal of Food Science and Technology 54 ( 1 ): 68 – 74 . https://doi.org/10.1111/ijfs.13904 .
- Yang , F. , Guo , C. , Zhang , M. et al. ( 2019b ). Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation . LWT 102 : 89 – 99 .
-
Zhang , H.
,
Zhang , F.
, and
Yuan , R.
(
2020
).
Applications of natural polymer-based hydrogels in the food industry
. In:
Hydrogels Based on Natural Polymers
(ed.
Y. Chen
),
357
–
410
.
Elsevier
.
10.1016/B978-0-12-816421-1.00015-X Google Scholar
- Zheng , L. , Yu , Y. , Tong , Z. et al. ( 2019 ). The characteristics of starch gels molded by 3D printing . Journal of Food Processing and Preservation 43 ( 7 ): e13993 .
- Zhou , Q. , Wang , M. , Li , H. et al. ( 2020 ). Application of Maillard reaction product of xylose--pea protein enzymatic hydrolysate in 3D printing . Journal of the Science of Food and Agriculture 100 ( 7 ): 2982 – 2990 .
- Zhuang , X. , Jiang , X. , Zhou , H. et al. ( 2020 ). Insight into the mechanism of physicochemical influence by three polysaccharides on myofibrillar protein gelation . Carbohydrate Polymers 229 : 115449 .