Remote Sensing and Urban Green Infrastructure
A Synthesis of Current Applications and New Advances
Yanhua Chen
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorGiovanni Sanesi
Department of Agricultural and Environmental Sciences, University of Bari “Aldo Moro”, Bari, Italy
Search for more papers by this authorXun Li
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorWendy Y. Chen
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorRaffaele Lafortezza
Department of Agricultural and Environmental Sciences, University of Bari “Aldo Moro”, Bari, Italy
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorYanhua Chen
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorGiovanni Sanesi
Department of Agricultural and Environmental Sciences, University of Bari “Aldo Moro”, Bari, Italy
Search for more papers by this authorXun Li
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorWendy Y. Chen
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorRaffaele Lafortezza
Department of Agricultural and Environmental Sciences, University of Bari “Aldo Moro”, Bari, Italy
Department of Geography, University of Hong Kong, Hong Kong SAR
Search for more papers by this authorXiaojun Yang
Search for more papers by this authorSummary
Over the last several decades, the increasing availability of remotely sensed data (e.g. satellite imagery, aerial images, and airborne Light Detection and Ranging) and the advancement of methods have attracted considerable attention from both scholars and practitioners in urban green infrastructure design, establishment, and management. This chapter summarizes current applications of remote sensing technology in the assessment of several major urban green infrastructures providing ecosystem services, including improvement of water and air quality, mitigation of the urban heat island, flood regulation, carbon sequestration and storage, and biodiversity conservation. We also provide an overview of how new advances in remote sensing technology, such as machine learning and deep learning, can enhance urban green infrastructure knowledge and relevant planning .
REFERENCES
- Abhijith , K.V. , Kumar , P. , Gallagher , J. , McNabola , A. , Baldauf , R. , Pilla , F. , Broderick , B. , Di Sabatino , S. , & Pulvirenti , B. ( 2017 ). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – a review . Atmospheric Environment , 162 , 71 – 86 .
- Ali , I. , Greifeneder , F. , Stamenkovic , J. , Neumann , M. , & Notarnicola , C. ( 2015 ). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data . Remote Sensing , 7 , 16398 – 16421 .
- Al-Jarrah , O.Y. , Yoo , P.D. , Muhaidat , S. , Karagiannidis , G.K. , & Taha , K. ( 2015 ). Efficient machine learning for big data: a review . Big Data Research , 2 , 87 – 93 .
- Alonzo , M. , McFadden , J.P. , Nowak , D.J. , & Roberts , D.A. ( 2016 ). Mapping urban forest structure and function using hyperspectral imagery and lidar data . Urban Forestry & Urban Greening , 17 , 135 – 147 .
- de Araujo Barbosa , C.C. , Atkinson , P.M. , & Dearing , J.A. ( 2015 ). Remote sensing of ecosystem services: a systematic review . Ecological Indicators , 52 , 430 – 443 .
-
Audebert , N.
,
Boulch , A.
,
Randrianarivo , H.
,
Le Saux , B.
,
Ferecatu , M.
,
Lefèvre , S.
, &
Marlet , R.
(
2017
).
Deep learning for urban remote sensing
. In,
2017 Joint Urban Remote Sensing Event (JURSE)
(pp.
1
–
4
):
IEEE
.
10.1109/JURSE.2017.7924536 Google Scholar
- Badiu , D.L. , Nita , A. , Iojă , C.I. , & Niţă , M.R. ( 2019 ). Disentangling the connections: a network analysis of approaches to urban green infrastructure . Urban Forestry & Urban Greening , 41 , 211 – 220 .
- Bae , J. , & Ryu , Y. ( 2015 ). Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park . Landscape and Urban Planning , 136 , 57 – 67 .
- Bagstad , K.J. , Johnson , G.W. , Voigt , B. , & Villa , F. ( 2013a ). Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services . Ecosystem Services , 4 , 117 – 125 .
- Bagstad , K.J. , Semmens , D.J. , & Winthrop , R. ( 2013b ). Comparing approaches to spatially explicit ecosystem service modeling: a case study from the San Pedro River, Arizona . Ecosystem Services , 5 , 40 – 50 .
- Bagstad , K.J. , Villa , F. , Batker , D. , Harrison-Cox , J. , Voigt , B. , & Johnson , G.W. ( 2014 ). From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments . Ecology and Society , 19 ( 2 ), 64 .
- Bartesaghi-Koc , C. , Osmond , P. , Peters , A. , & Irger , M. ( 2018 ). Understanding land surface temperature differences of local climate zones based on airborne remote sensing data . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 11 , 2724 – 2730 .
- Bartesaghi-Koc , C. , Osmond , P. , & Peters , A. ( 2019a ). Mapping and classifying green infrastructure typologies for climate-related studies based on remote sensing data . Urban Forestry & Urban Greening , 37 , 154 – 167 .
- Bartesaghi-Koc , C. , Osmond , P. , & Peters , A. ( 2019b ). Spatio-temporal patterns in green infrastructure as driver of land surface temperature variability: the case of Sydney . International Journal of Applied Earth Observation and Geoinformation , 83 101903 .
- Behmann , J. , Mahlein , A.-K. , Rumpf , T. , Römer , C. , & Plümer , L. ( 2014 ). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection . Precision Agriculture , 16 , 239 – 260 .
- Bennett , E.M. , Peterson , G.D. , & Levitt , E. ( 2005 ). Looking to the future of ecosystem services . Ecosystems , 8 , 125 – 132 .
-
Bishop , C.M.
(
2006
).
Pattern Recognition and Machine Learning
.
Springer
.
10.1007/978-0-387-45528-0 Google Scholar
- Bottalico , F. , Travaglini , D. , Chirici , G. , Garfì , V. , Giannetti , F. , De Marco , A. , Fares , S. , Marchetti , M. , Nocentini , S. , Paoletti , E. , Salbitano , F. , & Sanesi , G. ( 2017 ). A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy . Urban Forestry & Urban Greening , 27 , 221 – 234 .
- Bounoua , L. , Zhang , P. , Mostovoy , G. , Thome , K. , Masek , J. , Imhoff , M. , Shepherd , M. , Quattrochi , D. , Santanello , J. , Silva , J. , Wolfe , R. , & Toure , A.M. ( 2015 ). Impact of urbanization on US surface climate . Environmental Research Letters , 10 , 9 .
- Branson , S. , Wegner , J.D. , Hall , D. , Lang , N. , Schindler , K. , & Perona , P. ( 2018 ). From Google Maps to a fine-grained catalog of street trees . ISPRS Journal of Photogrammetry and Remote Sensing , 135 , 13 – 30 .
-
Briechle , S.
,
Krzystek , P.
, &
Vosselman , G.
(
2019
).
Semantic labeling of als point clouds for tree species mapping using the deep neural network pointnet++
.
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
,
XLII-2/W13
,
951
–
955
.
10.5194/isprs-archives-XLII-2-W13-951-2019 Google Scholar
- Calderón-Contreras , R. & Quiroz-Rosas , L.E. ( 2017 ). Analysing scale, quality and diversity of green infrastructure and the provision of Urban Ecosystem Services: a case from Mexico City . Ecosystem Services , 23 , 127 – 137 .
- Chen , G. , Li , S. , Knibbs , L.D. , Hamm , N.A. , Cao , W. , Li , T. , Guo , J. , Ren , H. , Abramson , M.J. , & Guo , Y. ( 2018 ). A machine learning method to estimate PM2. 5 concentrations across China with remote sensing, meteorological and land use information . Science of the Total Environment , 636 , 52 – 60 .
- Chu , D.A. , Kaufman , Y.J. , Zibordi , G. , Chern , J.D. , Mao , J. , Li , C. , & Holben , B.N. ( 2003 ). Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) . Journal of Geophysical Research: Atmospheres , 108 , ( D21 ), 4661 .
- Chun , B. , & Guldmann , J.M. ( 2014 ). Spatial statistical analysis and simulation of the urban heat island in high-density central cities . Landscape and Urban Planning , 125 , 76 – 88 .
- Davies , Z.G. , Edmondson , J.L. , Heinemeyer , A. , Leake , J.R. , & Gaston , K.J. ( 2011 ). Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale . Journal of Applied Ecology , 48 , 1125 – 1134 .
- Duncan , J.M.A. , Boruff , B. , Saunders , A. , Sun , Q. , Hurley , J. , & Amati , M. ( 2019 ). Turning down the heat: an enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale . Science of the Total Environment , 656 , 118 – 128 .
- Engel-Cox , J.A. , Hoff , R.M. , Haymet , A.D.J. ( 2004 ). Recommendations on the use of satellite remote-sensing data for urban air quality . Journal of the Air & Waste Management Association 54 , 1360 – 1371 .
- Fang , C. , Liu , H. , & Li , G. ( 2016 ). International progress and evaluation on interactive coupling effects between urbanization and the eco-environment . Journal of Geographical Sciences , 26 , 1081 – 1116 .
- Feltynowski , M. , Kronenberg , J. , Bergier , T. , Kabisch , N. , Łaszkiewicz , E. , & Strohbach , M.W. ( 2018 ). Challenges of urban green space management in the face of using inadequate data . Urban Forestry & Urban Greening , 31 , 56 – 66 .
- Feyisa , G.L. , Dons , K. , & Meilby , H. ( 2014 ). Efficiency of parks in mitigating urban heat island effect: an example from Addis Ababa . Landscape and Urban Planning , 123 , 87 – 95 .
- Fletcher , T.D. , Andrieu , H. , & Hamel , P. ( 2013 ). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art . Advances in Water Resources , 51 , 261 – 279 .
- Frick , A. , & Tervooren , S. ( 2019 ). A framework for the long-term monitoring of urban green volume based on multi-temporal and multi-sensoral remote sensing data . Journal of Geovisualization and Spatial Analysis , 3 , 6 1 – 11 .
- Gaffin , S.R. , Rosenzweig , C. , & Kong , A.Y. ( 2012 ). Adapting to climate change through urban green infrastructure . Nature Climate Change , 2 , 704 .
-
Gill , S.E.
,
Handley , J.F.
,
Ennos , A.R.
, &
Pauleit , S.
(
2007
).
Adapting cities for climate change: the role of the green infrastructure
.
Built Environment
,
33
,
115
–
133
.
10.2148/benv.33.1.115 Google Scholar
- Goddard , M.A. , Dougill , A.J. , & Benton , T.G. ( 2010 ). Scaling up from gardens: biodiversity conservation in urban environments . Trends in Ecology & Evolution , 25 , 90 – 98 .
- Goodfellow , I. , Bengio , Y. , & Courville , A. ( 2016 ). Deep Learning . MIT Press .
- Gunawardena , K. , Wells , M. , & Kershaw , T. ( 2017 ). Utilising green and bluespace to mitigate urban heat island intensity . Science of the Total Environment , 584 , 1040 – 1055 .
- Guneralp , B. , Guneralp , I. , & Liu , Y. ( 2015 ). Changing global patterns of urban exposure to flood and drought hazards . Global Environmental Change-Human and Policy Dimensions , 31 , 217 – 225 .
- Hamraz , H. , Jacobs , N.B. , Contreras , M.A. , & Clark , C.H. ( 2019 ). Deep learning for conifer/deciduous classification of airborne LiDAR 3D point clouds representing individual trees . ISPRS Journal of Photogrammetry and Remote Sensing , 158 , 219 – 230 .
- Hashem , I.A.T. , Chang , V. , Anuar , N.B. , Adewole , K. , Yaqoob , I. , Gani , A. , Ahmed , E. , & Chiroma , H. ( 2016 ). The role of big data in smart city . International Journal of Information Management , 36 , 748 – 758 .
- Hinton , G.E. , & Salakhutdinov , R.R. ( 2006 ). Reducing the dimensionality of data with neural networks . Science , 313 , 504 – 507 .
- Huang , X. , Han , X. , Ma , S. , Lin , T. , & Gong , J. ( 2019 ). Monitoring ecosystem service change in the City of Shenzhen by the use of high-resolution remotely sensed imagery and deep learning . Land Degradation & Development , 30 , 1490 – 1501 .
- van der Jagt , A.P.N. , Smith , M. , Ambrose-Oji , B. , Konijnendijk , C.C. , Giannico , V. , Haase , D. , Lafortezza , R. , Nastran , M. , Pintar , M. , Zeleznikar , S. , & Cvejic , R. ( 2019 ). Co-creating urban green infrastructure connecting people and nature: a guiding framework and approach . Journal of Environ Manage , 233 , 757 – 767 .
- Janowicz , K. , Gao , S. , McKenzie , G. , Hu , Y. , & Bhaduri , B. ( 2020 ). GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond . International Journal of Geographical Information Science , 34 ( 4 ), 625 – 636 .
- Jordan , M.I. & Mitchell , T.M. ( 2015 ). Machine learning: trends, perspectives, and prospects . Science , 349 , 255 – 260 .
- Karteris , M. , Theodoridou , I. , Mallinis , G. , Tsiros , E. , & Karteris , A. ( 2016 ). Towards a green sustainable strategy for Mediterranean cities: assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data . Renewable and Sustainable Energy Reviews , 58 , 510 – 525 .
- Kazmierczak , A. and Carter , J. ( 2010 ). Adaptation to climate change using green and blue infrastructure. A database of case studies . INTERREG IVC Report, p.172 . University of Manchester .
- Khan , Z. , Anjum , A. , Soomro , K. , & Tahir , M.A. ( 2015 ). Towards cloud based big data analytics for smart future cities . Journal of Cloud Computing , 4 , 2 1 – 11 .
- Kong , F. , Yin , H. , Nakagoshi , N. , & Zong , Y. ( 2010 ). Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling . Landscape and Urban Planning , 95 , 16 – 27 .
- Kranjcic , N. , Medak , D. , Zupan , R. , & Rezo , M. ( 2019 ). Machine learning methods for classification of the green infrastructure in city areas . IOP Conference Series: Earth and Environmental Science, 362 .
- Labib , S.M. ( 2019 ). Investigation of the likelihood of green infrastructure (GI) enhancement along linear waterways or on derelict sites (DS) using machine learning . Environmental Modelling & Software , 118 , 146 – 165 .
- Lafortezza , R. , & Giannico , V. ( 2019 ). Combining high-resolution images and LiDAR data to model ecosystem services perception in compact urban systems . Ecological Indicators , 96 , 87 – 98 .
- Lary , D.J. , Alavi , A.H. , Gandomi , A.H. , & Walker , A.L. ( 2016 ). Machine learning in geosciences and remote sensing . Geoscience Frontiers , 7 , 3 – 10 .
- LeCun , Y. , Bengio , Y. , & Hinton , G. ( 2015 ). Deep learning . Nature , 521 , 436 – 444 .
- Li , D. , Ke , Y. , Gong , H. , & Li , X. ( 2015 ). Object-based urban tree species classification using bi-temporal WorldView-2 and WorldView-3 images . Remote Sensing , 7 , 16917 – 16937 .
- Li , X. , Chen , W.Y. , Sanesi , G. , & Lafortezza , R. ( 2019 ). Remote sensing in urban forestry: recent applications and future directions . Remote Sensing , 11 1144 .
- Liu , Z. , He , C. , & Wu , J. ( 2016 ). The relationship between habitat loss and fragmentation during urbanization: an empirical evaluation from 16 world cities . PLoS One , 11 , e0154613 .
- Liu , X. , Han , F. , Ghazali , K.H. , Mohamed , I.I. , & Zhao , Y. ( 2019 ). A review of Convolutional Neural Networks in Remote Sensing Image . In, Proceedings of the 2019 8th International Conference on Software and Computer Applications – ICSCA '19 (pp. 263 – 267 ).
- Lovell , S.T. & Taylor , J.R. ( 2013 ). Supplying urban ecosystem services through multifunctional green infrastructure in the United States . Landscape Ecology , 28 , 1447 – 1463 .
- Madureira , H. & Andresen , T. ( 2014 ). Planning for multifunctional urban green infrastructures: promises and challenges . Urban Design International , 19 , 38 – 49 .
- Manes , F. , Incerti , G. , Salvatori , E. , Vitale , M. , Ricotta , C. , & Costanza , R. ( 2012 ). Urban ecosystem services: tree diversity and stability of tropospheric ozone removal . Ecological Applications , 22 , 349 – 360 .
- Manes , F. , Marando , F. , Capotorti , G. , Blasi , C. , Salvatori , E. , Fusaro , L. , Ciancarella , L. , Mircea , M. , Marchetti , M. , Chirici , G. , & Munafò , M. ( 2016 ). Regulating ecosystem services of forests in ten Italian metropolitan cities: air quality improvement by PM 10 and O 3 removal . Ecological Indicators , 67 , 425 – 440 .
- Maragno , D. , Gaglio , M. , Robbi , M. , Appiotti , F. , Fano , E.A. , & Gissi , E. ( 2018 ). Fine-scale analysis of urban flooding reduction from green infrastructure: an ecosystem services approach for the management of water flows . Ecological Modelling , 386 , 1 – 10 .
- Marando , F. , Salvatori , E. , Fusaro , L. , & Manes , F. ( 2016 ). Removal of PM10 by forests as a nature-based solution for air quality improvement in the metropolitan city of rome . Forests , 7 150 .
- Mathieu , R. , Aryal , J. , & Chong , A.K. ( 2007 ). Object-based classification of ikonos imagery for mapping large-scale vegetation communities in urban areas . Sensors , 7 , 2860 – 2880 .
- McPherson , E.G. , Xiao , Q. , & Aguaron , E. ( 2013 ). A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests . Landscape and Urban Planning , 120 , 70 – 84 .
- Michie , D. , Spiegelhalter , D.J. , & Taylor , C. ( 1994 ). Machine Learning, Neural and Statistical Classification . New York : Ellis Horwood .
- Millennium Ecosystem Assessment (Program) . ( 2005 ). Ecosystems and Human Well-Being . Washington, DC : Island Press .
- Morisette , J.T. , Baret , F. , Privette , J.L. , Myneni , R.B. , Nickeson , J.E. , Garrigues , S. , Shabanov , N.V. , Weiss , M. , Fernandes , R.A. , & Leblanc , S.G. ( 2006 ). Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup . IEEE Transactions on Geoscience and Remote Sensing , 44 , 1804 – 1817 .
- Mozgeris , G. , Juodkienė , V. , Jonikavičius , D. , Straigytė , L. , Gadal , S. , & Ouerghemmi , W. ( 2018 ). Ultra-light aircraft-based hyperspectral and colour-infrared imaging to identify deciduous tree species in an urban environment . Remote Sensing , 10 , 1668 .
-
Najafabadi , M.M.
,
Villanustre , F.
,
Khoshgoftaar , T.M.
,
Seliya , N.
,
Wald , R.
, &
Muharemagic , E.
(
2015
).
Deep learning applications and challenges in big data analytics
.
Journal of Big Data
,
2
,
1
21
.
10.1186/s40537-014-0007-7 Google Scholar
- Nielsen , A.B. , Hedblom , M. , Olafsson , A.S. , & Wiström , B. ( 2017 ). Spatial configurations of urban forest in different landscape and socio-political contexts: identifying patterns for green infrastructure planning . Urban Ecosystems , 20 , 379 – 392 .
- Norton , B. , Bosomworth , K. , Cootts , A. , Williams , N. , Livesley , S. , Trundle , A. , Harris , R. , & McEvoy , D. ( 2013 ). Planning for a Cooler Future: Green Infrastructure to Reduce Urban Heat . VCCCAR .
- Norton , B.A. , Coutts , A.M. , Livesley , S.J. , Harris , R.J. , Hunter , A.M. , & Williams , N.S.G. ( 2015 ). Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes . Landscape and Urban Planning , 134 , 127 – 138 .
- Pan , K. , Lu , Y. , He , S. , Yang , G. , Chen , Y. , Fan , X. , Ren , Y. , Wang , M. , Zhu , K. , Shen , Q. , Jiang , Y. , Shi , Y. , Meng , P. , Tang , Y. , Chang , J. , & Ge , Y. ( 2019 ). Urban green spaces as potential habitats for introducing a native endangered plant, Calycanthus chinensis . Urban Forestry & Urban Greening , 46 , 126444 .
-
Parmehr , E.G.
,
Amati , M.
, &
Fraser , C.S.
(
2016
).
Mapping urban tree canopy cover using fused airborne lidar and satellite imagery data
.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
,
3
,
181
.
10.5194/isprs-annals-III-7-181-2016 Google Scholar
- Pataki , D.E. , Carreiro , M.M. , Cherrier , J. , Grulke , N.E. , Jennings , V. , Pincetl , S. , Pouyat , R.V. , Whitlow , T.H. , & Zipperer , W.C. ( 2011 ). Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions . Frontiers in Ecology and the Environment , 9 , 27 – 36 .
- Pauleit , S. , Andersson , E. , Anton , B. , Buijs , A. , Haase , D. , Hansen , R. , Kowarik , I. , Olafsson , A.S. , & Van der Jagt , S. ( 2019 ). Urban green infrastructure – connecting people and nature for sustainable cities . Urban Forestry & Urban Greening , 40 , 1 – 3 .
- Pettorelli , N. , Wegmann , M. , Skidmore , A. , Mücher , S. , Dawson , T.P. , Fernandez , M. , Lucas , R. , Schaepman , M.E. , Wang , T. , O'Connor , B. , Jongman , R.H.G. , Kempeneers , P. , Sonnenschein , R. , Leidner , A.K. , Böhm , M. , He , K.S. , Nagendra , H. , Dubois , G. , Fatoyinbo , T. , Hansen , M.C. , Paganini , M. , de Klerk , H.M. , Asner , G.P. , Kerr , J.T. , Estes , A.B. , Schmeller , D.S. , Heiden , U. , Rocchini , D. , Pereira , H.M. , Turak , E. , Fernandez , N. , Lausch , A. , Cho , M.A. , Alcaraz-Segura , D. , McGeoch , M.A. , Turner , W. , Mueller , A. , St-Louis , V. , Penner , J. , Vihervaara , P. , Belward , A. , Reyers , B. , Geller , G.N. , & Boyd , D. ( 2016 ). Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions . Remote Sensing in Ecology and Conservation , 2 , 122 – 131 .
- Pugh , T.A.M. , MacKenzie , A.R. , Whyatt , J.D. , & Hewitt , C.N. ( 2012 ). Effectiveness of green infrastructure for improvement of air quality in urban street canyons . Environmental Science & Technology , 46 , 7692 – 7699 .
- Qian , Y. , Zhou , W. , Yan , J. , Li , W. , & Han , L. ( 2015 ). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery . Remote Sensing , 7 , 153 – 168 .
- Qiu , J. , Wu , Q. , Ding , G. , Xu , Y. , & Feng , S. ( 2016 ). A survey of machine learning for big data processing . EURASIP Journal on Advances in Signal Processing , 2016 , 1 16 .
- Rai , A. , Minsker , B. , Sullivan , W. , & Band , L. ( 2019 ). A novel computational green infrastructure design framework for hydrologic and human benefits . Environmental Modelling & Software , 118 , 252 – 261 .
- Ran , L. , Gilliam , R. , Binkowski , F.S. , Xiu , A. , Pleim , J. , & Band , L. ( 2015 ). Sensitivity of the weather research and forecast/community multiscale air quality modeling system to MODIS LAI , FPAR, and albedo , 120 , 8491 – 8511 .
- Rhee , J. , Park , S. , & Lu , Z.J.G. ( 2014 ). Relationship between land cover patterns and surface temperature in urban areas . GIScience Remote Sensing , 51 , 521 – 536 .
- Roots , O.O. , Roose , A. , & Eerme , K. ( 2011 ). Remote sensing of climate change, long-term monitoring of air pollution and stone material corrosion in Estonia . International Journal of Remote Sensing , 32 , 9691 – 9705 .
- Rose , S. , & Peters , N.E. ( 2001 ). Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach . Hydrological Processes , 15 , 1441 – 1457 .
- Saaroni , H. , Amorim , J.H. , Hiemstra , J.A. , & Pearlmutter , D. ( 2018 ). Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions . Urban Climate , 24 , 94 – 110 .
- Schreyer , J. , Tigges , J. , Lakes , T. , & Churkina , G. ( 2014 ). Using airborne LiDAR and QuickBird data for modelling urban tree carbon storage and its distribution—a case study of Berlin . Remote Sensing , 6 , 10636 – 10655 .
- Selmi , W. , Weber , C. , Rivière , E. , Blond , N. , Mehdi , L. , & Nowak , D. ( 2016 ). Air pollution removal by trees in public green spaces in Strasbourg city, France . Urban Forestry & Urban Greening , 17 , 192 – 201 .
- Senanayake , I.P. , Welivitiya , W.D.D.P. , & Nadeeka , P.M. ( 2013 ). Urban green spaces analysis for development planning in Colombo, Sri Lanka, utilizing THEOS satellite imagery – a remote sensing and GIS approach . Urban Forestry & Urban Greening , 12 , 307 – 314 .
- Silli , V. , Salvatori , E. , & Manes , F. ( 2015 ). Removal of airborne particulate matter by vegetation in an urban park in the city of Rome (Italy): an ecosystem services perspective . Annali di Botanica , 5 , 53 – 62 .
- Sprintsin , M. , Karnieli , A. , Berliner , P. , Rotenberg , E. , Yakir , D. , & Cohen , S. ( 2009 ). Evaluating the performance of the MODIS Leaf Area Index (LAI) product over a Mediterranean dryland planted forest . International Journal of Remote Sensing , 30 , 5061 – 5069 .
- Strohbach , M.W. , & Haase , D. ( 2012 ). Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city . Landscape and Urban Planning , 104 , 95 – 104 .
- Su , M. , Zheng , Y. , Hao , Y. , Chen , Q. , Chen , S. , Chen , Z. , & Xie , H. ( 2018 ). The influence of landscape pattern on the risk of urban water-logging and flood disaster . Ecological Indicators , 92 , 133 – 140 .
- Sun , H. , Chen , Y. , & Zhan , W. ( 2015 ). Comparing surface-and canopy-layer urban heat islands over Beijing using MODIS data . International Journal of Remote Sensing , 36 , 5448 – 5465 .
- Sun , R. , Lü , Y. , Yang , X. , & Chen , L. ( 2019 ). Understanding the variability of urban heat islands from local background climate and urbanization . Journal of Cleaner Production , 208 , 743 – 752 .
- Tigges , J. , Churkina , G. , & Lakes , T. ( 2016 ). Modeling above-ground carbon storage: a remote sensing approach to derive individual tree species information in urban settings . Urban Ecosystems , 20 , 97 – 111 .
- Tuia , D. , Persello , C. , & Bruzzone , L . ( 2016 ). Domain adaptation for the classification of remote sensing data: an overview of recent advances . IEEE Geoscience and Remote Sensing Magazine , 4 , 41 – 57 .
- Tzoulas , K. , Korpela , K. , Venn , S. , Yli-Pelkonen , V. , Kaźmierczak , A. , Niemela , J. , & James , P. ( 2007 ). Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review . Landscape and Urban Planning , 81 , 167 – 178 .
- Whyte , A. , Ferentinos , K.P. , Petropoulos , G.P. , & Software ( 2018 ). A new synergistic approach for monitoring wetlands using Sentinels-1 and 2 data with object-based machine learning algorithms . Environmental Modelling , 104 , 40 – 54 .
- Willcock , S. , Martínez-López , J. , Hooftman , D.A.P. , Bagstad , K.J. , Balbi , S. , Marzo , A. , Prato , C. , Sciandrello , S. , Signorello , G. , Voigt , B. , Villa , F. , Bullock , J.M. , & Athanasiadis , I.N. ( 2018 ). Machine learning for ecosystem services . Ecosystem Services , 33 , 165 – 174 .
- Wu , D. , Wang , Y. , Fan , C. , & Xia , B. ( 2018 ). Thermal environment effects and interactions of reservoirs and forests as urban blue-green infrastructures . Ecological Indicators , 91 , 657 – 663 .
- Wu , C. , Li , J. , Wang , C. , Song , C. , Chen , Y. , Finka , M. , & La Rosa , D. ( 2019 ). Understanding the relationship between urban blue infrastructure and land surface temperature . Science of the Total Environment , 694 , 133742 .
- Xie , J. , Chen , H. , Liao , Z. , Gu , X. , Zhu , D. , & Zhang , J. ( 2017 ). An integrated assessment of urban flooding mitigation strategies for robust decision making . Environmental Modelling & Software , 95 , 143 – 155 .
- Yan , K. , Park , T. , Yan , G. , Liu , Z. , Yang , B. , Chen , C. , Nemani , R. , Knyazikhin , Y. , & Myneni , R. ( 2016 ). Evaluation of MODIS LAI/FPAR product collection 6. Part 2: Validation and intercomparison . Remote Sensing , 8 , 460 .
- Yan , J. , Zhou , W. , Han , L. , & Qian , Y. ( 2018 ). Mapping vegetation functional types in urban areas with WorldView-2 imagery: integrating object-based classification with phenology . Urban Forestry & Urban Greening , 31 , 230 – 240 .
- Yan , G. , Hu , R. , Luo , J. , Weiss , M. , Jiang , H. , Mu , X. , Xie , D. , & Zhang , W. ( 2019 ). Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives . Agricultural and Forest Meteorology , 265 , 390 – 411 .
- Yang , L. , Zhang , L. , Li , Y. , & Wu , S. ( 2015 ). Water-related ecosystem services provided by urban green space: a case study in Yixing City (China) . Landscape and Urban Planning , 136 , 40 – 51 .
- Yang , Q. , Huang , X. , & Tang , Q. ( 2019 ). The footprint of urban heat island effect in 302 Chinese cities: temporal trends and associated factors . Science of the Total Environment , 655 , 652 – 662 .
- Ye , Y. , Richards , D. , Lu , Y. , Song , X. , Zhuang , Y. , Zeng , W. , & Zhong , T. ( 2019 ). Measuring daily accessed street greenery: a human-scale approach for informing better urban planning practices . Landscape and Urban Planning , 191 103434 .
- Young , R. , Zanders , J. , Lieberknecht , K. , & Fassman-Beck , E. ( 2014 ). A comprehensive typology for mainstreaming urban green infrastructure . Journal of Hydrology , 519 , 2571 – 2583 .
- Zank , B. , Bagstad , K.J. , Voigt , B. , & Villa , F. ( 2016 ). Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: a case study in the Puget Sound, Washington, USA . Landscape and Urban Planning , 149 , 31 – 42 .
- Zhang , S. , & Ramírez , F.M. ( 2019 ). Assessing and mapping ecosystem services to support urban green infrastructure: the case of Barcelona, Spain . Cities , 92 , 59 – 70 .
- Zhang , L. , Zhang , L. , & Du , B. ( 2016 ). Deep learning for remote sensing data: a technical tutorial on the state of the art . IEEE Geoscience and Remote Sensing Magazine , 4 , 22 – 40 .
- Zhao , K. , & Popescu , S. ( 2009 ). Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA . Remote Sensing of Environment , 113 , 1628 – 1645 .
- Zhu , X.X. , Tuia , D. , Mou , L. , Xia , G.-S. , Zhang , L. , Xu , F. , & Fraundorfer , F. ( 2017 ). Deep learning in remote sensing: a comprehensive review and list of resources . IEEE Geoscience and Remote Sensing Magazine , 5 , 8 – 36 .
- Zou , Q. , Ni , L. , Zhang , T. , & Wang , Q. ( 2015 ). Deep learning based feature selection for remote sensing scene classification . IEEE Geoscience Remote Sensing Letters , 12 , 2321 – 2325 .