US Cities in the Dark
Mapping Man-Made Carbon Dioxide Emissions Over the Contiguous US Using NASA's Black Marble Nighttime Lights Product
Tomohiro Oda
Universities Space Research Association (USRA), Columbia, MD, USA
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
Graduate School of Engineering, Osaka University, Osaka, Japan
Search for more papers by this authorMiguel O. Román
Universities Space Research Association (USRA), Columbia, MD, USA
Search for more papers by this authorZhuosen Wang
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorEleanor C. Stokes
Universities Space Research Association (USRA), Columbia, MD, USA
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorQingsong Sun
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Search for more papers by this authorRanjay M. Shrestha
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Search for more papers by this authorSha Feng
Department of Meteorology and Atmospheric Science, Pennsylvania State University, State College, PA, USA
Search for more papers by this authorThomas Lauvaux
Laboratoire des Sciences du Climat et de l'Environnement, CEA, CNRS, UVSQ/IPSL, Université Paris-Saclay, Orme des Merisiers, Gif-sur-Yvette cedex, France
Search for more papers by this authorRostyslav Bun
Lviv Polytechnic National University, Lviv, Ukraine
WSB University, Dąbrowa Górnicza, Poland
Search for more papers by this authorShamil Maksyutov
Satellite Observation Center/Center for Global Environment Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
Search for more papers by this authorSrija Chakraborty
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorIan Paynter
Universities Space Research Association (USRA), Columbia, MD, USA
Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorVirginia L. Kalb
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorTomohiro Oda
Universities Space Research Association (USRA), Columbia, MD, USA
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
Graduate School of Engineering, Osaka University, Osaka, Japan
Search for more papers by this authorMiguel O. Román
Universities Space Research Association (USRA), Columbia, MD, USA
Search for more papers by this authorZhuosen Wang
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorEleanor C. Stokes
Universities Space Research Association (USRA), Columbia, MD, USA
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorQingsong Sun
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Search for more papers by this authorRanjay M. Shrestha
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Search for more papers by this authorSha Feng
Department of Meteorology and Atmospheric Science, Pennsylvania State University, State College, PA, USA
Search for more papers by this authorThomas Lauvaux
Laboratoire des Sciences du Climat et de l'Environnement, CEA, CNRS, UVSQ/IPSL, Université Paris-Saclay, Orme des Merisiers, Gif-sur-Yvette cedex, France
Search for more papers by this authorRostyslav Bun
Lviv Polytechnic National University, Lviv, Ukraine
WSB University, Dąbrowa Górnicza, Poland
Search for more papers by this authorShamil Maksyutov
Satellite Observation Center/Center for Global Environment Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
Search for more papers by this authorSrija Chakraborty
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorIan Paynter
Universities Space Research Association (USRA), Columbia, MD, USA
Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorVirginia L. Kalb
Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Search for more papers by this authorXiaojun Yang
Search for more papers by this authorSummary
Nighttime lights (NTL) data are excellent indicators of the intensities of human activities. Over the past two decades, NTL data have been used to map values associated with human activities, and to study the spatial and temporal changes. Since 2012, an improved sensor, the Day/Night Band (DNB) low-light visible sensor of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (NPP), has become available, which allows higher quality NTL data to be retrieved. The improved temporal frequency and spatial resolution of the data allow us to improve the accuracy of the analyses. This chapter presents the first man-made carbon dioxide (CO 2 ) emission map based on NASA's Black Marble NTL Product Suite (NBM) (VNP46). The performance of NBM as an estimator of man-made CO 2 emissions is examined in comparison to previous NTL and population estimators. We show that the urban emission representation in the new NBM-based CO 2 map is likely closer to the truth than previous NTL-based CO 2 maps via an atmospheric modeling experiment. We also discuss the advantages and new challenges in the use of NBM for mapping CO 2 from cities .
REFERENCES
- Andres , R.J. , Marland , G. , Fung I. , et al. ( 1996 ). A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990 . Global Biogeochem. Cy. 10 ( 3 ): 419 – 429 . doi: https://doi.org/10.1029/96GB01523 .
- Andres , R.J. , Boden , T.A. and Higdon , D.M. ( 2016 ). Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example . Atmos. Chem. Phys. 16 14979 – 14995 doi: https://doi.org/10.5194/acp-16-14979-2016 .
-
Asefi-Najafabady , S.
,
Rayner , P.J.
,
Gurney , K.R.
, et al. (
2014
).
A multiyear, global gridded fossil fuel CO
2
emission data product: Evaluation and analysis of results
.
J. Geophys. Res. Atmos.
119
(
17
):
10, 213
–
231
. doi:
https://doi.org/10.1002/2013JD021296
.
10.1002/2013JD021296 Google Scholar
- Ballantyne , A.P. , Alden , C.B. , Miller , J.B. , et al. ( 2012 ). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years . Nature 488 ( 7409 ): 70 – 72 . doi: https://doi.org/10.1038/nature11299 .
-
Baugh , K.
,
Elvidge , C.
,
Ghosh , T.
, et al. (
2010
).
Development of a 2009 stable lights product using DMSP-OLS data
.
Proc. Asia-Pacific Adv. Network
30
:
114
–
130
. doi:
https://doi.org/10.7125/APAN.30.17
.
10.7125/APAN.30.17 Google Scholar
- Bennett , M.M. , and Smith , L.C. ( 2017 ). Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics . Remote Sens. Environ. 192 : 176 – 197 .
- Bruederle , A. , and Hodler , R. ( 2018 ). Nighttime lights as a proxy for human development at the local level . PLoS One 13 ( 9 ): e0202231 . doi: https://doi.org/10.1371/journal.pone.0202231 .
- Chen , X. , and Nordhaus , W. ( 2015 ). A test of the new VIIRS lights data set: Population and economic output in Africa . Remote Sens. 7 ( 4 ): 4937 – 4947 .
- Chen , J. Zhao , F. , Zeng , N. , et al. ( 2020 ). Comparing city fossil fuel CO 2 emissions between ODIAC and inventory-based estimates . Carbon Balance Manage. 15 ( 9 ). doi: https://doi.org/10.1186/s13021-020-00146-3 .
- Ciais P , Crisp , D. , Denier van der Gon , H. , et al. ( 2015 ). Towards a European Operational Observing System to Monitor Fossil CO 2 Emissions, European Commission . Final report from the expert group. https://doi.org/10.2788/350433 .
- Crisp , D. , Pollock , H.R. , Rosenberg , R. , et al. ( 2017 ). The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products . Atmos. Meas. Tech. 10 : 59 – 81 . doi: https://doi.org/10.5194/amt-10-59-2017 .
- Croft , T.A. ( 1979 ). The brightness of lights on Earth at night, digitally recorded by DMSP satellite . SRI international report. https://doi.org/10.3133/ofr80167 .
- Crowell , S. , Baker , D. , Schuh , A. , et al. ( 2019 ). The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network . Atmos. Chem. Phys. 19 : 9797 – 9831 . doi: https://doi.org/10.5194/acp-19-9797-2019 .
- Doll , C.N.H. , Muller , J-P. , and Elvidge , C.D. ( 2000 ) Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions . Ambio 29 ( 3 ): 157 – 162 .
- Eldering , A. , O'Dell , C.W. , Wennberg , P.O. , et al. ( 2017 ). The orbiting carbon observatory-2: First 18 months of science data products . Atmos. Meas. Tech. 10 : 549 – 563 , doi: https://doi.org/10.5194/amt-10-549-2017 .
- Eldering , A. , Taylor , T.E. , O'Dell , C.W. , et al. ( 2019 ). The OCO-3 mission: Measurement objectives and expected performance based on 1 year of simulated data . Atmos. Meas. Tech. , 12 : 2341 – 2370 . doi: https://doi.org/10.5194/amt-12-2341-2019 .
- Elvidge , C.D. , Baugh , K.E. , Kihn , E.A. , et al. ( 1997a ). Mapping city lights with nighttime data from the DMSP operational linescan system . Photogramm. Eng. Rem S. 63 : 727 – 734 .
- Elvidge , C.D. , Baugh , K.E. , Kihn , E.A. , et al. ( 1997b ). Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption , Int. J. Remote Sens. 18 ( 6 ): 1373 – 1379 .
- Elvidge , C.D. , Baugh , K.E. , Dietz , J.B. , et al. ( 1999 ). Radiance calibration of DMSP-OLS lowlight imaging data of human settlements – a new device for portraying the Earth's surface entire . Remote Sens. Environ. 68 ( 1 ): 77 – 88 . doi: https://doi.org/10.1016/S0034-4257(98)00098-4 .
-
Elvidge , C.D.
,
Baugh , K.E.
,
Zhizhin , M.
, et al. (
2013
).
Why VIIRS data are superior to DMSP for mapping nighttime lights
Proc. Asia Pacific Adv. Networks
35
:
62
–
69
. doi:
https://doi.org/10.7125/apan.35.7
.
10.7125/APAN.35.7 Google Scholar
- Elvidge , C.D. , Baugh , K. , Zhizhin , M. , et al. ( 2017 ). VIIRS night-time lights . Int. J. Remote Sens. , 38 ( 21 ): 5860 – 5879 . DOI: 10.1080/01431161.2017.1342050.
- Feng , S. , Lauvaux , T. , Newman , S. , et al. ( 2016 ). Los Angeles megacity: A high-resolution land–atmosphere modelling system for urban CO 2 emissions . Atmos. Chem. Phys. 16 ( 14 ): 9019 – 9045 . doi: https://doi.org/10.5194/acp-16-9019-2016 .
- Feng , L. , Palmer , P. I. , Bösch , H. , et al. ( 2017 ). Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4: XCO2 retrievals, 2010–2014 . Atmos. Chem. Phys. 17 : 4781 – 4797 . doi: https://doi.org/10.5194/acp-17-4781-2017 .
-
Fischer , M.L.
,
Parazoo , N.
,
Brophy , K.
, et al. (
2017
).
Simulating estimation of california fossil fuel and biosphere carbon dioxide exchanges combining in-situ tower and satellite column observations
.
J. Geophys. Res. Atmos.
122
:
3653
–
3671
. doi:
https://doi.org/10.1002/2016JD025617
.
10.1002/2016JD025617 Google Scholar
- Fragkias , M. , Lobo , J. , Strumsky , D. , et al. ( 2013 ). Does size matter? Scaling of CO 2 emissions and U.S. Urban Areas . PLoS One 8 ( 6 ): e64727 . doi: https://doi.org/10.1371/journal.pone.0064727 .
- Ganshin , A. , Oda , T. , Saito , M. , et al. ( 2012 ). A global coupled Eulerian-Lagrangian model and 1 × 1 km CO 2 surface flux dataset for high-resolution atmospheric CO 2 transport simulations . Geosci. Model Dev. 5 ( 1 ): 231 – 243 . doi: https://doi.org/10.5194/gmd-5-231-2012 .
- Gately , C.K. and Hutyra , L.R. ( 2017 ). Large uncertainties in urban-scale carbon emissions . J. Geophys. Res. Atmos. 122 ( 20 ): 11, 242 – 11, 260 . doi: https://doi.org/10.1002/2017JD027359 .
-
Gaughan , A.
,
Oda , T.
,
Sorichetta , A.
, et al. (
2019
).
Evaluating nighttime lights and population distribution as proxies for mapping anthropogenic CO
2
emission in Vietnam, Cambodia and Laos
,
Environ. Res. Commun.
1
:
091006
. doi:
https://doi.org/10.1088/2515-7620/ab3d91
.
10.1088/2515-7620/ab3d91 Google Scholar
- Ghosh , T. , Elvidge , C.D. , Sutton , P.C. et al. ( 2010 ). Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery . Energies 3 ( 12 ): 1895 – 1913 ., DOI: 10.3390/en3121895.
- Gurney , K.R. , Chen , Y-H. , Maki , T. , et al. ( 2005 ). Sensitivity of atmospheric CO 2 inversions to seasonal and interannual variations in fossil fuel emissions . J. Geophys. Res. 110 : D10308 . doi: https://doi.org/10.1029/2004JD005373 .
-
Gurney , K.R.
,
Liang , J.
,
O'Keeffe , D.
, et al. (
2018
).
Comparison of global downscaled versus bottom-up fossil fuel CO
2
emissions at the urban scale in four US urban areas
.
J. Geophys. Res. Atmos.
124
2823
doi:
https://doi.org/10.1029/2018JD028859
.
10.1029/2018JD028859 Google Scholar
- Gurney , K.R. , Liang , J. , O'Keeffe , D. , et al. ( 2019 ). Comparison of global downscaled versus bottom-up fossil fuel CO2 emissions at the urban scale in four U.S. urban areas . J. Geophys. Res. Atmos. , 124 : 2823 – 2840 . DOI: 10.1029/2018JD028859.
- Hedelius , J.K. , Liu , J. , Oda , T. , et al. ( 2018 ). Southern California megacity CO 2 , CH 4 , and CO flux estimates using remote sensing and a Lagrangian model . Atmos. Chem. Phys. 18 : 16271 – 16291 . doi: https://doi.org/10.5194/acp-18-16271-2018 .
- Henderson , M. , Yeh , E.T. , Gong , P. , et al. ( 2003 ). Validation of urban boundaries derived from global night-time satellite imagery . Int. J. Remote Sens. 24 ( 3 ): 595 – 609 .
-
Hillger , D.
,
Seaman , C.
,
Liang , C.
, et al. (
2014
).
Suomi NPP VIIRS imagery evaluation
.
J. Geophys. Res. Atmos.
119
:
6440
–
6455
.
10.1002/2013JD021170 Google Scholar
- Hogue , S. , Roten , D. , Marland , E. , et al. ( 2018 ). Gridded estimates of CO 2 emissions: Uncertainty as a function of scale . Mitig. Adapt. Strateg. Glob. Chang. 24 , 969 – 983 doi: https://doi.org/10.1007/s11027-017-9770-z .
-
Houweling , S.
,
Baker , D.
,
Basu , S.
, et al. (
2015
).
An intercomparison of inverse models for estimating sources and sinks of CO
2
using GOSAT measurements
.
J. Geophys. Res. Atmos.
120
:
5253
–
5266
. Doi:
https://doi.org/10.1002/2014JD022962
.
10.1002/2014JD022962 Google Scholar
- Hsu , F.C. , K.E. Baugh , T. Ghosh , et al. ( 2015 ) DMSP-OLS radiance calibrated nighttime lights time series with intercalibration . Remote Sens. 7 ( 2 ): 1855 – 1876 . doi: https://doi.org/10.3390/rs70201855 .
- Janardanan , R. , Maksyutov , S. , Oda , T. , et al. ( 2016 ). Comparing GOSAT observations of localized CO 2 enhancements by large emitters with inventory-based estimates . Geophys. Res. Lett. 43 ( 7 ): 3486 – 3493 . doi: https://doi.org/10.1002/2016GL067843 .
- Janssens-Maenhout , G. , Crippa , M. , Guizzardi , D. , et al. ( 2019 ). EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012 . Earth Syst. Sci. Data 11 : 959 – 1002 . doi: https://doi.org/10.5194/essd-11-959-2019 .
- Justice , C.O. , Román , M.O. , Csiszar , I. , et al. ( 2013 ), Land and cryosphere products from SUOMI NPP VIIRS: Overview and status . J. Geophys. Res. Atmos. 118 : 9753 – 9765 , doi: https://doi.org/10.1002/jgrd.50771
- Lauvaux , T. , Miles , N.L. , Deng , A. , et al. ( 2016 ): High-resolution atmospheric inversion of urban CO 2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX) . J. Geophys. Res. Atmos. 121 ( 10 ): 5213 – 5236 . doi: https://doi.org/10.1002/2015JD024473 .
- Lee , T. E. , Miller , S. D. , Turk , F. J. , et al. ( 2006 ). The NPOESS VIIRS day/night visible sensor . Bull. Amer. Meteor. Soc. 87 : 191 – 200 , doi: https://doi.org/10.1175/BAMS-87-2-191 .
- Letu , H. , M. Hara , H. Yagi , et al. ( 2010 ). Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects . Int. J. Remote Sens. 31 ( 16 ): 4443 – 4458 .
- Levin , N. , Kyba , C.C. , Zhang , Q. , et al. ( 2020 ). Remote sensing of night lights: A review and an outlook for the future . Remote Sens. Environ. 237 . 111443 doi: https://doi.org/10.1016/j.rse.2019.111443 .
- Maksyutov , S. , Takagi , H. , Valsala , V.K. , et al. ( 2013 ). Regional CO 2 flux estimates for 2009–2010 based on GOSAT and ground-based CO 2 observations . Atmos. Chem. Phys. 13 ( 18 ): 9351 – 9373 . doi: https://doi.org/10.5194/acp-13-9351-2013 .
- Martin , C.R. , Zeng , N. , Karion , A. , et al. ( 2018 ). Investigating sources of variability and error in simulations of carbon dioxide in an urban region . Atmos. Environ. 199 : 55 – 69 . doi: https://doi.org/10.1016/j.atmosenv.2018.11.013 .
- Mellander , C. , Lobo , J. , Stolarick , K. , et al. ( 2015 ). Night-time light data: A good proxy measure for economic activity? PLoS One 10 ( 10 ): e0139779 .
- Mitchel , L.E. , Lin , J.C. , Bowling , D.R. , et al. ( 2018 ). Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth . PNAS , 115 ( 12 ) 2912 – 2917 DOI: https://doi.org/10.1073/pnas.1702393115 .
- Ou , J. , Liu , X. , Li , X. , et al. ( 2015 ). Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO2 emissions: A comparison with DMSP-OLS nighttime light data . PLoS ONE , 10 ( 9 ). DOI: 10.1371/journal.pone.0138310.
- Oda , T. and Maksyutov , S. ( 2011 ). A very high-resolution (1 km×1 km) global fossil fuel CO 2 emission inventory derived using a point source database and satellite observations of nighttime lights . Atmos. Chem. Phys. 11 : 543 – 556 . doi: https://doi.org/10.5194/acp-11-543-2011 .
- Oda , T. , Maksyutov , S. , and Elvidge , C.D. ( 2010 ). Disaggregation of national fossil fuel CO 2 emissions using a global power plant database and DMSP nightlight data Proc. Asia Pacific Adv. Networks 30 : 220 – 229 . doi: https://doi.org/10.7125/APAN.30.24 .
- Oda , T. , Ganshin , A. , Saito , M. , et al. ( 2012 ) The use of a high-resolution emission dataset in a Global Eulerian-Lagrangian coupled model . In: Lagrangian Modeling of the Atmosphere . (eds. J. Lin , D. Brunner , C. Gerbig , A. Stohl , A. Luhar and P. Webley ) American Geophysical Union , Washington, DC doi: https://doi.org/10.1029/2012GM001263 .
- Oda , T. , Lauvaux , T. , Lu , D. , et al. ( 2017 ). On the impact of granularity of space-based urban CO 2 emissions in urban atmospheric inversions: A case study for Indianapolis . Elem. Sci. Anth. 5 : 28 . doi: https://doi.org/10.1525/elementa.146 .
- Oda , T. , Maksyutov , S. and Andres , R.J. ( 2018 ). The open-source data inventory for anthropogenic CO 2 , version 2016 (ODIAC2016): A global monthly fossil fuel CO 2 gridded emissions data product for tracer transport simulations and surface flux inversions . Earth Syst. Sci. Data 10 : 87 – 107 . doi: https://doi.org/10.5194/essd-10-87-2018 .
- Oda , T. , Bun , R. , Kinakh , V. , et al. ( 2019 ). Errors and uncertainties in a gridded carbon dioxide emissions inventory . Mitig. Adapt. Strateg. Glob. Chang. 24 ( 6 ): 1007 – 1050 . doi: https://doi.org/10.1007/s11027-019-09877-2 .
- Palmer , P.I. , Feng , L. , Baker , D. et al. ( 2019 ). Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO 2 signal . Nat. Commun. 10 , 3344 doi: https://doi.org/10.1038/s41467-019-11097-w .
- Pinty , B. , Janssens-Maenhout , G. , Dowell , M. , et al. ( 2017 ). An operational anthropogenic CO 2 emissions monitoring & verification support capacity – baseline requirements, model components and functional architecture . Report from the CO2 Monitoring Task Force – sub-task B. European Commission Joint Research Centre, 25 EUR 28736 EN. https://doi.org/10.2760/08644 .
-
Raupach , M.R.
,
Rayner , P.J.
and
Paget , M.
(
2010
).
Regional variations in spatial structure of nightlights, population density and fossil fuel CO
2
emissions
.
Energy Policy
38
(
7
):
4756
–
4764
. doi:
https://doi.org/10.1016/j.enpol.2009.08.021
.
10.1016/j.enpol.2009.08.021 Google Scholar
- Rayner , P.J. , Raupach , M.R. , Paget , M. , et al. ( 2010 ). A new global gridded data set of CO 2 emissions from fossil fuel combustion: Methodology and evaluation . J. Geophys. Res. 115 : D19306 . doi: https://doi.org/10.1029/2009JD013439 .
- Román , M.O. and Stokes , E.C. ( 2015 ). Holidays in lights: Tracking cultural patterns in demand for energy services . Earth's Future 3 ( 6 ): 182 – 205 . https://doi.org/10.1002/2014EF000285 .
- Román , M.O. , Wang , Z. , Sun , Q. , et al. ( 2018 ). NASA's Black Marble nighttime lights product suite . Remote Sens. Environ. 210 : 113 – 143 . doi: https://doi.org/10.1016/j.rse.2018.03.017 .
- Román , R.O , Wang , Z. , Sun , Q. , et al. ( 2018 ). NASA's Black Marble nighttime lights product suite . Remote Sens. Environ. , 210 : 113 – 143 . DOI: 10.1016/j.rse.2018.03.017.
- Román , M.O. , Stokes , E.C. , Shrestha , R. , et al. ( 2019 ). Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria . PLoS One 14 ( 6 ), e0218883 doi: https://doi.org/10.1371/journal.pone.0218883 .
- Saeki , T. , Maksyutov , S. , Saito , M. , et al. ( 2013 ). Inverse modeling of CO2 fluxes using GOSAT data and multi-year ground-based observations . SOLA 9 : 45 – 50 , doi: https://doi.org/10.2151/sola.2013-011 .
- Sanchez de Miguel , A. , Kyba , C.C.M. , Zamorano , J. et al. ( 2020 ). The nature of the diffuse light near cities detected in nighttime satellite imagery . Sci. Rep. 10 , 7829 doi: https://doi.org/10.1038/s41598-020-64673-2 .
- Shirai , T. , Ishizawa , M. , Zhuravlev , R. , et al. ( 2017 ). A decadal inversion of CO 2 using the Global Eulerian-Lagrangian coupled atmospheric model (GELCA): Sensitivity to the ground-based observation network . Tellus B Chem Phys Meteorol 69 ( 1 ). 1291158 DOI: https://doi.org/10.1080/16000889.2017.1291158 .
- Small , C. , Pozzi , F. and Elvidge , C.D. ( 2005 ). Spatial analysis of global urban extent from DMSP-OLS night lights . Remote Sens. Environ. 96 : 277 – 291 .
- Sutton , P. , Roberts , D. , Elvidge , C. , et al. ( 1997 ). A comparison of nighttime satellite imagery and population density for the continental United States . Photogramm. Eng. Remote. Sens. 63 ( 11 ): 1303 – 1313 .
- Sutton , P. , Roberts , D. , Elvidge , C. , et al. ( 2001 ). Census from heaven: An estimate of the global human population using night-time satellite imagery . Int. J. Remote Sens. 22 ( 16 ): 3061 – 3076 .
- Takagi , H. , Saeki , T. , Oda , T. , et al. ( 2011 ). On the benefit of GOSAT observations to the estimation of regional CO 2 fluxes . SOLA 7 : 161 – 164 . doi: https://doi.org/10.2151/sola.2011-041 .
- Takagi , H. , Houweling , S. , Andres , R. J. , et al. ( 2014 ). Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation . Geophys. Res. Lett. 41 . 2598 – 2605 Doi: https://doi.org/10.1002/2013GL059174 .
- Townsend , A. C. , and D. A. Bruce ( 2010 ). The use of night-time lights satellite imagery as a measure of Australia's regional electricity consumption and population distribution . Int. J. Remote Sens. 31 ( 16 ): 4459 – 4480 .
- Umezawa , T. , Matsueda , H. , Oda , T. , et al. ( 2020 ). Statistical characterization of urban CO2 emission signals observed by commercial airliner measurements . Sci. Rep. , 10 . DOI: 10.1038/s41598-020-64769-9.
- Ummel , K. ( 2012 ). CARMA revisited: An updated database of carbon dioxide emissions from power plant worldwide . Working Paper 304. Center for Global Development Working Papers.
- Verhulst , K.R. , Karion , A. , Kim , J. et al. ( 2017 ). Carbon dioxide and methane measurements from the Los Angeles megacity carbon project–part 1: Calibration, urban enhancements, and uncertainty estimates . Atmos. Chem. Phys. 17 : 8313 – 8341 . doi: https://doi.org/10.5194/acp-17-8313-2017 .
- Wang , Y. , Ciais , P. , Broquet , G. , et al. ( 2019 ). A global map of emission clumps for future monitoring of fossil fuel CO2 emissions from space . Earth Syst. Sci. Data 11 : 687 – 703 , doi: https://doi.org/10.5194/essd-11-687-2019 .
-
Woodard , D.
,
Branham , M.
,
Buckingham , G.
, et al. (
2015
).
A spatial uncertainty metric for anthropogenic CO
2
emissions
.
Greenhouse Gas Meas. Manage
.
4
139
–
160
doi:
https://doi.org/10.1080/20430779.2014.1000793
.
10.1080/20430779.2014.1000793 Google Scholar
- Wu , D. , Lin , J.C. , Fasoli , B. , et al. ( 2018 ). A Lagrangian approach towards extracting signals of urban CO 2 emissions from satellite observations of atmospheric column CO 2 (XCO 2 ): X-stochastic time-inverted lagrangian transport model (“X-STILT v1”) . Geosci. Model Dev. 11 : 4843 – 4871 . doi: https://doi.org/10.5194/gmd-11-4843-2018 .
- Wu , D. , Lin , J.C. , Oda , T. et al. ( 2020 ). Space-based quantification of per capita CO 2 emissions from cities , Environ. Res. Lett. , 15 , 035004
- Yang , E.G. , Kort , E.A. , Wu , D. , et al. ( 2020 ). Using space-based observations and Lagrangian modeling to evaluate urban carbon dioxide emissions in the Middle East . J. Geophys. Res. Atmos. 125 e2019JD031922 doi: https://doi.org/10.1029/2019JD031922 .
- Ye , X. , Lauvaux , L. , Kort , E.A. , et al. ( 2020 ). Constraining fossil fuel CO 2 emissions from urban area using OCO-2 observations of total column CO 2 . J. Geophys. Res. Atmos. 125 e2019JD030528 doi: https://doi.org/10.1029/2019JD030528 .
- Yeh , C. , Perez , A. , Driscoll , A. , et al. ( 2020 ). Using publicly available satellite imagery and deep learning to understand economic well-being in Africa . Nat. Commun. 11 ( 1 ): 1 – 11 .
- Yokota , T. , Yoshida , Y. , Eguchi , N. , et al. ( 2009 ). Global concentrations of CO 2 and CH 4 retrieved from GOSAT: First preliminary results . SOLA 5 : 160 – 163 . doi: https://doi.org/10.2151/sola.2009-041 .
- Zhang , X. , Wu , J. , Peng , J. , et al. ( 2017 ). The uncertainty of nighttime light data in estimating carbon dioxide emissions in China: a comparison between DMSP-OLS and NPP-VIIRS . Remote Sens. 9 ( 8 ). doi: https://doi.org/10.3390/rs9080797 .
-
Ziskin , D.
,
Baugh , K.
,
Hsu , F-C.
, et al. (
2010
).
Methods used for the 2006 radiance lights
.
Proc. Asia Pacific Adv. Networks
30
:
131
–
142
. doi:
https://doi.org/10.7125/APAN.30.18
.
10.7125/APAN.30.18 Google Scholar