Yaws (Endemic Treponematoses) Drug Discovery from Phytochemicals
An Informatics Protocol for Drug Target Identification to Phytochemical Inhibitor Screening and Validation
Zarrin Basharat
Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
Search for more papers by this authorArisha Khoso
HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
Search for more papers by this authorZarrin Basharat
Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
Search for more papers by this authorArisha Khoso
HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
Search for more papers by this authorChukwuebuka Egbuna
Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
Search for more papers by this authorMuhammad Akram
Government College University, Faisalabad, Pakistan
Search for more papers by this authorJonathan Chinenye Ifemeje
Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
Search for more papers by this authorSummary
Treponematoses (Yaws) is caused by a spirochete bacterium that impacts skin, bones, and joints. It is caused by Treponema pallidum subsp. pertenue, after 9–90 days of infection. It is a disease of poverty, endemic to 15 countries with humid and temperate climate. It was targeted for elimination by the WHO in the 1950s and efforts for this purpose were renewed in 2012. In this study protocol, we outline an informatics method to identify drug target from the core fraction of the sequenced genomes of T. pallidum subsp. pertenue. Phytochemical compounds from traditional Tibetan medicinal plants were then tested in silico against the identified target lipoprotein. Best-docked compound Isorhoeadine (IUPAC name: (1 S ,14 R ,24 S )-24-methoxy-13-methyl-5,7,19,21,25-pentaoxa-13-azahexacyclo[12.11.0.02,10.04,8.015,23.018,22]pentacosa-2,4(8),9,15(23),16,18(22)-hexaene) from Meconopsis horridula was further analyzed for interaction and binding energy changes via dynamics simulation. This protocol can be utilized for identifying phytochemical inhibitors from traditional medicines from other geographical regions or allopathic drug inhibitors against the target protein. It can be extended to other bacterial or pathogenic organisms with sequenced genomes, for finding pan-inhibitors against the species, instead of just targeting a single organism.
References
- Molyneux , D.H. , Savioli , L. , and Engels , D. ( 2017 ). Neglected tropical diseases: progress towards addressing the chronic pandemic . The Lancet 389 ( 10066 ): 312 – 325 .
- Cejkova , D. , Zobanikova , M. , Chen , L. et al. ( 2012 ). Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence . PLoS Neglected Tropical Diseases 6 ( 1 ): e1471 .
- Singh , A.E. and Romanowski , B. ( 1999 ). Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features . Clinical Microbiology Reviews 12 ( 2 ): 187 – 209 .
- Ovcinnikov , N.M. and Delektorskij , V.V. ( 1970 ). Treponema pertenue under the electron microscope . British Journal of Venereal Diseases 46 ( 5 ): 349 .
- Engelkens , H.J.H. , Vuzevski , V.D. , Ten Kate , F.J.W. et al. ( 1991 ). Ultrastructural aspects of infection with Treponema pallidum subspecies pertenue (Pariaman strain) . Genitourinary Medicine 67 ( 5 ): 403 – 407 .
- Charon , N.W. and Goldstein , S.F. ( 2002 ). Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes . Annual Review of Genetics 36 : 47 – 73 .
- Mabey , D. ( 2012 ). Oral azithromycin for treatment of yaws . The Lancet 379 ( 9813 ): 295 – 297 .
- Román , G.C. and Román , L.N. ( 1986 ). Occurrence of congenital, cardiovascular, visceral, neurologic, and neuro-ophthalmologic complications in late yaws: a theme for future research . Reviews of Infectious Diseases 8 ( 5 ): 760 – 770 .
-
Jung , R.C.
(
1985
).
Handbook of endemic treponematoses
.
The American Journal of Tropical Medicine and Hygiene
34
:
1234
–
1234
.
10.4269/ajtmh.1985.34.1234 Google Scholar
- Kositz , C. , Butcher , R. , and Marks , M. ( 2017 ). Images in clinical tropical medicine: new diagnostics for yaws . The American Journal of Tropical Medicine and Hygiene 96 ( 1 ): 3 – 4 .
- Engelkens , H.J.H. , Ginai , A.Z. , Judanarso , J. et al. ( 1990 ). Radiological and dermatological findings in two patients suffering from early yaws in Indonesia . Genitourinary Medicine 66 ( 4 ): 259 – 263 .
- Mitjà , O. , Hays , R. , Lelngei , F. et al. ( 2011 ). Challenges in recognition and diagnosis of yaws in children in Papua New Guinea . The American Journal of Tropical Medicine and Hygiene 85 ( 1 ): 113 – 116 .
- Engelkens , H.J.H. , Vuzevski , V.D. , and Stolz , E. ( 1999 ). Nonvenereal treponematoses in tropical countries . Clinics in Dermatology 17 ( 2 ): 143 – 152 .
- Hackett , C.J. ( 1953 ). Extent and nature of the yaws problem in Africa . Bulletin of the World Health Organization 8 ( (1–3) ): 127 – 182 .
- Dhondrup , W. , Tidwell , T. , Wang , X. et al. ( 2020 ). Tibetan medical Informatics: an emerging field in Sowa Rigpa pharmacological and clinical research . Journal of Ethnopharmacology 250 : 112481 .
- Basharat , Z. , Yasmin , A. , He , T. , and Tong , Y. ( 2018 ). Genome sequencing and analysis of Alcaligenes faecalis subsp. phenolicus MB207 . Scientific Reports 8 ( 1 ): 1 – 0 .
- Basharat , Z. , Zaib , S. , Yasmin , A. , and Tong , Y. ( 2019 ). Drug target identification and virtual screening in pursuit of phytochemical intervention of Mycobacterium chelonae . bioRxiv : 315408 .
- Guex , N. , Peitsch , M.C. , and Schwede , T. ( 2009 ). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective . Electrophoresis 30 ( S1 ): S162 – S173 .
- Yeshi , K. , Gyal , Y. , Sabernig , K. et al. ( 2019 ). An integrated medicine of Bhutan: Sowa Rigpa concepts, botanical identification, and the recorded phytochemical and pharmacological properties of the eastern Himalayan medicinal plants . European Journal of Integrative Medicine 29 : 100927 .
- Rahman , N. , Basharat , Z. , Yousuf , M. et al. ( 2020 ). Virtual screening of natural products against Type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2) . Molecules 25 ( 10 ): 2271 .
- Chovancova , E. , Pavelka , A. , Benes , P. et al. ( 2012 ). CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures . PLoS Computational Biology 8 ( 10 ): e1002708 .
- Roe , D.R. and Cheatham , T.E. III ( 2013 ). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data . Journal of Chemical Theory and Computation 9 ( 7 ): 3084 – 3095 .
- Genheden , S. and Ryde , U. ( 2015 ). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities . Expert Opinion on Drug Discovery 10 ( 5 ): 449 – 461 .
- Jaiswal , A.K. , Tiwari , S. , Jamal , S.B. et al. ( 2020 ). The pan-genome of Treponema pallidum reveals differences in genome plasticity between subspecies related to venereal and non-venereal syphilis . BMC Genomics 21 ( 1 ): 33 .
- Traut , T. ( 1998 ). A minimal gene set for cellular life derived by comparison of complete bacterial genomes . Chemtracts 11 ( 3 ): 234 .
- Sakharkar , K.R. , Sakharkar , M.K. , and Chow , V.T.K. ( 2004 ). A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa . In Silico Biology 4 ( 3 ): 355 – 360 .
- Evers , A. , Gohlke , H. , and Klebe , G. ( 2003 ). Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials . Journal of Molecular Biology 334 ( 2 ): 327 – 345 .
- Fiser , A. ( 2004 ). Protein structure modeling in the proteomics era . Expert Review of Proteomics 1 ( 1 ): 97 – 110 .
- Peitsch , M.C. ( 1996 ). ProMod and Swiss-Model: internet-based tools for automated comparative protein modelling . Biochemical Society Transactions 24 ( 1 ): 274 – 279 .
- Studer , G. , Rempfer , C. , Waterhouse , A.M. et al. ( 2020 ). QMEANDisCo—distance constraints applied on model quality estimation . Bioinformatics 36 ( 6 ): 1765 – 1771 .
- Bajorath , J. ( 2001 ). Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening . Journal of Chemical Information and Computer Sciences 41 ( 2 ): 233 – 245 .
- Klebe , G. ( 2006 ). Virtual ligand screening: strategies, perspectives and limitations . Drug Discovery Today 11 ( 13–14 ): 580 – 594 .
- Schneider , G. ( 2010 ). Virtual screening: an endless staircase? Nature Reviews: Drug Discovery. 9 ( 4 ): 273 – 276 .
- Villoutreix , B. , Eudes , R. , and Miteva , M. ( 2009 ). Structure-based virtual ligand screening: recent success stories . Combinatorial Chemistry and High Throughput Screening 12 ( 10 ): 1000 – 1016 .
- Kloos , S. , Madhavan , H. , Tidwell , T. et al. ( 2020 ). The transnational Sowa Rigpa industry in Asia: new perspectives on an emerging economy . Social Science and Medicine 245 : 112617 .
- Rey , J.P. , Levesque , J. , Pousset , J.L. , and Roblot , F. ( 1992 ). Analytical studies of isorhoeadine and rhoeagenine in petal extracts of Papaver rhoeas L. using high-performance liquid chromatography . Journal of Chromatography A 596 ( 2 ): 276 – 280 .
- Slavikova , L. and Slavik , J. ( 1980 ). Alkaloids from Papaver rupifragum BOISS. et REUT . Collection of Czechoslovak Chemical Communications 45 ( 3 ): 761 – 763 .
- Coban , I. , Toplan , G.G. , Özbek , B. et al. ( 2017 ). Variation of alkaloid contents and antimicrobial activities of Papaver rhoeas L. growing in Turkey and northern Cyprus . Pharmaceutical Biology 55 ( 1 ): 1894 – 1898 .
- Slavik , J. and Slavikova , L. ( 1977 ). Alkaloids of some Himalayan species of Meconopsis genus . Collection of Czechoslovak Chemical Communications 42 ( 1 ): 132 – 139 .
- Sulaiman , I.M. and Hasnain , S.E. ( 1996 ). Random amplified polymorphic DNA (RAPD) markers reveal genetic homogeneity in the endangered Himalayan species Meconopsis paniculata and M. simplicifolia . Theor etical and Applied Genetics 93 ( 1–2 ): 91 – 96 .
- Wu , H. , Ding , L. , Shen , J. et al. ( 2009 ). A new proaporphine alkaloid from Meconopsis horridula . Fitoterapia 80 ( 4 ): 252 – 254 .
- Fan , J. , Wang , Y. , Wang , X. et al. ( 2015 ). The antitumor activity of Meconopsis horridula Hook, a traditional Tibetan medical plant, in murine leukemia L1210 cells . Cellular Physiology and Biochemistry 37 : 1055 – 1065 .
- Lapierre , P. and Gogarten , J.P. ( 2009 ). Estimating the size of the bacterial pan-genome . Trends in Genetics 25 ( 3 ): 107 – 110 .
- Muzzi , A. and Donati , C. ( 2011 ). Population genetics and evolution of the pan-genome of Streptococcus pneumoniae . International Journal of Medical Microbiology 301 ( 8 ): 619 – 622 .
- Singh , N. , Tiwari , S. , Srivastava , K.K. , and Siddiqi , M.I. ( 2015 ). Identification of novel inhibitors of Mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation . Journal of Chemical Information and Modeling 55 ( 6 ): 1120 – 1129 .
- Agnihotri , P. , Mishra , A.K. , Mishra , S. et al. ( 2017 ). Identification of novel inhibitors of Leishmania donovani γ-glutamylcysteine synthetase using structure-based virtual screening, docking, molecular dynamics simulation, and in vitro studies . Journal of Chemical Information and Modeling 57 ( 4 ): 815 – 825 .
- Kashyap , K. and Kakkar , R. ( 2020 ). Pharmacophore-enabled virtual screening, molecular docking and molecular dynamics studies for identification of potent and selective histone deacetylase 8 inhibitors . Computers in Biology and Medicine : 103850 .
- Li , W. , Tang , Y. , Liu , H. et al. ( 2008 ). Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking . Proteins: Structure, Function, and Bioinformatics 71 ( 2 ): 938 – 949 .
- Raj , U. , Kumar , H. , and Varadwaj , P.K. ( 2017 ). Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors . Journal of Biomolecular Structure and Dynamics 35 ( 11 ): 2351 – 2362 .
- Rampogu , S. , Baek , A. , Zeb , A. , and Lee , K.W. ( 2018 ). Exploration for novel inhibitors showing back-to-front approach against VEGFR-2 kinase domain (4AG8) employing molecular docking mechanism and molecular dynamics simulations . BMC Cancer 18 ( 1 ): 264 .
- Yuan , M. , Luo , M. , Song , Y. et al. ( 2011 ). Identification of curcumin derivatives as human glyoxalase I inhibitors: a combination of biological evaluation, molecular docking, 3D-QSAR and molecular dynamics simulation studies . Bioorganic and Medicinal Chemistry 19 ( 3 ): 1189 – 1196 .