Capacitors
Lukas Fieber
Department of Materials, University of Oxford, Oxford, UK
Search for more papers by this authorPatrick S. Grant
Department of Materials, University of Oxford, Oxford, UK
Search for more papers by this authorLukas Fieber
Department of Materials, University of Oxford, Oxford, UK
Search for more papers by this authorPatrick S. Grant
Department of Materials, University of Oxford, Oxford, UK
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
This chapter reviews the progress that has been made in using emerging additive manufacture (AM), or 3D printing, technologies to fabricate capacitors. It outlines different capacitor types and their current manufacture, identifying the principal functionality of capacitor components, and performance reporting standards and limitations in current manufacturing approaches. The different capacitor types include electrostatic capacitors, electrolytic capacitors and electrochemical capacitors. The chapter also outlines the operating principles as well as materials considerations for common AM techniques. It provides examples of how individual components and novel devices have been fabricated using additive techniques. The chapter presents a summary and outlook on future research needs in the field. It also presents the advantages and disadvantages of AM for capacitor fabrication. AM processes are commonly divided into the following process categories: material extrusion, vat polymerization, powder bed fusion, material jetting, binder jetting, direct energy deposition, and sheet lamination.
References
- International Energy Agency. (2017). Global energy and CO 2 status report 2017 . Tech. Rep. International Energy Agency. Retrieved from https://www.iea.org/publications/freepublications/publication/GECO2017.pdf.
- Enerdata. (2018). Global energy trends, 2018 edition. A step backward for the energy transition? Tech. Rep. Enerdata – Intelligence + Consulting. Retrieved from https://www.enerdata.net/publications/reports-presentations/2018-world-energy-trends-projections.html.
- Ham, M., Strossmayer, J. J., Mrčela, D., & Horvat, M. (2016). Insights for measuring environmental awareness. Ekonomski Vjesnik Econviews, 159–176.
- Klein, N. (2014). This changes everything. Simon & Schuster.
- Aneke, M., & Wang, M. (2016). Energy storage technologies and real life applications A state of the art review. Applied Energy, 179, 350–377. doi:10.1016/j.apenergy.2016.06.097
- Dincer, I., & Acar, C. (2015). A review on clean energy solutions for better sustainability. International Journal of Energy Research, 39(5), 585–606. doi:10.1002/er.3329
-
Mohtasham, J. (2015). Review article-renewable energies. Energy Procedia, 74, 1289–1297. doi:10.1016/j.egypro.2015.07.774
10.1016/j.egypro.2015.07.774 Google Scholar
- JEITA. (2017). Production forecasts for the global electronics and information technology industries . Tech. Rep. Japan Electronics and Information Technology Industries Association. Retrieved from https://www.jeita.or.jp/english/topics/2017/1219{\_}en.pdf.
- Zhu, C., Liu, T., Qian, F., Chen, W., Chandrasekaran, S., Yao, B., … Li, Y. (2017). 3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 1–14. doi:10.1016/j.nantod.2017.06.007
-
Tan, Q., Irwin, P., & Cao, Y. (2006). Advanced dielectrics for capacitors. IEEJ Transactions on Fundamentals and Materials, 126(11), 1153–1159. doi:10.1541/ieejfms.126.1153
10.1541/ieejfms.126.1153 Google Scholar
- Huan, T. D., Boggs, S., Teyssedre, G., Laurent, C., Cakmak, M., Kumar, S., & Ramprasad, R. (2016). Advanced polymeric dielectrics for high energy density applications. Progress in Materials Science, 83, 236–269. doi:10.1016/j.pmatsci.2016.05.001
- Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 44(21), 7484–7539. doi:10.1039/C5CS00303B
-
Beguin, F. (2013). Supercapacitors. Weinheim: Wiley. doi:10.1002/9783527646661
10.1002/9783527646661 Google Scholar
- Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., … Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 34(11), 4889–4899. doi:10.1016/j.ijhydene.2009.04.005
- Ambrosi, A., & Pumera, M. (2016). 3D-printing technologies for electrochemical applications. Chemical Society Reviews, 45(10), 2740–2755. doi:10.1039/C5CS00714C
- Tian, X., Jin, J., Yuan, S., Chua, C. K., Tor, S. B., & Zhou, K. (2017). Emerging 3D-printed electrochemical energy storage devices: A critical review. Advanced Energy Materials, 7(17), 1700127. doi:10.1002/aenm.201700127
- Zhang, F., Wei, M., Viswanathan, V. V., Swart, B., Shao, Y., Wu, G., & Zhou, C. (2017). 3D printing technologies for electrochemical energy storage. Nano Energy, 40(May), 418–431. doi:10.1016/j.nanoen.2017.08.037
- Chang, P., Mei, H., Zhou, S., Dassios, K. G., & Cheng, L. (2019). 3D printed electrochemical energy storage devices. Journal of Materials Chemistry A, 7(9), 4230–4258. doi:10.1039/C8TA11860D
- Ho, J., Jow, T., & Boggs, S. (2010). Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 26(1), 20–25. arXiv:arXiv:1011.1669v3. doi:10.1109/MEI.2010.5383924
- Miller, J. (2007). A brief history of supercapacitors. Battery + Energy Technologies, 21(52), 61–78.
- Conway, B. E. (1999). Electrochemical supercapacitors, scientific fundamentals and technological applications. New York: Kluwer Academic, Plenum Publishers.
- Murata. (2019). How multilayer ceramic capacitors are made . Retrieved from https://www.murata.com/en-eu/products/emiconfun/capacitor/2011/06/28/en-20110628-p1.
- Kahn, M. (1990). Multilayer ceramic capacitors – Materials and Manufacture (Tech. Rep. S-MLCMM00M900-R). Myrtle Beach, SC: Mlc, AVX Corporation.
- Choi, T., Kaneshiro, R., Brodersen, R., Gray, P., Jett, W., & Wilcox, M. (1983). High-frequency CMOS switched-capacitor filters for communications application. IEEE Journal of Solid-State Circuits, 18(6), 652–664. doi:10.1109/JSSC.1983.1052015
- Panasonic. (2014). Production of aluminum electrolytic capacitors . Tech. Rep. Panasonic. Retrieved from https://web.archive.org/web/20141214154719/http://industrial.panasonic.com/www-data/pdf/ABA0000/ABA0000TE3.pdf
- TDK. (2016). Aluminum electrolytic capacitors: Quality and environment (Tech. Rep.). TDK. Retrieved from https://www.tdk-electronics.tdk.com/download/530714/6542c9c7cf9ed55ef1ab2a2d36b44f51/pdf-qualityandenvironment.pdf
- Elna. (2019). Capacitors – Fabrication . Retrieved from http://www.elna.co.jp/en/capacitor/alumi/manufacture.html.
- Kemet. (2019). How we make capacitors . Retrieved from https://ec.kemet.com/how-we-make-capacitors.
- Wang, Y., Song, Y., & Xia, Y. (2016). Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45(21), 5925–5950. doi:10.1039/C5CS00580A
- Forse, A. C., Merlet, C., Griffin, J. M., & Grey, C. P. (2016). New perspectives on the charging mechanisms of supercapacitors. Journal of the American Chemical Society, 138(18), 5731–5744. doi:10.1021/jacs.6b02115
- Sharma, P., & Bhatti, T. (2010). A review on electrochemical double-layer capacitors. Energy Conversion and Management, 51(12), 2901–2912. doi:10.1016/j.enconman.2010.06.031
- González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206. doi:10.1016/j.rser.2015.12.249
- Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where do batteries end and supercapacitors begin? Science, 343(6176), 1210–1211. doi:10.1126/science.1249625
- Brousse, T., Bélanger, D., & Long, J. W. (2015). To be or not to be pseudocapacitive? Journal of the Electrochemical Society, 162(5), A5185–A5189. doi:10.1149/2.0201505jes
- Erlichman, I. (1976). Method for manufacturing flat batteries. U.S. Patent No. 3993508A.
- Alford, J. A. & Creek, G. (1997). High power density double layer energy storage devices. U.S. Patent No. 5926361A.
- Ishida, S., Takenaka, H., NishimuraY, S., Egawa, Y., & Otsuka, K. (1997). Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors. European Patent No. 1027716A1.
- Mizobuchi, T., Shinsenji, T., & Yanase, M. (2001). Separator for electrochemical device and method for its production and electrochemical device. German Patent No. DE10196273T1.
- Tsushima, M., Morimoto, T., Hiratsuka, K., Kawasato, T., & Suhara, M. (1998). Electric double layer capacitor and process for its production. U.S. Patent No. 6402792B1.
- Yu, Z., Tetard, L., Zhai, L., & Thomas, J. (2015). Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 8(3), 702–730. doi:10.1039/C4EE03229B
- Frackowiak, E. (2007). Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 9(15), 1774. doi:10.1039/b618139m
- Zhang, L. L., Zhou, R., & Zhao, X. S. (2010). Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 20(29), 5983. arXiv:0706.1062v1. doi:10.1039/c000417k
- Yuan, C. Z., Gao, B., Shen, L. F., Yang, S. D., Hao, L., Lu, X. J., … Zhang, X. G. (2011). Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors. Nanoscale, 3(2), 529–545. doi:10.1039/C0NR00423E
- Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797–828. arXiv:1005.0853. doi:10.1039/C1CS15060J
- Emmerich, J. (2017). Technical summary: Supercapacitors . Retrieved from https://www.design-concepts.com/insights/supercapacitors.
- Market Research Future. (2019). Super capacitor market research report – Forecast 2022 . Tech. Rep. Market Research Future, Global. Retrieved from https://www.marketresearchfuture.com/reports/super-capacitor-market-2548.
- Yassine, M., & Fabris, D. (2017). Performance of commercially available supercapacitors. Energies, 10(9), 1340. doi:10.3390/en10091340
- Choi, K.-H., Ahn, D. B., & Lee, S.-Y. (2018). Current status and challenges in printed batteries: Toward form factor-free, monolithic integrated power sources. ACS Energy Letters, 3(1), 220–236. doi:10.1021/acsenergylett.7b01086
-
Hassan, C. M., & Peppas, N. a. (2000). Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In Biopolymers · PVA hydrogels, anionic polymerisation nanocomposites (Vol. 153, pp. 37–65). Berlin Heidelberg: Springer. doi:10.1007/3-540-46414-X_2
10.1007/3‐540‐46414‐X_2 Google Scholar
- Sun, G., An, J., Chua, C. K., Pang, H., Zhang, J., & Chen, P. (2015). Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochemistry Communications, 51, 33–36. doi:10.1016/j.elecom.2014.11.023
- Kovalska, E., & Kocabas, C. (2016). Organic electrolytes for graphene-based supercapacitor: Liquid, gel or solid. Materials Today Communications, 7, 155–160. doi:10.1016/j.mtcomm.2016.04.013
- Mousavi, M. P. S., Wilson, B. E., Kashefolgheta, S., Anderson, E. L., He, S., Bühlmann, P., & Stein, A. (2016). Ionic liquids as electrolytes for electrochemical double-layer capacitors: Structures that optimize specific energy. ACS Applied Materials & Interfaces, 8(5), 3396–3406. doi:10.1021/acsami.5b11353
- Choudhury, N. A., Sampath, S., & Shukla, A. K. (2009). Hydrogel-polymer electrolytes for electrochemical capacitors: An overview. Energy & Environmental Science, 2(1), 55–67. doi:10.1039/B811217G
- Blake, A. J., Kohlmeyer, R. R., Hardin, J. O., Carmona, E. A., Maruyama, B., Berrigan, J. D., … Durstock, M. F. (2017). 3D printable ceramic-polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Advanced Energy Materials, 7(14), 1602920. doi:10.1002/aenm.201602920
- Tõnurist, K., Thomberg, T., Jänes, A., Romann, T., Sammelselg, V., & Lust, E. (2013). Influence of separator properties on electrochemical performance of electrical double-layer capacitors. Journal of Electroanalytical Chemistry, 689, 8–20. doi:10.1016/j.jelechem.2012.11.024
- Zhu, Z. (2016). Effects of various binders on supercapacitor performances. International Journal of Electrochemical Science, 11(10), 8270–8279. doi:10.20964/2016.10.04
-
Maarof, H. I., Wan Daud, W. M. A., & Aroua, M. K. (2017). Effect of varying the amount of binder on the electrochemical characteristics of palm shell activated carbon. IOP Conference Series: Materials Science and Engineering, 210(1), 012011. doi:10.1088/1757-899X/210/1/012011
10.1088/1757‐899X/210/1/012011 Google Scholar
- Zhang, S., & Pan, N. (2015). Supercapacitors performance evaluation. Advanced Energy Materials, 5(6), 1401401. doi:10.1002/aenm.201401401
- Burke, A. (2009). Testing of supercapacitors: Capacitance, resistance, and energy energy and power capacity . Proceedings of ISEE'Cap09, Nantes, France, 1–42.
- Stoller, M. D., & Ruoff, R. S. (2010). Best practice methods for determining an electrode material's performance for ultracapacitors. Energy & Environmental Science, 3(9), 1294. arXiv:1005.0805. doi:10.1039/c0ee00074d
- Stryzhakova, D. (2012). SC testing methodology manual . Tech. Rep. IAPP Energy Caps. Retrieved from http://www.energycaps.eu/wp-content/uploads/2013/09/Testing-Methodologies-Manual.pdf.
- Allagui, A., Freeborn, T. J., Elwakil, A. S., & Maundy, B. J. (2016). Reevaluation of performance of electric double-layer capacitors from constant-current charge/discharge and cyclic voltammetry. Scientific Reports, 6(1), 38568. doi:10.1038/srep38568
- Balducci, A., Belanger, D., Brousse, T., Long, J. W., & Sugimoto, W. (2017). Perspective – A guideline for reporting performance metrics with electrochemical capacitors: From electrode materials to full devices. Journal of the Electrochemical Society, 164(7), A1487–A1488. doi:10.1149/2.0851707jes
- Mei, B.-A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical interpretations of Nyquist plots for EDLC electrodes and devices. The Journal of Physical Chemistry C, 122(1), 194–206. doi:10.1021/acs.jpcc.7b10582
- B. S. I. (BSI). (2015). BSI standards publication fixed resistors for use in electronic equipment part 1: Generic specification (Tech. Rep. BSI-BS EN 60115-1). BSI.
- Zhang, K., Gao, F., Xu, J., Wang, L., Zhang, Q., & Kong, J. (2017). Fabrication and dielectric properties of Ba0.6Sr0.4TiO3 / acrylonitrilebutadienestyrene resin composites. Journal of Materials Science: Materials in Electronics, 28(12), 8960–8968. doi:10.1007/s10854-017-6626-y
- Chadalavada, H., Samuel Raj, D., Ashok Kumar, R., & Sankar, K. (2015). Production lead time reduction in a battery manufacturing unit using lean manufacturing. International Journal of Engineering Research & Technology, 4(04), 842–847.
- Bikas, H., Stavropoulos, P., & Chryssolouris, G. (2016). Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology, 83(1–4), 389–405. doi:10.1007/s00170-015-7576-2
- Fieber, L., Evans, J. D., Huang, C., & Grant, P. S. (2019). Single-operation, multi-phase additive manufacture of electro-chemical double layer capacitor devices. Additive Manufacturing, 28, 344–353.
- Zhang, J., & Zhao, X. S. (2012). On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem, 5(5), 818–841. doi:10.1002/cssc.201100571
- Ariga, K., Yamauchi, Y., Rydzek, G., Ji, Q., Yonamine, Y., Wu, K. C.-W., & Hill, J. P. (2014). Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chemistry Letters, 43(1), 36–68. doi:10.1246/cl.130987
- Xu, Q., Lv, Y., Dong, C., Sreeprased, T. S., Tian, A., Zhang, H., … Li, N. (2015). Three-dimensional micro/nanoscale architectures: Fabrication and applications. Nanoscale, 7(25), 10883–10895. doi:10.1039/C5NR02048D
- Raney, J. R., & Lewis, J. A. (2015). Printing mesoscale architectures. MRS Bulletin, 40(11), 943–950. doi:10.1557/mrs.2015.235
- Chiu, W., & Yu, K. (2008). Direct digital manufacturing of three-dimensional functionally graded material objects. Computer-Aided Design, 40(12), 1080–1093. doi:10.1016/j.cad.2008.10.002
- Li, Y., Fu, Z.-Y., & Su, B.-l. (2012). Hierarchically structured porous materials for energy conversion and storage. Advanced Functional Materials, 22(22), 4634–4667. doi:10.1002/adfm.201200591
- Qi, Y., Jang, T., Ramadesigan, V., Schwartz, D. T., & Subramanian, V. R. (2017). Is there a benefit in employing graded electrodes for lithium-ion batteries? Journal of the Electrochemical Society, 164(13), A3196–A3207. doi:10.1149/2.1051713jes
- Cheng, C., Drummond, R., Duncan, S. R., & Grant, P. S. (2019). Micro-scale graded electrodes for improved dynamic and cycling performance of Li-ion batteries. Journal of Power Sources, 413, 59–67. doi:10.1016/j.jpowsour.2018.12.021
- Kyeremateng, N. A., Brousse, T., & Pech, D. (2016). Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology, 12(1), 7–15. doi:10.1038/nnano.2016.196
-
Attaran, M. (2017). Additive manufacturing: the most promising technology to alter the supply chain and logistics. Journal of Service Science and Management, 10(03), 189–206. doi:10.4236/jssm.2017.103017
10.4236/jssm.2017.103017 Google Scholar
-
Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering, 2012, 1–10. arXiv:208760. doi:10.5402/2012/208760
10.5402/2012/208760 Google Scholar
- Vaezi, M., Seitz, H., & Yang, S. (2013). A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology, 67(5-8), 1721–1754. doi:10.1007/s00170-012-4605-2
- T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering 143 (December 2017) (2018) 172–196. doi:10.1016/j.compositesb.2018.02.012.
- Singh, S., Ramakrishna, S., & Singh, R. (2017). Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25, 185–200. doi:10.1016/j.jmapro.2016.11.006
- Bourell, D., Kruth, J. P., Leu, M., Levy, G., Rosen, D., Beese, A. M., & Clare, A. (2017). Materials for additive manufacturing. CIRP Annals, 66(2), 659–681. doi:10.1016/j.cirp.2017.05.009
- Klahn, C., Leutenecker, B., & Meboldt, M. (2015). Design strategies for the process of additive manufacturing. Procedia CIRP, 36, 230–235. doi:10.1016/j.procir.2015.01.082
- Wang, Y., Blache, R., & Xu, X. (2017). Selection of additive manufacturing processes. Rapid Prototyping Journal, 23(2), 434–447. doi:10.1108/RPJ-09-2015-0123
- Z.-X. Low, Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe, D. A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, Journal of Membrane Science 523 (October 2016) (2017) 596–613. doi:10.1016/j.memsci.2016.10.006.
- Redwood, B., Schöffer, F., Garret, B., Fadell, T., & Hubs, D. (2018). The 3D printing handbook: Technologies, design and applications. 3D Hubs. Retrieved from https://books.google.co.uk/books?id=R3OvswEACAAJ
- ASTM International. (2013). F2792-12a – Standard terminology for additive manufacturing technologies. Rapid Manufacturing Association (2013), 10–12. arXiv:1011.1669v3. doi:10.1520/F2792-12A.
- P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, B. J. Wiley, 3D printing electronic components and circuits with conductive thermoplastic filament, Additive Manufacturing 18 (2017) (2017) 156–163. doi:10.1016/j.addma.2017.10.002.
- Dichtl, C., Sippel, P., & Krohns, S. (2017). Dielectric properties of 3D printed polylactic acid. Advances in Materials Science and Engineering, 2017, 1–10. doi:10.1155/2017/6913835
- Wu, Y., Isakov, D., & Grant, P. (2017). Fabrication of composite filaments with high dielectric permittivity for fused deposition 3D printing. Materials, 10(10), 1218. doi:10.3390/ma10101218
- Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z., & Sun, Z. (2015). 3D printable graphene composite. Scientific Reports, 5(1), 11181. doi:10.1038/srep11181
- Zhang, D., Chi, B., Li, B., Gao, Z., Du, Y., Guo, J., & Wei, J. (2016). Fabrication of highly conductive graphene flexible circuits by 3D printing. Synthetic Metals, 217, 79–86. doi:10.1016/j.synthmet.2016.03.014
- Areir, M., Xu, Y., Zhang, R., Harrison, D., Fyson, J., & Pei, E. (2017). A study of 3D printed active carbon electrode for the manufacture of electric double-layer capacitors. Journal of Manufacturing Processes, 25, 351–356. doi:10.1016/j.jmapro.2016.12.020
- Tanwilaisiri, A., Xu, Y., Zhang, R., Harrison, D., Fyson, J., & Areir, M. (2018). Design and fabrication of modular supercapacitors using 3D printing. Journal of Energy Storage, 16, 1–7. doi:10.1016/j.est.2017.12.020
- Carrico, J. D., Traeden, N. W., Aureli, M., & Leang, K. K. (2015). Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Materials and Structures, 24(12), 125021. doi:10.1088/0964-1726/24/12/125021
- Philamore, H., Rossiter, J., Walters, P., Winfield, J., & Ieropoulos, I. (2015). Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. Journal of Power Sources, 289, 91–99. doi:10.1016/j.jpowsour.2015.04.113
- King, B. H., Morissette, S. L., Denham, H., Cesarano, J., & Dimos, D. (1998, August). Influence of rheology on deposition behavior of ceramic pastes in direct fabrication systems. Solid Freeform Fabrication Proceedings, 391–398.
- M. Areir, Y. Xu, D. Harrison, J. Fyson, 3D printing of highly flexible supercapacitor designed for wearable energy storage, Materials Science and Engineering B 226 (August) (2017) 29–38. doi:10.1016/j.mseb.2017.09.004.
- Muth, J. T., Vogt, D. M., Truby, R. L., Mengüç, Y., Kolesky, D. B., Wood, R. J., & Lewis, J. A. (2014). Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 26(36), 6307–6312. arXiv:1111.4970. doi:10.1002/adma.201400334
- Ho, C. C., Evans, J. W., & Wright, P. K. (2010). Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. Journal of Micromechanics and Microengineering, 20(10), 104009. doi:10.1088/0960-1317/20/10/104009
- Wei, M., Zhang, F., Wang, W., Alexandridis, P., Zhou, C., & Wu, G. (2017). 3D direct writing fabrication of electrodes for electrochemical storage devices. Journal of Power Sources, 354, 134–147. doi:10.1016/j.jpowsour.2017.04.042
- Nathan-Walleser, T., Lazar, I.-M., Fabritius, M., Tölle, F. J., Xia, Q., Bruchmann, B., … Mülhaupt, R. (2014). 3D micro-extrusion of graphene-based active electrodes: Towards high-rate AC line filtering performance electrochemical capacitors. Advanced Functional Materials, 24(29), 4706–4716. doi:10.1002/adfm.201304151
- Yang, Z., Chabi, S., Xia, Y., & Zhu, Y. (2015). Preparation of 3D graphene-based architectures and their applications in supercapacitors. Progress in Natural Science: Materials International, 25(6), 554–562. doi:10.1016/j.pnsc.2015.11.010
- Zhu, C., Liu, T., Qian, F., Han, T. Y.-J., Duoss, E. B., Kuntz, J. D., … Li, Y. (2016). Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Letters, 16(6), 3448–3456. doi:10.1021/acs.nanolett.5b04965
- Yao, B., Chandrasekaran, S., Zhang, J., Xiao, W., Qian, F., Zhu, C., … Li, Y. (2019). Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule, 3(2), 459–470. doi:10.1016/j.joule.2018.09.020
- Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. (2016). Pristine graphene aerogels by room-temperature freeze gelation. Advanced Materials, 28(36), 7993–8000. doi:10.1002/adma.201602393
- Yu, W., Zhou, H., Li, B. Q., & Ding, S. (2017). 3D printing of carbon nanotubes-based microsupercapacitors. ACS Applied Materials & Interfaces, 9(5), 4597–4604. doi:10.1021/acsami.6b13904
- Yang, Y., Chen, Z., Song, X., Zhu, B., Hsiai, T., Wu, P.-I., … Shung, K. K. (2016). Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy, 22, 414–421. doi:10.1016/j.nanoen.2016.02.045
- Bartolo, P., & Gaspar, J. (2008). Metal filled resin for stereolithography metal part. CIRP Annals, 57(1), 235–238. doi:10.1016/j.cirp.2008.03.124
- Chen, Q., Xu, R., He, Z., Zhao, K., & Pan, L. (2017). Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography. Journal of the Electrochemical Society, 164(9), A1852–A1857. doi:10.1149/2.0651709jes
- Zekoll, S., Marriner-Edwards, C., Hekselman, A. K. O., Kasemchainan, J., Kuss, C., Armstrong, D. E. J., … Bruce, P. G. (2018). Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 11(1), 185–201. doi:10.1039/C7EE02723K
- Cooperstein, I., Layani, M., & Magdassi, S. (2015). 3D printing of porous structures by UV-curable O/W emulsion for fabrication of conductive objects. Journal of Materials Chemistry C, 3(9), 2040–2044. doi:10.1039/C4TC02215G
- Ning, H., Pikul, J. H., Zhang, R., Li, X., Xu, S., Wang, J., … Braun, P. V. (2015). Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proceedings of the National Academy of Sciences, 112(21), 6573–6578. doi:10.1073/pnas.1423889112
- Sing, S. L., Yeong, W. Y., Wiria, F. E., Tay, B. Y., Zhao, Z., Zhao, L., … Yang, S. (2017). Direct selective laser sintering and melting of ceramics: A review. Rapid Prototyping Journal, 23(3), 611–623. doi:10.1108/RPJ-11-2015-0178
- Ambrosi, A., Moo, J. G. S., & Pumera, M. (2016). Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Advanced Functional Materials, 26(5), 698–703. doi:10.1002/adfm.201503902
- Zhao, C., Wang, C., Gorkin, R., Beirne, S., Shu, K., & Wallace, G. G. (2014). Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochemistry Communications, 41, 20–23. doi:10.1016/j.elecom.2014.01.013
- Liu, X., Jervis, R., Maher, R. C., Villar-Garcia, I. J., Naylor-Marlow, M., Shearing, P. R., … Wu, B. (2016). 3D-printed structural pseudocapacitors. Advanced Materials Technologies, 1(9), 1600167. doi:10.1002/admt.201600167
- Goodridge, R., Tuck, C., & Hague, R. (2012). Laser sintering of polyamides and other polymers. Progress in Materials Science, 57(2), 229–267. doi:10.1016/j.pmatsci.2011.04.001
- Schmidt, M., Pohle, D., & Rechtenwald, T. (2007). Selective laser sintering of PEEK. CIRP Annals, 56(1), 205–208. doi:10.1016/j.cirp.2007.05.097
- Mo, J., Steen, S. M., Zhang, F.-Y., Dehoff, R. R., Peter, W. H., Toops, T. J., & J. B. G. Jr. (2014). Development of liquid/gas diffusion layers with low-cost additive manufacturing (Tech. Rep.).
- Koyano, T., Hosokawa, A., Igusa, R., & Ueda, T. (2017). Electrochemical machining using porous electrodes fabricated by powder bed fusion additive manufacturing process. CIRP Annals, 66(1), 213–216. doi:10.1016/j.cirp.2017.04.127
- Kang, B. J., Lee, C. K., & Oh, J. H. (2012). All-inkjet-printed electrical components and circuit fabrication on a plastic substrate. Microelectronic Engineering, 97(4023), 251–254. doi:10.1016/j.mee.2012.03.032
- Lim, J., Kim, J., Yoon, Y. J., Kim, H., Yoon, H. G., Lee, S.-N., & Kim, J. (2012). All-inkjet-printed metal-insulator-metal (MIM) capacitor. Current Applied Physics, 12(Suppl. 1), e14–e17. doi:10.1016/j.cap.2011.04.035
- Liu, Y., Cui, T., & Varahramyan, K. (2003). All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electronics, 47(9), 1543–1548. doi:10.1016/S0038-1101(03)00082-0
- Graddage, N., Chu, T.-Y., Ding, H., Py, C., Dadvand, A., & Tao, Y. (2016). Inkjet printed thin and uniform dielectrics for capacitors and organic thin film transistors enabled by the coffee ring effect. Organic Electronics, 29, 114–119. doi:10.1016/j.orgel.2015.11.039
- Kelly, A. G., Finn, D., Harvey, A., Hallam, T., & Coleman, J. N. (2016). All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Applied Physics Letters, 109(2), 023107. doi:10.1063/1.4958858
- Worsley, R., Pimpolari, L., McManus, D., Ge, N., Ionescu, R., Wittkopf, J. A., … Casiraghi, C. (2019). All-2D material inkjet-printed capacitors: Toward fully printed integrated circuits. ACS Nano, 13(1), 54–60. doi:10.1021/acsnano.8b06464
- Saleh, E., Woolliams, P., Clarke, B., Gregory, A., Greedy, S., Smartt, C., … Tuck, C. (2017). 3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications. Additive Manufacturing, 13, 143–148. doi:10.1016/j.addma.2016.10.002
- Perelaer, J., Smith, P. J., Mager, D., Soltman, D., Volkman, S. K., Subramanian, V., … Schubert, U. S. (2010). Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 20(39), 8446. doi:10.1039/c0jm00264j
- Venkata, K. R. R., Venkata, A. K., Karthik, P. S., & Singh, S. P. (2015). Conductive silver inks and their applications in printed and flexible electronics. RSC Advances, 5(95), 77760–77790. doi:10.1039/C5RA12013F
- Correia, V., Mitra, K., Castro, H., Rocha, J., Sowade, E., Baumann, R., & Lanceros-Mendez, S. (2018). Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. Journal of Manufacturing Processes, 31, 364–371. doi:10.1016/j.jmapro.2017.11.016
-
MacCurdy, R., Katzschmann, R., Kim, Y., & Rus, D. (2016). Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids. 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3878–3885). IEEE. arXiv: 1512.03744. doi:10.1109/ICRA.2016.7487576.
10.1109/ICRA.2016.7487576 Google Scholar
- Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., & Gruner, G. (2009). Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Letters, 9(5), 1872–1876. doi:10.1021/nl8038579
- Choi, K.-H., Yoo, J., Lee, C. K., & Lee, S.-Y. (2016). All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy & Environmental Science, 9(9), 2812–2821. doi:10.1039/C6EE00966B
- Delannoy, P.-E., Riou, B., Lestriez, B., Guyomard, D., Brousse, T., & Le Bideau, J. (2015). Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. Journal of Power Sources, 274, 1085–1090. doi:10.1016/j.jpowsour.2014.10.164
- Singh, N., Galande, C., Miranda, A., Mathkar, A., Gao, W., Reddy, A. L. M., … Ajayan, P. M. (2012). Paintable battery. Scientific Reports, 2(1), 481. doi:10.1038/srep00481
- Li, J., Ye, F., Vaziri, S., Muhammed, M., Lemme, M. C., & Östling, M. (2013). Efficient inkjet printing of graphene. Advanced Materials, 25(29), 3985–3992. doi:10.1002/adma.201300361
- Huang, C., & Grant, P. S. (2013). One-step spray processing of high power all-solid-state supercapacitors. Scientific Reports, 3(1), 2393. doi:10.1038/srep02393
- Huang, C., Zhang, J., Young, N. P., Snaith, H. J., & Grant, P. S. (2016). Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications. Scientific Reports, 6(1), 25684. doi:10.1038/srep25684
- Pech, D., Brunet, M., Taberna, P.-L., Simon, P., Fabre, N., Mesnilgrente, F., … Durou, H. (2010). Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. Journal of Power Sources, 195(4), 1266–1269. doi:10.1016/j.jpowsour.2009.08.085
- Delannoy, P.-E., Riou, B., Brousse, T., Le Bideau, J., Guyomard, D., & Lestriez, B. (2015). Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries. Journal of Power Sources, 287, 261–268. doi:10.1016/j.jpowsour.2015.04.067
- Gaytan, S., Cadena, M., Karim, H., Delfin, D., Lin, Y., Espalin, D., … Wicker, R. (2015). Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceramics International, 41(5), 6610–6619. doi:10.1016/j.ceramint.2015.01.108
- Gonzalez, J., Mireles, J., Lin, Y., & Wicker, R. (2016). Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceramics International, 42(9), 10559–10564. doi:10.1016/j.ceramint.2016.03.079
- Bai, Y., Williams, C. B. (2014). An exploration of binder jetting of copper (Tech. Rep.). doi:10.1108/RPJ-12-2014-0180.
- Azhari, A., Marzbanrad, E., Yilman, D., Toyserkani, E., & Pope, M. A. (2017). Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon, 119, 257–266. doi:10.1016/j.carbon.2017.04.028
- Czyżewski, J., Burzyński, P., Gaweł, K., & Meisner, J. (2009). Rapid prototyping of electrically conductive components using 3D printing technology. Journal of Materials Processing Technology, 209(12–13), 5281–5285. doi:10.1016/j.jmatprotec.2009.03.015
- Turner, B. N., Strong, R., & Gold, S. A. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3), 192–204. doi:10.1108/RPJ-01-2013-0012
- Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Advances in Manufacturing, 3(1), 42–53. arXiv:1011.1669v3. doi:10.1007/s40436-014-0097-7
- Turner, B. N., & Gold, S. A. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, 21(3), 250–261. arXiv:1011.1669v3. doi:10.1108/RPJ-02-2013-0017
- Anitha, R., Arunachalam, S., & Radhakrishnan, P. (2001). Critical parameters influencing the quality of prototypes in fused deposition modelling. Journal of Materials Processing Technology, 118(1-3), 385–388. doi:10.1016/S0924-0136(01)00980-3
-
Ćwikła, G., Grabowik, C., Kalinowski, K., Paprocka, I., & Ociepka, P. (2017). The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conference Series: Materials Science and Engineering, 227(1), 012033. doi:10.1088/1757-899X/227/1/012033
10.1088/1757‐899X/227/1/012033 Google Scholar
-
Alafaghani, A., Qattawi, A., Alrawi, B., & Guzman, A. (2017). Experimental optimization of fused deposition modelling processing parameters: A design-for-manufacturing approach. Procedia Manufacturing, 10, 791–803. doi:10.1016/j.promfg.2017.07.079
10.1016/j.promfg.2017.07.079 Google Scholar
- Bowyer, A. & Olliver, V. (2019). RepRap. Retrieved from https://reprap.org/
- Gutowski, T., Jiang, S., Cooper, D., Corman, G., Hausmann, M., Manson, J. A., … Sekulic, D. P. (2017). Note on the rate and energy efficiency limits for additive manufacturing. Journal of Industrial Ecology, 21, S69–S79. doi:10.1111/jiec.12664
- Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials Today, 7(7–8), 32–39. doi:10.1016/S1369-7021(04)00344-X
- Lewis, J. A. (2006). Direct ink writing of 3D functional materials. Advanced Functional Materials, 16(17), 2193–2204. doi:10.1002/adfm.200600434
- Hon, K., Li, L., & Hutchings, I. (2008). Direct writing technology – Advances and developments. CIRP Annals, 57(2), 601–620. doi:10.1016/j.cirp.2008.09.006
- Cesarano, J. (1998). A review of robocasting technology. MRS Proceedings, 542, 133. doi:10.1557/PROC-542-133
- Kuang, M., Wang, L., & Song, Y. (2014). Controllable printing droplets for high-resolution patterns. Advanced Materials, 26(40), 6950–6958. doi:10.1002/adma.201305416
- Lessing, J., Glavan, A. C., Walker, S. B., Keplinger, C., Lewis, J. A., & Whitesides, G. M. (2014). Inkjet printing of conductive inks with high lateral resolution on omniphobic R F paper for paper-based electronics and MEMS. Advanced Materials, 26(27), 4677–4682. doi:10.1002/adma.201401053
- Grouchko, M., Kamyshny, A., Mihailescu, C. F., Anghel, D. F., & Magdassi, S. (2011). Conductive inks with a built-in mechanism that enables sintering at room temperature. ACS Nano, 5(4), 3354–3359. doi:10.1021/nn2005848
- Sun, K., Wei, T.-S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., & Lewis, J. A. (2013). 3D printing of interdigitated Li-ion microbattery architectures. Advanced Materials, 25(33), 4539–4543. doi:10.1002/adma.201301036
- Fu, K., Wang, Y., Yan, C., Yao, Y., Chen, Y., Dai, J., … Hu, L. (2016). Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Advanced Materials, 28(13), 2587–2594. doi:10.1002/adma.201505391
- de Gans, B.-J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: State of the art and future developments. Advanced Materials, 16(3), 203–213. doi:10.1002/adma.200300385
- de Gans, B.-J., Kazancioglu, E., Meyer, W., & Schubert, U. S. (2004). Ink-jet printing polymers and polymer libraries using micropipettes. Macromolecular Rapid Communications, 25(1), 292–296. doi:10.1002/marc.200300148
- Sculpteo. (2019). 3D printing speed. Retrieved from https://www.sculpteo.com/en/glossary/3d-printing-speed-definition/.
- Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O'Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22–37. doi:10.1016/j.mattod.2017.07.001
-
Vaezi, M., Chianrabutra, S., Mellor, B., & Yang, S. (2013). Multiple material additive manufacturing – Part 1: A review. Virtual and Physical Prototyping, 8(1), 19–50. doi:10.1080/17452759.2013.778175
10.1080/17452759.2013.778175 Google Scholar
- A. Bandyopadhyay, B. Heer, Additive manufacturing of multi-material structures, Materials Science & Engineering R: Reports 129 (April) (2018) 1–16. doi:10.1016/j.mser.2018.04.001.
- Gao, W., Singh, N., Song, L., Liu, Z., Reddy, A. L. M., Ci, L., … Ajayan, P. M. (2011). Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 6(8), 496–500. doi:10.1038/nnano.2011.110
- Li, S., Wang, X., Xing, H., & Shen, C. (2013). Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes. Journal of Micromechanics and Microengineering, 23(11), 114013. doi:10.1088/0960-1317/23/11/114013
- Yan, W., Thai, M. L., Dutta, R., Li, X., Xing, W., & Penner, R. M. (2014). A lithographically patterned capacitor with horizontal nanowires of length 2.5 mm. ACS Applied Materials & Interfaces, 6(7), 5018–5025. doi:10.1021/am500051d
- Qi, D., Liu, Y., Liu, Z., Zhang, L., & Chen, X. (2017). Design of architectures and materials in in-plane micro-supercapacitors: Current status and future challenges. Advanced Materials, 29(5), 1602802. doi:10.1002/adma.201602802