Multicomponent and Multimaterials Printing
A Case Study of Embedded Ceramic Sensors in Metallic Pipes
Cesar A. Terrazas
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorMohammad S. Hossain
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorYirong Lin
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorRyan B. Wicker
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorCesar A. Terrazas
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorMohammad S. Hossain
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorYirong Lin
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorRyan B. Wicker
W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX, USA
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
A material system typically requires the use of multiple materials such as polymer, metal, and ceramic integrating together to achieve specific functions. With the maturation of AM technologies, the fabrication of multimaterial or multicomponent material system has become a reality. Additive manufacturing (AM) techniques, traditionally known as 3D printing, are processes that enable the manufacturing of components in a layer-by-layer fashion. Different material systems, including polymeric, metallic, and ceramic have been processed to demonstrate multicomponent, multimaterial, and multifunctionality capability. This chapter presents a case study on smart coupling prototype produced by embedding a piezoelectric sensor within a metal component that was fabricated through a “stop and go”procedure using the electron beam powder bed fusion AM technique. It explores the impacts of the AM and performance of the multicomponent printed device: compressive force sensing, temperature sensing and crystalline structure analysis.
References
- Medina, F., Lopes, A. J., Inamdar, A. V., Hennessey, R., Palmer, J. A., Chavez, B. D., & Wicker, R. B. (2005, May 10–12). Integrating multiple rapid manufacturing technologies for developing advanced customized functional devices. Rapid Prototyping & Manufacturing 2005 Conference Proceedings, Rapid Prototyping Association of the Society of Manufacturing Engineers. Hyatt Regency Dearborn, Dearborn, MI.
- Medina, F., Lopes, A. J., Inamdar, A. V., Hennessey, R., Palmer, J. A., Chavez, B. D., … Wicker, R. B. (2005). Hybrid manufacturing: Integrating direct-write and stereolithography. Proceedings of the 2005 Solid Freeform Fabrication. Austin, TX: The University of Texas at Austin. Retrieved from https://repositories.lib.utexas.edu/handle/2152/80043
- Lopes, A. J., Navarrete, M., Medina, F., Palmer, J. A., MacDonald, E., & Wicker, R. B. (2006). Expanding rapid prototyping for electronic systems integration of arbitrary form. Proceedings of the 2006 Solid Freeform Fabrication. Austin, TX: The University of Texas at Austin. Retrieved from https://www.sffsymposium.org/
- Espalin, D., Muse, D. W., MacDonald, E., & Wicker, R. B. (2014). 3D printing multifunctionality: Structures with electronics. International Journal of Advanced Manufacturing Technology, 72, 963–978. doi:10.1007/s00170-014-5717-7
- Aguilera, E., Ramos, J., Espalin, D., Cedillos, F., Muse, D., Wicker, R. & Macdonald, E. (2013). 3D printing of electro mechanical systems. Proceedings of the Solid Freeform Fabrication Symposium, 950–961.
- Li, J., Monaghan, T., Masurtschak, S., Bournias-Varotsis, A., Friel, R. J., & Harris, R. A. (2015). Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials. Materials Science and Engineering A, 639, 474–481. doi:10.1016/j.msea.2015.05.019
- Siggard, E. J., Madhusoodanan, A. S., Stucker, B., & Eames, B. (2006). Structurally embedded electrical systems using ultrasonic consolidation (UC). 17th Solid Freeform Fabrication Symposium. SFF 2006, 70–83. University of Texas, Austin (freeform).
- Robinson, C. J., Stucker, B., Lopes, A. J., Wicker, R., & Palmer, J. A. (2006). Integration of direct-write (DW) and ultrasonic consolidation (UC) technologies to create advanced structures with embedded electrical circuitry. 17th Solid Freeform Fabrication Symposium. SFF 2006. University of Texas, Austin (freeform).
- Dass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings, 9, 418. doi:10.3390/COATINGS9070418
- Li, W., Ghazanfari, A., Mcmillen, D., Leu, M. C., Hilmas, G. E., & Watts, J. (2017). Fabricating ceramic components with water dissolvable support structures by the ceramic on-demand extrusion process. CIRP Annals, 66(1), 225–228.
- Li, W., Ghazanfari, A., Mcmillen, D., Scherff, A., Leu, M. C., & Hilmas, G. E. (2017). Fabricating zirconia parts with organic support material by the ceramic on demand extrusion. Solid freeform fabrication Symposium. Austin, TX: The University of Texas at Austin.
- Yang, L., Tang, S., Li, G., Qian, L., Mei, J., Jiang, W., & Fan, Z. (2019). Layered extrusion forming of complex ceramic structures using starch as removable support. Ceramics International, 45(17), 21843–21850.
- Xu, C., Quinn, B., Lebel, L. L., Therriault, D., & L'Espérance, G. (2019). Multi-material direct ink writing (DIW) for complex 3D metallic structures with removable supports. ACS Applied Materials & Interfaces, 11(8), 8499–8506.
- Terrazas, C. A., Mireles, J., Gaytan, S. M., Morton, P. A., Hinojos, A., Frigola, P., & Wicker, R. B. (2015). Fabrication and characterization of high-purity niobium using electron beam melting additive manufacturing technology. International Journal of Advanced Manufacturing Technology, 84(5–8), 1115–1126. doi:10.1007/s00170-015-7767-x
- Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, L. E., & Wicker, R. B. (2016). Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology. Materials and Design, 94, 17–27. doi:10.1016/J.MATDES.2016.01.041
- Segura, I. A., Murr, L. E., Terrazas, C. A., Bermudez, D., Mireles, J., Injeti, V. S. V., Li, K., Yu, B., Misra, R. D. K., & Wicker, R. B. (2018). Grain boundary and microstructure engineering of Inconel 690 cladding on stainless-steel 316L using electron powder bed fusion additive manufacturing. J. Mater. Sci. Technol.
- Hossain, M. S., Gonzalez, J. A., Hernandez, R. M., Shuvo, M. A. I., Mireles, J., Choudhuri, A., … Keck, W. M. (2016). Fabrication of smart parts using powder bed fusion additive manufacturing technology. Additive Manufacturing, 10, 58–66. doi:10.1016/j.addma.2016.01.001
-
Yoshida, Y., Kashiwai, Y., Murakami, E., Ishida, S., & Hashiguchi, N. (2002, June). Development of the monitoring system for slope deformations with fiber Bragg grating arrays. In Smart structures and materials 2002: Smart sensor technology and measurement systems (Vol. 4694, pp. 296–303). International Society for Optics and Photonics.
10.1117/12.472632 Google Scholar
- Yang, J. (2013). A harsh environment wireless pressure sensing solution utilizing high temperature electronics. Sensors, 13(3), 2719–2734. doi:10.3390/s130302719
- Zhang, S., & Yu, F. (2011). Piezoelectric materials for high temperature sensors. Journal of the American Ceramic Society, 94(10), 3153–3170. doi:10.1111/j.1551-2916.2011.04792.x
- Doctor, S. R. (2007). Nuclear power plant NDE challenges — Past, present, and future. AIP Conference Proceedings, 17–31. AIP. DOI: 10.1063/1.2717950.
- Tressler, J. F., Alkoy, S., & Newnham, R. E. (1998). Piezoelectric sensors and sensor materials. Journal of Electroceramics, 2(4), 257–272. doi:10.1023/A:1009926623551
-
A. A. Vives (Ed.) (2008). Piezoelectric transducers and applications. Berlin: Springer. doi:10.1007/978-3-540-77508-9.
10.1007/978‐3‐540‐77508‐9. Google Scholar
- Sirohi, J., & Chopra, I. (2000). Fundamental understanding of piezoelectric strain sensors. Journal of Intelligent Material Systems and Structures, 11(4), 246–257. doi:10.1106/8BFB-GC8P-XQ47-YCQ0
- Webster, G. J. (2014). The measurement, instrumentation and sensors handbook ( 2nd ed.). CRC Press.
- Rebillat, M., Guskov, M., Balmes, E., & Mechbal, N. (2016). Simultaneous influence of static load and temperature on the electromechanical signature of piezoelectric elements bonded to composite aeronautic structures. Journal of Vibration and Acoustics, 138(6), 064504. doi:10.1115/1.4034375
- Cavalloni, C., Sommer, R., & Waser, M. (2011). D1. 1-High-temperature stability of new single crystal piezoelectric sensors. Proceedings of the SENSOR-TEST Conferences, 520–525.
- Lescher, F., Camblong, H., Curea, O., & Briand, R. (2007). LPV control of wind turbines for fatigue loads reduction using intelligent micro sensors. Proceedings of American Control Conference, ACC'07, 6061–6066. IEEE.
- MacDonald, E., & Wicker, R. (2016). Multiprocess 3D printing for increasing component functionality. Science, 353(6307), aaf2093. doi:10.1126/science.aaf2093
- Pille, C. (2010). In-process-embedding of piezo sensors and RFID transponders into cast parts for autonomous manufacturing logistics. Smart Systems Integration, 1–10.
- Rai, R., Campbell, M., & Wood, K. (2004). Extracting product performance by embedding sensors in SFF prototypes. Proceedings of International Solid Freeform Fabrication Symposium, 366–376. Austin, TX.
- Li, Y., Liu, W., Feng, Y., & Zhang, H. (2012). Ultrasonic embedding of nickel-coated fiber Bragg grating in aluminum and associated sensing characteristics. Optical Fiber Technology, 18(1), 7–13. doi:10.1016/J.YOFTE.2011.09.004
-
Hahnlen, R., & Dapino, M. J. (2010). Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing. In M. B. McMickell & K. M. Farinholt (Eds.), Industrial and commercial applications of smart structures technologies 2010 (Vol. 7645, pp. 764500). International Society for Optics and Photonics. doi:10.1117/12.848853
10.1117/12.848853 Google Scholar
- Cheng, X., Datta, A., Choi, H., & Li, X. (2006, October). Metal embedded micro sensors for manufcaturing applications. 2006 5th IEEE Conference on Sensors, 1506–1510. IEEE. doi:10.1109/ICSENS.2007.355920.
-
Murr, L. E. (2015). Handbook of materials structures, properties, processing and performance ( 1st ed.). Springer.
10.1007/978-3-319-01815-7 Google Scholar
- Lee, H. J., Zhang, S., Bar-Cohen, Y., & Sherrit, S. (2014). High temperature, high power piezoelectric composite transducers. Sensors, 14(8), 14526–14552. doi:10.3390/s140814526
-
Langmuir, I. (1913). The vapor pressure of metallic tungsten. Physical Review, 2(5), 329–342. doi:10.1103/PhysRev.2.329.
10.1103/PhysRev.2.329. Google Scholar
- Cotronics Corp. (2008). 960 Machinable Alumina. Retrieved from http://www.cotronics.com/vo/cotr/cm_machinable.htm. Viewed January 2018.
- Prewitt, A. D., & Jones, J. L. (2011). Effects of the poling process on piezoelectric properties in lead zirconate titanate ceramics. Ferroelectrics, 419(1), 39–45. doi:10.1080/00150193.2011.594725.
-
Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials ( 1st ed.). Springer Science & Business Media.
10.1007/978-3-540-68427-5 Google Scholar
- Piezo Systems. PSI-5A4E Piezoceramic Sheets. Retrieved from http://www.piezo.com/prodsheet2sq5H.html. Viewed February 2018.
- Georges Sabat, R., Mukherjee, B. K., Ren, W., & Yang, G. (2007). Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. Journal of Applied Physics, 101(6), 064111. doi:10.1063/1.2560441
- Fan, H., & Kim, H. E. (2002). Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate. Journal of Applied Physics, 91(1), 317–322.