Additive Manufacturing of Functional Ceramics
José Fernando Valera-Jiménez
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorJuan Ramón Marín-Rueda
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Print3D Solutions, Albacete, Spain
Search for more papers by this authorJuan Carlos Pérez-Flores
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorMiguel Castro-García
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorJesús Canales-Vázquez
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorJosé Fernando Valera-Jiménez
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorJuan Ramón Marín-Rueda
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Print3D Solutions, Albacete, Spain
Search for more papers by this authorJuan Carlos Pérez-Flores
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorMiguel Castro-García
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorJesús Canales-Vázquez
3D-ENERMAT, Materials for Energy & 3D Printing Lab, Renewable Energy Research Institute, Universidad de Castilla-La Mancha, Albacete, Spain
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
From a mere economic point of view, analysing the market forecasts for both technical ceramics and additive manufacturing points to an emerging field that can be considered as a business opportunity for investors. This chapter analyses five 3Dprinting technologies that can be used for the production of technical ceramics: extrusion-based, photopolimerization, laser-based, jetting, and lamination object modelling (LOM). LOM was originally used in the production of metal and ceramic parts. Extrusion is one of the most used technologies for ceramics shaping. Photopolymerization involves several technologies which consist of a resin via UV light, originally from a laser SLA. Laser-based technologies can be classified according to the physical process used to consolidate the initial ceramic powder. Jetting technologies are usually referred as inkjet. As for ceramics, printheads may jet directly inks containing ceramics or, alternatively, they may jet a binder-based ink onto a powder bed.
References
- 3 Printing Industry. The evolution of 3D printing: Past, present and future. Retrieved from https://3dprintingindustry.com/news/evolution-3d-printing-past-present-future-90605/
- Advanced Ceramics Market Size, Share & Trends Analysis Report By Material (Alumina, Titanate), By Product (Monolithic, Coatings), By Application, By End Use, By Region, and Segment Forecasts , 2019–2025.
- SmarTech Markets Publishing LLC. (2018, September). Ceramics additive manufacturing markets 2017–2028 (ID: 4649506 Report). Crozet, VA: 3DR Holdings.
- Oh, Y., Bharambe, V., Mummareddy, B., Martin, J., McKnight, J., Abraham, M. A., … Adams, J. J. (2019). Microwave dielectric properties of zirconia fabricated using NanoParticle Jetting™. Additive Manufacturing, 27, 586–594.
- Griffin, C., Daufenbach, J., & McMillin, S. (1994). Desktop manufacturing: LOM vs. pressing. American Ceramic Society Bulletin, 73(8), 109–113.
- Griffin, C., Daufenbach, J., & McMillin, S. (1994). Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique. Solid Freeform Fabrication, 17, 17–24.
- Klosterman, D., Chartoff, R., Graves, G., Osborne, N., Lightman, A., Han, G., … Rodrigues, S. (1998). Automated fabrication of monolithic ceramics and ceramic matrix composites (CMCs) using a novel rapid prototyping method . Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures. The American Ceramic Society, Cocoa Beach, FL.
- Klosterman, D., Chartoff, R., Osborne, N., Graves, G., Lightman, A., Han, G., … Rodrigues, S. (1999). Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites. Rapid Prototyping Journal, 5(2), 61–71.
- Agarwala, M., Klosterman, D., Osborne, N., & Lightman, A. (1999). Hard metal tooling via SFF of ceramics and powder metallurgy . Solid Freeform Symposium of The University of Texas, Austin, TX.
- Williams, C. B. (2008). Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure (PhD thesis). Georgia Institute of Technology, Atlanta, GA.
- Gomes, C. M., Oliveira, A. P. N., Hotza, D., Travitzky, N., & Greil, P. (2008). LZSA glass-ceramic laminates: Fabrication and mechanical properties. Journal of Materials Processing Technology, 206, 194–201.
- Cui, X., Ouyang, S., Yu, Z., Wang, C., & Huang, Y. (2003). A study on green tapes for LOM with water-based tape casting processing. Materials Letters, 57, 1300–1304.
- (a) Klosterman, D. A., Chartoff, R., Graves, G., Osborne, N., & Priore, B. (1998). Interfacial characteristics of composites fabricated by laminated object manufacturing. Composites Part A: Applied Science and Manufacturing, 29A, 1165–1174. (b) Windsheimer, H., Travitzky, N., Hofenauer, A., & Greil, P. (2007). Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Advanced Materials, 19(24), 4515–4519.
- Travitzky, N., Windsheimer, H., Fey, T., & Greil, P. (2008). Preceramic paper-derived ceramics. Journal of the American Ceramic Society, 91(11), 3477–3492.
- Gomes, C. M., Gutbrod, B., Travitzky, N., Fey, T., & Greil, P. (2010). Preceramic paper derived fibrillar ceramics. Ceramic Transactions, 210, 421–426.
- Krinitcyn, M., Fu, Z., Harris, J., Kostikov, K., Pribytkov, G. A., Greil, P., & Travitzky, N. (2017). Laminated object manufacturing of in-situ synthesized MAX-phase composites. Ceramics International, 43(12), 9241–9245.
- Bender, B. A., Rayne, R. J., & Jessen, T. L. (2001). Laminated object manufacturing of functional ceramics. In M. Singh & T. Jessen (Eds.), Ceramic engineering and science proceedings (pp. 127–134). Hoboken, NJ: The American Society, Wiley.
- Bender, B. A., Rayne, R. J., & Wu, C. C. (2000). Solid freeform fabrication of a telescoping actuator via laminated object manufacturing. Ceramic Engineering and Science Proceedings, 21(4), 143–150.
- Pan, M.-J., Leung, A., Wu, C., & Bender, B. (2004). Optimizing the performance of telescoping actuators through rapid prototyping and finite element modelling. Ceramic Transactions, 150, 53–62.
- Xu, Y., Wu, X., Guo, X., Kong, B., Zhang, M., Qian, X., … Sun, W. (2017). The boom in 3D-printed sensor technology. Sensors, 17, 1166–1202.
- Steidle, C., Klosterman, D., Chartoff, R., Graves, G., & Osborne, N. (1999). Automated fabrication of custom bone implants using rapid prototyping . 44th International SAMPE Symposium and Exhibition, 1866–1877 of Society for the Advancement of Material and Process Engineering, Longbeach, CA.
- Cesarano, J., III, Segalman, R., & Calvert, P. (1998). Robocasting provides moldless fabrication from slurry deposition. Ceramic Industry, 148, 94–102.
- Chrisey, D. B. (2000). The power of direct writing. Science, 289, 879–881.
- Smay, J. E., Cesarano, J., III, & Lewis, J. A. (2002). Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, 18, 5429–5437.
- Smay, J. E., Gratson, G., Shepard, R. F., Cesarano, J., III, & Lewis, J. A. (2002). Directed colloidal assembly of 3D periodic structures. Advanced Materials, 14, 1279–1283.
- Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials Today, 7, 32–39.
- Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89(12), 3599–3609.
- de Hazan, Y., Thänert, M., Trunec, M., & Misak, J. (2012). Robotic deposition of 3D nanocomposite and ceramic fiber architectures via UV curable colloidal inks. Journal of the European Ceramic Society, 32(6), 1187–1198.
- Feilden, E. (2017). Additive manufacturing of ceramics and ceramic composites via robocasting (PhD thesis). Imperial College, London.
- Peng, E., Zhang, D., & Ding, J. (2018). Ceramic robocasting: Recent achievements, potential and future developments. Advanced Materials, 30(47), 1802404–18002418. doi:10.1002/adma.201802404
- Stuecker, J. N., Miller, J. E., Ferrizz, R. E., Mudd, J. E., & Cesarano, J. (2004). Advanced support structures for enhanced catalytic activity. Industrial & Engineering Chemistry Research, 43(1), 51–55.
- Cai, K., Román, B., Smay, J. E., Zhou, J., Osendi, M. I., Belmonte, M., & Miranzo, P. (2012). Geometrically complex silicon carbide structures fabricated by robocasting. Journal of the American Ceramic Society, 95(8), 2660–2666.
- Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering R: Reports, 129, 1–16.
- Michna, S., Wu, W., & Lewis, J. A. (2005). Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials, 26, 5632–5639.
- Miranda, P., Saiz, E., Gryn, K., & Tomsia, A. P. (2006). Sintering, robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomaterialia, 2, 457–466.
- Martínez-Vázquez, F. J., Perera, F. H., Miranda, P., Pajares, A., & Guiberteau, F. (2010). Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomaterialia, 6, 4361–4368.
- Shao, H., Liu, A., Ke, X., Sun, M., He, Y., Yang, X., … Gou, Z. (2017). 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. Journal of Materials Chemistry B, 5, 2941–2951.
- Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., & Lewis, J. A. (2013). 3D printing of interdigitated li-ion microbattery architectures. Advanced Materials, 25(33), 4539–4543.
- Fu, K., Wang, Y., Yan, C., Yao, Y., Chen, Y., Dai, J., … Hu, L. (2016). Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Advanced Materials, 28(13), 2587–2594.
- McOwen, D. W., Xu, S., Gong, Y., Wen, Y., Godbey, G. L., Gritton, J. E., … Wachsman, E. D. (2018). 3D-Printing electrolytes for solid-state batteries. Advanced Materials, 30, e1707132.
- Zekoll, S., Marriner-Edwards, C., Hekselman, A. K. O., Kasemchainan, J., Kuss, C., Armstrong, D. E. J., … Bruce, P. G. (2018). Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 11, 185.
- Cheng, M., Jiang, Y., Yao, W., Yuan, Y., Deivanayagam, R., Foroozan, T., … Shahbazian-Yassar, R. (2018). Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Advanced Materials, 30, 1800615–1800624.
- Li, J., Liang, X., Liou, F., & Park, J. (2018). Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing. Scientific Reports, 8, 1846.
- Gao, X., Sun, Q., Yang, X., Liang, J., Koo, A., Lia, W., … Sun, X. (2019). Toward a remarkable Li-S battery via 3D printing. Nano Energy, 56, 595–603.
- Ambrosini, A., & Pumera, M. (2016). 3D-printing technologies for electrochemical applications. Chemical Society Reviews, 45, 2740–2755.
- Kuhn, M., Napporn, T., Meunier, M., Vengallatore, S., & Therriault, D. (2007). Direct-write microfabrication of single-chamber micro solid oxide fuel cells. Journal of Micromechanics and Microengineering, 18(1), Article 015005.
- Liu, C., Cheng, X., Li, B., Chen, Z., Mi, S., & Lao, C. (2017). Fabrication and characterization of 3D-printed highly-porous 3D LiFePO4 electrodes by low temperature direct writing process. Materials, 10(8), 934.
- Wei, T. S., Ahn, B. Y., Grotto, J., & Lewis, J. A. (2018). 3D printing of customized li-ion batteries with thick electrodes. Advanced Materials, 30(16), 1703027. doi:10.1002/adma.201703027
- Tuttle, B. A., Smay, J. E., Cesarano, J., Voigt, J. A., Scofield, T. W., Olson, W. R., & Lewis, J. A. (2001). Robocast Pb(Zr0.95Ti0.05)O3 ceramic monoliths and composites. Journal of the American Ceramic Society, 84(4), 872–874.
- San Marchi, C., Kouzeli, M., Rao, R., Lewis, J. A., & Dunand, D. (2003). Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture. Scripta Materialia, 49(9), 861–866.
- Young, M., Rao, R., Almer, J., Haeffner, D., Lewis, J. A., & Dunand, D. (2009). Load partitioning in Al2O3–Al composites with three-dimensional periodic architecture. Acta Materialia, 57(8), 2362–2375.
- Smay, J. E., Tuttle, B., & Cesarano, J. (2018). Robocasting of three-dimensional piezoelectric structures. In A. Safari & E. K. Ardogan (Eds.), Piezoelectric and acoustic materials for transducer applications (pp. 305–318). Springer.
- Parra-Cabrera, C., Achille, C., Kuhn, S., & Ameloot, R. (2018). 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chemical Society Reviews, 47, 209–230.
- Elkoro, A., & Casanova, I. (2018). 3D printing of structured nanotitania catalysts: A novel binder-free and low-temperature chemical sintering method, 3D print. Additive Manufacturing, 5, 220–226.
- Elkoro, A., Soler, L., Llorca, J., & Casanova, I. (2019). 3D printed microstructured Au/TiO2 catalyst for hydrogen photoproduction. Applied Materials Today, 16, 265–272.
- Şakar-Deliormanlı, A., Çelik, E., & Polat, M. (2008). Rheological behaviour of PMN gels for solid freeform fabrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 326, 159–166.
- Qiu, J., Tani, J., Yanada, N., Kobayashi, Y., & Takahashi, H. (2004). Fabrication of Pb(Nb, Ni)O3-Pb(Zr, Ti)O3 piezoelectric ceramic fibers by extrusion of a sol-powder mixture. Journal of Intelligent Material Systems and Structures, 15(8), 643–653.
- Renteria, A., Fontes, H., Diaz, J. A., Regis, J. E., Chavez, L. A., Tseng, T.-L., … Lin, Y. (2019). Optimization of 3D printing parameters for BaTiO3 piezoelectric ceramics through design of experiments. Materials Research Express, 6(8), 085706. doi:10.1088/2053-1591/ab200e
- Kim, H., Renteria-Marquez, A., Islam, M. D., Chavez, L. A., Garcia Rosales, C. A., Ahsan, M. A., … Lin, Y. (2019). Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusion 3D printing technique. Journal of the American Ceramic Society, 102(6), 3685–3694.
- Feilden, E., Giovannini, T., Ferraro, C., Vandeperre, L., Saiz, E., & Giuliani, F. (2017). Micromechanical strength of individual Al2O3 platelets. Scripta Materialia, 131, 55–58.
- Nan, B., Olhero, S., Pinho, R., Vilarinho, P. M., Button, T. W., & Ferreira, J. M. F. (2019). Direct ink writing of macroporous lead-free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. Journal of the American Ceramic Society, 102(6), 3191–3203.
- Torres-Arango, M. A., Abidakun, O. A., Korakakis, D., & Sierros, K. A. (2017). Tuning the crystalline microstructure of Al-doped ZnO using direct ink writing. Flexible and Printed Electronics, 2(3), 035006.
- Wei, X., Nagarajan, R. S., Peng, E., Xue, J., Wang, J., & Ding, J. (2016). Fabrication of YBa2Cu3O7−x (YBCO) superconductor bulk structures by extrusion freeforming. Ceramics International, 42(14), 15836–15842.
- Peng, E., Wei, X., Herng, T. S., Garbe, U., Yu, D., & Ding, J. (2017). Ferrite-based soft and hard magnetic structures by extrusion free-forming. RSC Advances, 7, 27128–27138.
- Rocha, V. G., García-Tuñón, E., Markoulidis, F., Feilden, E., D'Elia, E., Ni, N., … Saiz, E. (2017). Multi-material 3D printing of graphene-based electrodes for electrochemical energy storage using thermo-responsive inks. ACS Applied Materials & Interfaces, 9(42), 37136–37145.
- Grotta, C. (2018). 3D printing of transition metal dichalcogenides (PhD thesis). Imperial College, London, UK.
- Wei, M., Zhang, F., Wang, W., Alexandridis, P., Zhou, C., & Wu, G. (2017). 3D direct writing fabrication of electrodes for electrochemical storage devices. Journal of Power Sources, 354, 134–147.
- Peng, E., Wei, X., Garbe, U., Yu, D., Brunet, E., Liu, A., & Ding, J. (2018). Robocasting of dense yttria-stabilized zirconia structures. Journal of Materials Science, 53(1), 247–273.
- Renteria, A., Diaz, J. A., He, B., Renteria-Marquez, I. A., Chavez, L. A., Regis, J. E., … Lin, Y. (2019). Particle size influence on material properties of BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing. Materials Research Express, 6(11), 115211. doi:10.1088/2053-1591/ab4a36
- Väätäjä, M., Kähäri, H., Ohenoja, K., & Sobocinski, M. (2018). 3D printed dielectric ceramic without a sintering stage. Scientific Reports, 8, 15955.
- Bodkhe, S., Turcot, G., Gosselin, F. P., & Therriault, D. (2017). One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Applied Materials & Interfaces, 9, 20833–20842.
- Bodkhe, S., Noonan, C., Gosselin, F. P., & Therriault, D. (2018). Coextrusion of multifunctional smart sensors. Advanced Engineering Materials, 20(10), 1800206.
- Crump, S. S. (1989). Apparatus and method for creating three-dimensional objects. US Patent US5121329A.
- Agarwala, M. K., Bandyopadhyay, A., Weeren, R., Whalen, P., Safari, A., & Danforth, S. C. (1996). Fused deposition of ceramics: Rapid fabrication of structural ceramic components. Ceramic Bulletin, 75(11), 60–65.
- Agarwala, M. K., Jamalabad, V. R., Langrana, N. A., Safari, A., Whalen, P. J., & Danforth, S. C. (1996). Structural quality of parts processed by fused deposition. Rapid Prototyping Journal, 2(4), 4–19.
- McNulty, T. F., Mohammadi, F., Bandyopadhyay, A., Danforth, S. C., & Safari, A. (1998). Development of a binder formulation for fused deposition of ceramics (FDC). Rapid Prototyping Journal, 4(4), 144–150.
-
Cheeseman, B., Ruan, X., Safari, A., Danforth, S. C., & Chou, T. (2000). Modeling and optimization of novel actuators produced by solid freeform fabrication. MRS Proceedings, 625(159). doi:10.1557/PROC-625-159
10.1557/PROC‐625‐159 Google Scholar
- Hall, A., Allahverdi, M., Akdogan, E. K., & Safari, A. (2005). Piezoelectric/electrostrictive multimaterial PMN-PT monomorph actuators. Journal of the European Ceramic Society, 25, 2991–2997.
- Onagoruwa, S., Bose, S., & Bandyopadhyay, A. (2001). Fused deposition of ceramics (FDC) and composites . Proceedings of Solid Freeform Fabrication Conference of The University of Austin, TX, 224–231.
- Allahverdi, M., Danforth, S. C., Jafari, M., & Safari, A. (2001). Processing of advanced electroceramic components by fused deposition technique. Journal of the European Ceramic Society, 21, 1485–1490.
- Pilleux, M. E., Safari, A., Allahverdi, M., Chen, Y., Lu, Y., & Jafari, M. A. (2002). 3-D photonic bandgap structures in the microwave regime by fused deposition of multimaterials. Rapid Prototyping Journal, 8(1), 46–52.
- Chen, Y., Bartzos, D., Lu, Y., Niver, E., Pilleux, M., Allahverdi, M., … Safari, A. (2001). Simulation, fabrication, and characterization of 3-D alumina photonic bandgap structures. Microwave and Optical Technology Letters, 30(5), 305–307.
- Marín Rueda, J. R., Yagüe-Alcaraz, V., López-López, J. J., Sánchez-Bravo, G., & Canales-Vázquez, J. (2017). Procedure for 3D printing of ceramics via FDM, PCT/ES2017/070202.
- Valera-Jiménez, J. F., Pérez-Flores, J. C., Marín Rueda, J. R., Castro-García, M., & Canales-Vázquez, J. (2019). 3D-printing of electrodes for Li-batteries via fused deposition modelling . Proceedings of XIV Reunión Nacional de Electrocerámica, Castellon, Spain.
- Yagüe-Alcaraz, V. (2017). Fabricación y caracterización de pilas de combustible de óxidos sólidos (SOFC) y componentes mediante modelado por deposición fundida (FDM) (Master thesis). EII-Albacete, University of Castilla-La Mancha, Albacete, Spain.
- nanoe. (2019). Retrieved from www.nanoe.fr
- Print3D Solutions. (2019) Especialistas en Impresión 3D y asesoria técnica. Retrieved from www.print3dsolutions.net
- Sa, M. W., Nguyen, B. N. B., Moriarty, R. A., Kamalitdinov, T., Fisher, J. P., & Kim, J. Y. (2018). Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications. Biotechnology and Bioengineering, 115(4), 989–999.
- Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., & Tan, K. C. (2001). Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 55(2), 203–216.
-
Cao, T., Ho, K.-H., & Teoh, S.-H. (2003). Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Engineering, 9(4), 103–112.
10.1089/10763270360697012 Google Scholar
- Tsang, V. L., & Bhatia, S. N. (2004). Three-dimensional tissue fabrication. Advanced Drug Delivery Reviews, 56(11), 1635–1647.
- Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., & He, D. (2014). 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Applied Materials & Interfaces, 6(17), 14952–14963.
- Kim, H., Fernando, T., Li, M., Lin, Y., & Tseng, T. B. (2018). Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. Journal of Composite Materials, 52(2), 197–206.
- Loke, G., Yuan, R., Rein, M., Khudiyev, T., Jain, Y., Joannopoulos, J., & Fink, Y. (2019). Structured multimaterial filaments for 3D printing of optoelectronics. Nature Communications, 10, 4010–4020.
- Hull, C. W. (1984). Apparatus for production of three-dimensional objects by stereolithography. US Patent US4575330A.
- Griffith, M. L., & Halloran, J. W. (1996). Freeform fabrication of ceramics via stereolithography. Rapid Prototyping Journal, 79(10), 2601–2608.
- Chu, T. M., & Halloran, J. W. (2000). Curing of highly loaded ceramics in acrylates. Journal of the American Ceramic Society, 83(10), 2075–2080.
- Doreau, F., Chaput, C., & Chartier, T. (2000). Stereolithography for manufacturing ceramic parts. Advanced Engineering Materials, 2(8), 493–496.
- Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., … He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39, 661–687.
- Griffith, M. L., & Halloran, J. W. (1997). Scattering of ultravio-let radiation in turbid suspensions. Journal of Applied Physics, 81(6), 2538–2546.
- Badev, A., Abouliatim, Y., Chartier, T., Lecamp, L., Lebaudy, P., Chaput, C., & Delage, C. (2011). Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. Journal of Photochemistry and Photobiology A: Chemistry, 222(1), 117–122.
- Ruiz-Morales, J. C., Tarancón, A., Canales-Vázquez, J., Méndez-Ramos, J., Hernández-Afonso, L., Acosta-Mora, P., … Fernández-González, R. (2017). Three dimensional printing of components and functional devices for energy and environmental applications. Energy & Environmental Science, 10, 846–859.
- Griffith, M. L., & Halloran, J. W. (1994). Ultraviolet curable ceramic suspensions for stereolithography of ceramics. Manufacturing Science and Engineering, 68–72, 529–534.
- Griffith, M. L., Chu, T.-M., Wagner, W., & Halloran, J. W. (1995). Fabrication of ceramic objects by solid freeform fabrication (SFF) . Solid Freeform Fabrication Conference (SFF'95) of The University of Austin, TX, (pp. 31–38).
- Griffith, M. L. (1995). Stereolithography of ceramics (PhD thesis). University of Michigan, Ann Arbor, USA.
- Hinczewski, C., Corbel, S., & Chartier, T. (1998). Ceramic suspensions suitable for Stereolithography. Journal of the European Ceramic Society, 18, 583–590.
- Hinczewski, C., Corbel, S., & Chartier, T. (1998). Stereolithography for the fabrication of ceramic three-dimensional parts. Rapid Prototyping Journal, 4(3), 104.
- Provin, C., Monneret, S., Le Gall, H., & Corbel, S. (2003). Three-dimensional ceramic microcomponents made using microstereolithography. Advanced Materials, 15(12), 994–997.
- Dufaud, O., Marchal, P., & Corbel, S. (2002). Rheological properties of PZT suspensions for stereolithography. Journal of the European Ceramic Society, 22, 2081–2092.
- Dufaud, O., & Corbel, S. (2003). Oxygen diffusion in ceramic suspensions for stereolithography. Chemical Engineering Journal, 92(1–3), 55–62.
- Dufaud, O. (2002). Prototypage rapide de composites céramiques fonctionnels (PhD thesis). Institut National Polytechnique de Lorraine, Lorraine.
- Dufaud, O., & Corbel, S. (2002). Stereolithography of PZT ceramic suspensions. Rapid Prototyping Journal, 8(2), 83–90.
- Tomeckova, V., & Halloran, J. (2010). Predictive models for photopolymerization of ceramic suspensions. Journal of the European Ceramic Society, 30(14), 2833–2840.
- Tomeckova, V., & Halloran, J. (2010). Cure depth for photopolymerization of ceramic suspensions. Journal of the European Ceramic Society, 30(15), 3023–3033.
- Tomeckova, V., & Halloran, J. (2010). Critical energy for photopolymerization of ceramic suspensions. Journal of the European Ceramic Society, 30(16), 3273–3282.
- Halloran, J. W., Tomeckova, V., Gentry, S., Das, S., Cilino, P., Yuan, D., … Long, D. (2011). Photopolymerization of powder suspensions for shaping ceramics. Journal of the European Ceramic Society, 31(14), 2613–2619.
- Bae, C., & Halloran, J. W. (2011). Influence of residual monomer on cracking in ceramics fabricated by stereolithography. International Journal of Applied Ceramic Technology, 8(6), 1289–1295.
- Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L., … Greil, P. (2014). Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 16(6), 729–754.
-
Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243.
10.1007/s11465-013-0248-8 Google Scholar
- Wu, H., Liu, W., He, R., Wu, Z., Jiang, Q., Song, X., … Wu, S. (2017). Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceramics International, 43, 968–972.
-
Mitteramskogler, G., Gmeiner, R., Felzmann, R., Gruber, S., Hofstetter, C., Stampfl, J., … Laubersheimer, J. (2014). Light curing strategies for lithography-based additive manufacturing of customized ceramics. Additive Manufacturing, 1–4, 100–118.
10.1016/j.addma.2014.08.003 Google Scholar
- Ferrage, L., Bertrand, G., Lenormand, P., Grossin, D., & Ben-Nissan, B. (2016). A review of the additive manufacturing (3DP) of bio ceramics: Alumina, zirconia (PSZ) and hydroxyapatite. Journal of the Australian Ceramic Society, 1, 42–56.
- Hernández-Rodríguez, E. M., Acosta-Mora, P., Méndez-Ramos, J., Borges Chinea, E., Esparza Ferrera, P., Canales-Vázquez, J., … Ruiz-Morales, J. C. (2014). Prospective use of the 3D printing technology for the microstructural engineering of solid oxide fuel cell components. Boletín de la Socieedad Española de Cerámica y Vidrio, 53(5), 213–216.
- Varghese, G., Moral, M., Castro-García, M., López-López, J. J., Marín-Rueda, J. R., Yagüe-Alcaraz, V., … Canales-Vázquez, J. (2018). Fabrication and characterisation of ceramics via low-cost DLP 3D printing. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 57(1), 9–18.
- Hernández-Afonso, L., Fernández-González, R., Esparza, P., Borges, M. E., Díaz-González, S., Canales-Vázquez, J., & Ruiz-Morales, J. C. (2017). Ceramic-based 3D printed supports for photocatalytic treatment of wastewater. Journal of Chemistry, 2017, 7602985. doi:10.1155/2017/7602985
- Chen, W., Kirihara, S., & Miyamoto, Y. (2007). Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications. Journal of the American Ceramic Society, 90(7), 2078–2081.
- Kirihara, S., & Niki, T. (2015). Three-dimensional stereolithography of alumina photonic crystals for terahertz wave localization. International Journal of Applied Ceramic Technology, 12(1), 32–37.
- Jang, J. H., Wang, S., Pilgrim, S. M., & Schulze, W. A. (2000). Preparation and characterization of barium titanate suspensions for stereolithography. Journal of the American Ceramic Society, 83(7), 1804–1806.
- Dufaud, O., & Corbel, S. (2001). Stéréolithographie pour la fabrication de composites céramiques piézoélectriques. Nano et Micro Technologies, 1(2), 177–191.
- Chen, Z., Song, X., Lei, L., Chen, X., Fei, C., Chiu, C. T., … Zhou, Q. (2016). 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy, 27, 78–86.
- Chen, Y., Bao, X., Wong, C.-M., Cheng, J., Wu, H., Song, H., … Wu, S. (2018). PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application. Ceramics International, 44(18), 22725–22730.
- Chartier, T., Dupas, C., Lasgorceix, M., Brie, J., Champion, E., Delhote, N., & Chaput, C. (2015). Additive manufacturing to produce complex 3D ceramic parts. Journal of Ceramic Science & Technology, 6(2), 95–104.
- Delhote, N., Baillargeat, D., Verdeyme, S., Delage, C., & Chaput, C. (2007). Ceramic layer-by-Layer stereolithography for the manufacturing of 3-D millimeter-wave filters. IEEE Transactions on Microwave Theory and Techniques, 55, 548–554.
- Brakora, K. F., Halloran, J., & Sarabandi, K. (2007). Design of 3-D monolithic MMW antennas using ceramic stereolithography. IEEE Transactions on Antennas and Propagation, 55, 790–797.
- Nguyen, N. T., Delhote, N., Ettorre, M., Baillargeat, D., Le Coq, L., & Sauleau, R. (2010). Design and characterization of 60-GHz integrated Lens antennas fabricated through ceramic stereolithography. IEEE Transactions on Antennas and Propagation, 58, 2757–2762.
- Yang, Y., Chen, Z., Song, X., Zhu, B., Hsiai, T., Wu, P.-I., … Shung, K. K. (2016). Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy, 22, 414–421.
- Leigh, S. J., Purssell, C., Bowen, J., Hutchins, D. A., Covington, J. A., & Billson, D. (2011). A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin. Sensors and Actuators A: Physical, 168(1), 66–71.
- Scheithauer, U., Schwarzer, E., Moritz, T., & Michaelis, A. (2018). Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (LCM). Journal of Materials Engineering and Performance, 27(1), 14–20.
- Scheithauer, U., Schwarzer, E., Ganzer, G., Kornig, A., Becker, W., Reichelt, E., … Moritz, T. (2015). Micro-reactors made by lithography-based ceramic manufacturing (LCM). Additive Manufacturing and Strategic Technologies in Advanced Ceramics: Ceramic Transactions, 258, 31–41.
- Masciandaro, S., Torrell, M., Leone, P., & Tarancón, A. (2019). Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications. Journal of the European Ceramic Society, 39(1), 9–16.
- Tétreault, N., von Freymann, G., Deubel, M., Hermatschweiler, M., Pérez-Willard, F., John, S., … Ozin, G. A. (2006). New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates. Advanced Materials, 18(4), 457–460.
- Meza, L. R., & Greer, J. R. (2014). Mechanical characterization of hollow ceramic nanolattices. Journal of Materials Science, 49(6), 2496–2508.
- Meza, L. R., Das, S., & Greer, J. R. (2014). Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 345(6202), 1322–1326.
- Zocca, A., Colombo, P., Gomes, C. M., & Günster, J. (2015). Additive manufacturing of ceramics: Issues, potentialities, and opportunities. Journal of the American Ceramic Society, 98, 1983–2001.
- Bertrand, P., Bayle, F., Combe, C., Goeuriot, P., & Smurov, I. (2007). Ceramic components manufacturing by selective laser sintering. Applied Surface Science, 254, 989.
- Shahzad, K., Deckers, J., Zhang, Z., Kruth, J. P., & Vleugels, J. (2014). Additive manufacturing of zirconia parts by indirect selective laser sintering. Journal of the European Ceramic Society, 34(1), 81–89.
- Ferrage, L., Bertrand, G., & Lenormand, P. (2018). Dense yttria-stabilized zirconia obtained by direct selective laser sintering. Additive Manufacturing, 21, 472–478.
- Wu, Y., Du, J., Choy, K. L., & Hench, L. L. (2007). Laser densification of alumina powder beds generated using aerosol assisted spray deposition. Journal of the European Ceramic Society, 27, 4727.
- Deckers, J., Shahzad, K., Vleugels, J., & Kruth, J. P. (2012). Isostatic pressing assisted indirect selective laser sintering of alumina components. Rapid Prototyping Journal, 18, 409.
- Tang, H. H., Chiu, M. L., & Yen, H. C. (2011). Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. Journal of the European Ceramic Society, 31, 1383.
- Löschau, W., Lenk, R., Scharek, S., Teichgräber, M., Nowotny, S., & Richter, C. (2000). Prototyping of complex-shaped parts and tools of Si. Industrial Ceramics, 20, 95.
- Slocombe, A., & Li, L. (2001). Selective laser sintering of TiC–Al2O3 composite with self-propagating high-temperature synthesis. Journal of Materials Processing Technology, 118, 173.
- Minasyan, T., Liu, L., Aghayan, M., Kollo, L., Kamboj, N., Aydinyan, S., & Hussainova, I. (2018). A novel approach to fabricate Si3N4 by selective laser melting. Ceramics International, 44(12), 13689–13694.
- Minasyan, T., Liu, L., Holovenko, Y., Aydinyan, S., & Hussainova, I. (2019). Additively manufactured mesostructured MoSi2-Si3N4 ceramic lattice. Ceramics International, 45(8), 9926–9933.
- Chen, A. N., Li, M., Xu, J., Lou, C. H., Wu, J. M., Cheng, L. J., … Li, C. H. (2018). High-porosity mullite ceramic foams prepared by selective laser sintering using fly ash hollow spheres as raw materials. Journal of the European Ceramic Society, 38(13), 4553–4559.
- Goodridge, R. D., Wood, D. J., Ohtsuki, C., & Dalgarno, K. W. (2007). Biological evaluation of an apatite–mullite glass-ceramic produced via selective laser sintering. Acta Biomaterialia, 3, 221.
- Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. (2013). Bone tissue engineering using 3D printing. Materials Today, 16(12), 496–504.
- Vorndran, E., Klarner, M., Klammert, U., Grover, L. M., Patel, S., Barralet, J. E., & Gbureck, U. (2008). 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Advanced Engineering Materials, 10(12), B67–B71.
- Klammert, U., Gbureck, U., Vorndran, E., Rödiger, J., Meyer-Marcotty, P., & Kübler, A. C. (2010). 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. Journal of Cranio-Maxillofacial Surgery, 38(8), 565–570.
- Gureev, D. M., Ruzhechko, R. V., & Shishkovskii, I. V. (2000). Selective laser sintering of PZT ceramic powders. Technical Physics Letters, 26(3), 262–264.
- Guo, D., Li, L.-T., Cai, K., Gui, Z.-l., & Nan, C.-W. (2004). Rapid prototyping of piezoelectric ceramics via selective laser sintering and gelcasting. Journal of the American Ceramic Society, 87(1), 17–22.
- Du, X. Y., Ji, L. F., & Jiang, Y. J. (2009). Laser sintering of lead-free Sr1.86Ca0.14 NaNb5O15 piezoelectric ceramics. Journal of Optoelectronics Laser, 20(8), 1037–1040.
- Du, X. Y., Ji, L. F., & Jiang, Y. J. (2010). Dielectric and piezoelectric properties of CO2 laser sintered Sr1.86Ca0.14NaNb5O15 piezoelectric ceramic. Ferroelectrics, 402(1), 163–167.
- Ji, L. F., & Jiang, Y. J. (2007). Investigations of dielectric enhancement in (Ta2O5)1-x(TiO2)x ceramics prepared by laser-sintering technique. Applied Physics A: Materials Science & Processing, 87(4), 733–738.
- Ji, L. F., Jiang, Y. J., Wang, W., & Yu, Z. L. (2004). Enhancement of the dielectric permittivity of Ta2O5 ceramics by CO2 laser irradiation. Applied Physics Letters, 85, 1577–1579.
- Macedo, Z. S., Lente, M. H., Eiras, J. A., & Hernandes, A. C. (2004). Dielectric and ferroelectric properties of Bi4Ti3O12 ceramics produced by a laser sintering method. Journal of Physics: Condensed Matter, 16, 2811–2818.
- Macedo, Z. S., Silva, R. S., Valerio, M. E. G., Martinez, A. L., & Hernandes, A. C. (2004). Laser-sintered bismuth germanate ceramics as scintillator devices. Journal of the American Ceramic Society, 87(6), 1076–1081.
- Jesus, L. M., Santos, J. C. A., Sampaio, D. V., Barbosa, L. B., Silva, R. S., & M'Peko, J.-C. (2016). Polymeric synthesis and conventional versus laser sintering of CaCu3Ti4O12 electroceramics: (Micro)structures, phase development and dielectric properties. Journal of Alloys and Compounds, 654(5), 482–490.
- Basile, N., Gonon, M., Petit, F., & Cambier, F. (2012). Interaction between laser beam and BaTiO3 powders in selective laser sintering treatments. Journal of the European Ceramic Society, 32(12), 3303–3311.
- Agarwala, M. K., Bourell, D. L., Manthiram, A., Birmingham, B. R., & Marcus, H. (1995). High Tc dual phase Ag-YBa2Cu3O7−x composites prepared by selective laser sintering and infiltration. Journal of Materials Science, 30(2), 459–464.
- Hutchings, I. (2010). Ink-jet printing for the decoration of ceramic tiles: Technology and opportunities (pp. 1–16). Castellón, Spain: Actas de QUALICER.
- Baraldi, L. (2014). Digital tiles. Ceramic World Review, 105, 62–69.
- Baraldi, L. (2015). 100% digital lines. Ceramic World Review, 1, 66–68.
- FERRO. (2019). Retrieved from https://www.ferro.com/products/product-category/inks-for-digital-ceramic-and-glass-printing/inks-for-digital-ceramic-tile-printing/digital-ceramic-inks/water-based-inks-for-digital-ceramic-tile-printing
- Güngör, G. L., Kara, A., Blosi, M., Gardini, D., Guarini, G., Zanelli, C., & Dondi, M. (2015). Micronizing ceramic pigments for inkjet printing: Part I. Grindability and particle size distribution. Ceramics International, 41(5), 6498–6506.
- Fromm, J. E. (1984). Numerical-calculation of the fluid-dynamics of drop-on-demand jets. IBM Journal of Research and Development, 28, 322–333.
-
Reis, N., & Derby, B. (2000). Ink jet deposition of ceramic suspensions: Modelling and experiments of droplet formation. MRS Symposium Proceedings, 624, 65–70.
10.1557/PROC-624-65 Google Scholar
- Derby, B. (2015). Additive manufacture of ceramics components by inkjet printing. Engineering, 1(1), 113–123.
- Derby, B. (2011). Inkjet printing ceramics: From drops to solid. Journal of the European Ceramic Society, 31(14), 2543–2550.
- Dou, R., Wang, T., Guo, Y., & Derby, B. (2011). Inkjet printing of zirconia: Coffee staining and line stability. Journal of the American Ceramic Society, 94(11), 3787–3792.
- Zhang, Y., Yang, S., Chen, L., & Evans, J. R. G. (2008). Shape changes during the drying of droplets of suspensions. Langmuir, 24(8), 3752–3758.
- Pan, Z., Wang, Y., Huang, H., Ling, Z., Dai, Y., & Ke, S. (2015). Recent development on preparation of ceramic inks in ink-jet printing. Ceramics International, 41(10), 12515–12528.
- Blazdell, P. F., & Evans, J. R. G. (2000). Application of a continuous ink jet printer to solid freeforming of ceramics. Journal of Materials Processing Technology, 99, 94–102.
- Noguera, R., Lejeune, M., & Chartier, T. (2005). 3D fine scale ceramic components formed by ink-jet prototyping process. Journal of the European Ceramic Society, 25, 2055–2059.
- Özkol, E., Ebert, J., & Telle, R. (2010). An experimental analysis of the influence of the ink properties on the drop formation for direct thermal inkjet printing of high solid content aqueous 3Y-TZP suspensions. Journal of the European Ceramic Society, 30(7), 1669–1678.
- Blazdell, P. F., Evans, J. R. G., Edirisinghe, M. J., Shaw, P., & Bin-stead, M. J. (1995). The computer aided manufacture of ceramics using multilayer jet printing. Journal of Materials Science Letters, 14, 1562.
- Xiang, Q. F., Evans, J. R. G., Edirisinghe, M. J., & Blazdell, P. F. (1997). Solid freeforming of ceramics using a drop-on-demand jet printer. Proceedings of the Institution of Mechanical Engineers, Part B, 211, 211.
- Blazdell, P. F., & Evans, J. R. G. (1999). Preparation of ceramic inks for solid freeforming using a continuous jet printer. Journal of Materials Synthesis and Processing, 7, 349.
- Wang, C., Tomov, R. I., Kumar, R. V., & Glowacki, B. A. (2011). Inkjet printing of gadolinium-doped ceria electrolyte on NiO-YSZ substrates for solid oxide fuel cell applications. Journal of Materials Science, 46(21), 6889–6896.
- Sukeshini, A. M., Cummins, R., Reitz, T. L., & Miller, R. M. (2009). Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication. Journal of the American Ceramic Society, 92, 2913–2919.
- Esposito, V., Gadea, C., Hjelm, J., Marani, D., Hu, Q., Agersted, K., … Jensen, S. H. (2015). Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells. Journal of Power Sources, 273, 89–95.
- Sukeshini, A. M., Gardner, P., Meisenkothen, F., Jenkins, T., Miller, R., Rottmayer, M., & Reitz, T. L. (2011). Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers. ECS Transactions, 35, 2151.
- Shimada, H., Ohba, F., Li, X., Hagiwara, A., & Ihara, M. (2012). Electrochemical behaviors of nickel/yttria-stabilized zirconia anodes with distribution controlled yttrium-doped barium zirconate by ink-jet technique. Journal of the Electrochemical Society, 159, F360.
- Sukeshini, A. M., Cummins, R., Reitz, T. L., & Miller, R. M. (2009). Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication. Electrochemical and Solid-State Letters, 12, B176.
- Yashiro, N., Usui, T., & Kikuta, K. (2010). Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs. Journal of the European Ceramic Society, 30, 2093–2098.
- Mott, M., Song, J.-H., & Evans, J. R. G. (1999). Microengineering of ceramics by direct ink-jet printing. Journal of the American Ceramic Society, 82(7), 1653–1658.
- Song, J. H., Edirisinghe, M. J., & Evans, J. R. G. (1999). Formulation and multilayer jet printing of ceramic inks. Journal of the American Ceramic Society, 82, 3374–3380.
- Ding, X., Li, Y., Wang, D., & Yin, Q. (2004). Fabrication of BaTiO3 dielectric films by direct ink-jet printing. Ceramics International, 30, 1885–1887.
- Tseng, W. J., Lin, S.-Y., & Wang, S.-R. (2006). Particulate dispersion and freeform fabrication of BaTiO3 thick films via direct inkjet printing. Journal of the American Ceramic Society, 16(4), 537–540.
- Ding, X., Li, Y., Wang, D., & Yin, Q. (2003). Preparation of (BaxSrx-1TiO3) sols used for ceramic inkjet printing. Materials Science and Engineering B, 99, 502–505.
- Kaydanova, T., Miedaner, A., Perkins, J. D., Curtis, C., Alleman, J. L., & Ginley, D. S. (2007). Direct-write inkjet printing for fabrication of barium strontium titanate based tunable circuits. Thin Solid Films, 515(7–8), 3820–3824.
- Martin, C. R., & Aksay, I. A. (2004). Submicrometer-scale patterning of ceramic thin films. Journal of Electroceramics, 12(1–2), 53–68.
- Matavž, A., Frunză, R. C., Drnovšek, A., Bobnar, V., & Maličab, B. (2016). Inkjet printing of uniform dielectric oxide structures from sol–gel inks by adjusting the solvent composition. Journal of Materials Chemistry C, 4, 5634–5641.
- Lee, H., Chang, Y. J., Herman, G. S., & Chang, C. H. (2007). A general route to printable high-mobility transparent amorphous oxide semiconductors. Advanced Materials, 19, 843–847.
- Shen, W., Zhao, Y., & Zhang, C. (2005). The preparation of ZnO based gas-sensing thin films by ink-jet printing method. Thin Solid Films, 483, 382–387.
- Kim, G. H., Kim, H. S., Shin, H. S., Ahn, B. D., Kim, K. H., & Kim, H. J. (2009). Inkjet-printed InGaZnO thin film transistor. Thin Solid Films, 517, 4007–4010.
- Tellier, J., Malic, B., Kuscer, D., Trefalt, G., & Kosec, M. (2011). Ink-jet printing of In2O3/ZnO two-dimensional structures from solution. Journal of the American Ceramic Society, 94(9), 2834–2840.
- Meyers, S. T., Anderson, J. T., Hong, D., Hung, C. M., Wager, J. F., & Keszler, D. A. (2007). Solution-processed aluminum oxide phosphate thin-film dielectrics. Chemistry of Materials, 19(16), 4023–4029.
- Meyers, S. T., Anderson, J. T., & Keszler, D. A. (2008). Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. Journal of the American Chemical Society, 130(51), 17603–17609.
- Kolchanov, D. S., Mitrofanov, I., Kim, A., Koshtyal, Y., Rumyantsev, A., Sergeeva, E., … Maximov, M. Y. Inkjet printing of Li-rich cathode material for thin-film lithium-ion micro-batteries. Energy Technology. doi:10.1002/ente.201901086
- Li, C., Shi, H., Ran, R., Su, C., & Shao, Z. (2013). Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. International Journal of Hydrogen Energy, 38, 9310–9319.
- Gadea, C., Hanniet, Q., Lesch, A., Marani, D., Jensen, S. H., & Esposito, V. (2017). Aqueous metal–organic solutions for YSZ thin film inkjet deposition. Journal of Materials Chemistry C, 5, 6021–6029.
- Rosa, M., Gooden, P. N., Butterworth, S., Zielke, P., Kiebach, R., Xu, Y., … Esposito, V. (2019). Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing. Journal of the European Ceramic Society, 39(1), 2–8.
- Li, C., Chen, H., Shi, H., Tadé, M. O., & Shao, Z. (2015). Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 273, 465–471.
- Mikolajek, M., Reinheimer, T., Bohn, N., Kohler, C., Hoffmann, M. J., & Binder, J. R. (2019). Fabrication and characterization of fully inkjet printed capacitors based on ceramic/polymer composite dielectrics on flexible substrates. Scientific Reports, 9, 13324.
- Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing – process and its applications. Advanced Materials, 22, 673–685.