Applied Machine Vision and IoT
V. García
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorN. Sánchez
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorJ.A. Rodrigo
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorJ.M. Menéndez
Grupo de Aplicación de Telecomunicaciones Visuales, Universidad Politecnica de Madrid, Madrid, Spain
Search for more papers by this authorJ. Lalueza
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorV. García
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorN. Sánchez
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorJ.A. Rodrigo
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorJ.M. Menéndez
Grupo de Aplicación de Telecomunicaciones Visuales, Universidad Politecnica de Madrid, Madrid, Spain
Search for more papers by this authorJ. Lalueza
Visiona Ingeniería de Proyectos, C/Artistas 39, Madrid, Spain
Search for more papers by this authorJohn Davies
BT Research and Venturing, Head of Next Generation Web Research, United Kingdom
Search for more papers by this authorCarolina Fortuna
Josef Stefan Institute, Department of Communication Systems, Ljubljana, Slovenia
Search for more papers by this authorSummary
This chapter analyzes and discusses to what extent machine vision is applicable and can benefit Internet of Things (IoT), wherein computing capability is extended to a variety of objects, devices, and sensors. It presents the fundamentals of machine vision and then proceeds to look at current trends in machine vision research and development. The chapter then looks at deep learning in the machine vision context. Given that transfer learning can generate a model for each specific task, a generic deep learning framework for improved situation awareness can be defined as part of an IoT system, where every phase of the framework should be accomplished by an element of the IoT infrastructure. The chapter finally describes three IoT use cases for machine vision technology and describes the challenges of sensing critical infrastructures, like power plants or oil pipelines, using drones, thus exploiting the latest advances in Machine Vision.
References
-
Ullman, S. (1996). High-level Vision: Object Recognition and Visual Cognition. The MIT Press.
10.7551/mitpress/3496.001.0001 Google Scholar
- Kotsiantis, S.B. (2007). Supervised machine learning: a review of classification techniques. In: Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, 3–24.
- Lu, D. and Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28 (5): 823–870.
- Collins, R.T., Lipton, A.J., and Kanade, T. (2000). A system for video surveillance and mMonitoring.
- Evan, H. and MacDougall, F. (2011). Video-based image control system. US Patent 7, 898, 522, 1 March 2011.
- McCall, J.C. and Trivedi, M.M. (2006). Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Transactions on Intelligent Transportation Systems 7: 20–37.
- Davies, E.R. (1996). Machine Vision, Second Edition: Theory, Algorithms, Practicalities (Signal Processing and its Applications). Harcourt & Company.
-
Roopaei, M., Rad, P., and Prevost, J.J. (2018). A wearable IoT with complex artificial perception embedding for Alzheimer patients. In: 2018 World Automation Congress (WAC), 1–6.
10.23919/WAC.2018.8430403 Google Scholar
-
Norouznezhad, E., Bigdeli, A., Postula, A., and Lovell, B. (2010). Object tracking on FPGA-based smart cameras using local oriented energy and phase features. In: ICDSC - 4th ACM/IEEE International Conference on Distributed Smart Cameras, 33–40.
10.1145/1865987.1865993 Google Scholar
- Roberts, L. (1963). Machine perception of three-dimensional solids. Doctoral dissertation.
- Rosenfeld, A. and Pfaltz, J.L. (1966). Sequential operations in digital picture processing. Journal of the ACM 13 (4): 471–494.
- Gonzalez, R.C. and Wintz, P. (1977). Digital Image Processing. Addison-Wesley Pub. Co.
- Horn, B.K.P. and Schunck, B.G. (1981). Determining optical flow. Artificial Intelligence 17 (1): 185–203.
- Ballard, D.H. and Brown, C.M. (1982). Computer Vision. Prentice-Hall.
- Nagel, H.-H. (1986). Image sequences – ten (octal) years – from phenomenology towards a theoretical foundation. In: Eighth International Conference on Pattern Recognition (ICPR'86), 1174–1185.
-
Zhang, Z. and Faugeras, O. (1992). 3D Dynamic Scene Analysis: A Stereo Based Approach. Springer-Verlag.
10.1007/978-3-642-58148-9 Google Scholar
- Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision, 2e. New York, NY, USA: Cambridge University Press.
- Freeman, W., Perona, P., and Schölkopf, B. (2008). Guest editorial. International Journal of Computer Vision 77 (1): 1.
- Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
- Eltner, A. and Schneider, D. (2015). Analysis of different methods for 3D reconstruction of natural surfaces from parallel-axes UAV images. The Photogrammetric Record 30: 279–299.
-
Çeşmeci, D., Karaca, A.C., Ertürk, A. et al. (2014). Hyperspectral change detection by multi-band census transform. In: 2014 IEEE Geoscience and Remote Sensing Symposium, 2969–2972.
10.1109/IGARSS.2014.6947100 Google Scholar
-
Ye, N., Zhu, Y., Wang, R. et al. (2014). An efficient authentication and access control scheme for perception layer of internet of things. Applied Mathematics & Information Sciences
8.
10.12785/amis/080416 Google Scholar
- Yousuf, T., Mahmoud, R., Aloul, F., and Zualkernan, I. (2015). Internet of things (IoT) security: current status, challenges and countermeasures. 10th International Conference for Internet Technology and Secured Transactions (ICITST). IEEE, Research.
- Tao, F., Zuo, Y., Xu, L.D., and Zhang, L. (2014). IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Transactions on Industrial Informatics 10 (2): 1547–1557.
- Wang, X., Wang, X., and Mao, S. (2018). RF sensing in the internet of things: a general deep learning framework. IEEE Communications Magazine 56: 62–67.
- Li, H., Ota, K., and Dong, M. (2018). Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Network 32 (1): 96–101.
- Verma, S., Kawamoto, Y., Fadlullah, Z.M. et al. (2017). A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Communication Surveys and Tutorials 19 (3): 1457–1477.
- Lane, N.D., Bhattacharya, S., Mathur, A. et al. (2017). Squeezing deep learning into Mobile and embedded devices. IEEE Pervasive Computing 16 (3): 82–88.
- Han, S., Mao, H., and Dally, W. (2016). Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. Preprint.
- De Sa, C., Leszczynski, M., Zhang, J. et al. (2018). High-accuracy low-precision training. CoRR, abs/1803.0.
- Wen, W., Wu, C., Wang, Y. et al. (2016). Learning structured Sparsity in deep neural networks. CoRR, abs/1608.0,.
- Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, 1097–1105.
- He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. CoRR, vol. abs/1512.0.
- Sánchez, N., Lalueza, J.M., Zahariadis, T. et al. (2018). 5G-cognitive drone system for preventive maintenance in energy infrastructures. In: Proceedings of the European Conference on Networks and Communications (EuCNC).
-
Student, L.R., Goubran, R., and Kwamena, F. (2018). Computer vision-assisted human-in-the-loop measurements: augmenting qualitative by increasing quantitative analytics for CI situational awareness. In: 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 1–6.
10.1109/CIVEMSA.2018.8439984 Google Scholar
-
Monzon, A. (2015). Smart cities concept and challenges: bases for the assessment of smart city projects. In: 2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), 1–11.
10.1007/978-3-319-27753-0_2 Google Scholar
- de Almeida, P.R.L., Oliveira, L.S., Britto, A.S. Jr. et al. (2015). PKLot - a robust dataset for parking lot classification. Expert Systems with Applications 42 (11): 4937–4949.
- Schwing, A.G. and Urtasun, R. (2015). Fully connected deep structured networks. CoRR, abs/1503.02351,.
- Nair, V. and Hinton, G.E. (2010). Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, 807–814.
-
Redmon, J., Divvala, S.K., Girshick, R.B., and Farhadi, A. (2016, abs/1506.0). You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788.
10.1109/CVPR.2016.91 Google Scholar
- Redmon, J. and Farhadi, A. (2018). YOLOv3: an Incremental Improvement. CoRR, abs/1804.0.
- Liu, W., Anguelov, D., Erhan, D. et al. (2015). {SSD:} single shot MultiBox detector. CoRR, abs/1512.0.
- Ren, S., He, K., Girshick, R.B., and Sun, J. (2015). Faster {R-CNN:} Towards real-time object detection with region proposal networks. CoRR, abs/1506.0,.
- Milioto, A. and Stachniss, C. (2019). Bonnet: an open-source training and deployment framework for semantic segmentation in robotics using CNNs. IEEE International Conference on Robotics and Automation 2018.
- Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI Conf. Artif. Intell.
-
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580–587.
10.1109/CVPR.2014.81 Google Scholar
- Razakarivony, S. and Jurie, F. (2015). Vehicle detection in aerial imagery : a small target detection benchmark. Journal of Visual Communication and Image Representation: 34.
-
Brown, G.D.S., Latonio, C.E.A., Oanes, R.D.N. et al. (2017). Machine vision for rat detection using thermal and visual information. In: 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 1–6.
10.1109/HNICEM.2017.8269527 Google Scholar