Genetics of Hematopoietic Neoplasia
Diana Giannuzzi
Search for more papers by this authorJaime F. Modiano
Search for more papers by this authorMatthew Breen
Search for more papers by this authorDiana Giannuzzi
Search for more papers by this authorJaime F. Modiano
Search for more papers by this authorMatthew Breen
Search for more papers by this authorMarjory B. Brooks DVM, DACVIM
Director, Comparative Coagulation Section
Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
Search for more papers by this authorKendal E. Harr DVM, MS, DACVP
URIKA, LLC, Mukilteo, Washington, USA
Search for more papers by this authorDavis M. Seelig DVM, PhD, DACVP
Associate Professor, Clinical Pathology
Department of Veterinary Clinical Sciences, University of Minnesota, College of Veterinary Medicine, St. Paul, Minnesota, USA
Search for more papers by this authorK. Jane Wardrop DVM, MS, DACVP
Professor and Director, Clinical Pathology Laboratory
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
Search for more papers by this authorDouglas J. Weiss DVM, PhD, DACVP
Emeritus Professor
College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
Search for more papers by this authorSummary
This chapter focuses on how interactions between genes and environment impact the origin, progression, and response to therapy of hematopoietic tumors. Six essential, acquired characteristics are necessary for cellular transformation. These characteristics are: the ability to sustain proliferative signaling; the evasion of growth suppression; the ability to resist cell death; the capacity to enable reproductive immortality; the ability to induce angiogenesis; and the capacity to invade tissues and metastasize. Various models have been proposed to explain how cells acquire the features that lead to neoplastic transformation and eventually to clinical cancer. One model describes the process as stepwise accumulation of mutations that reduce constraints on growth and eventually promote transformation. Although this model is overly simplistic and technically flawed, it is nevertheless useful to convey the events that lead to carcinogenesis.
REFERENCES
- Amos CI , Wu X , Broderick P , Gorlov IP , et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 . Nat Genet 2008 ; 40 : 616 – 622 .
- Aresu L , Aricò A , Comazzi S , et al. VEGF and MMP9: biomarkers for canine lymphoma . Vet Comp Oncol 2014 ; 12 ( 1 ): 29 – 36 .
- Aresu L , Ferraresso S , Marconato L , et al. New molecular and therapeutic insights into canine diffuse large B cell lymphoma elucidates the role of the dog as a model for human disease . Haematologica 2019 ; 104 ( 6 ): e256 – e259 .
- Aricò A , Giantin M , Gelain ME , et al. The role of vascular endothelial growth factor and matrix metalloproteinases in canine lymphoma: in vivo and in vitro study . BMC Vet Res 2013 ; 9 : 94 .
- Bjerkvig R , Tysnes BB , Aboody KS , et al. Opinion: the origin of the cancer stem cell: current controversies and new insights . Nat Rev Cancer 2005 ; 5 : 899 – 904 .
- Boveri T. Concerning the origin of malignant tumors . J Cell Sci 2008 ; 121 : 1 – 84 .
- Bushell KR , Kim Y , Chan FC , et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma . Blood 2015 ; 125 ( 6 ): 999 – 1005 .
- Clarke MF , Fuller M . Stem cells and cancer: two faces of eve . Cell 2006 ; 124 : 1111 – 1115 .
- Dickerson EB , Thomas R , Fosmire SP , et al. Mutations of phosphatase and tensin homolog deleted from chromosome 10 in canine hemangiosarcoma . Vet Pathol 2005 ; 42 : 618 – 632 .
- Elvers I , Turner-Meier J , Swofford R , et al. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background . Genome Res 2015 ; 25 ( 11 ): 1634 – 1645 .
- Fearon ER . Human cancer syndromes: clues to the origin and nature of cancer . Science 1997 ; 278 : 1043 – 1050 .
- Ferrara N , Kerbel RS . Angiogenesis as a therapeutic target . Nature 2005 ; 438 : 967 – 974 .
- Ferraresso S , Aricò A , Sanavia T , et al. DNA methylation profiling reveals common signatures of tumorigenesis and defines epigenetic prognostic subtypes of canine Diffuse Large B-cell Lymphoma . Sci Rep 2017 ; 7 ( 1 ): 11591 .
- Fidler IJ . The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited . Nat Rev Cancer 2003 ; 3 : 453 – 458 .
- Gardner HL , Sivaprakasam K , Briones N , et al. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2 . Commun Biol 2019 ; 2 : 266 .
- Giannuzzi D , Marconato L , Elgendy R , et al. Longitudinal transcriptomic and genetic landscape of radiotherapy response in canine melanoma . Vet Comp Oncol 2019 ; 17 ( 3 ): 308 – 316 .
- Hanahan D , Weinberg RA . The hallmarks of cancer: the next generation . Cell 2011 ; 144 ( 5 ): 646 – 74 .
- Hartley G , Elmslie R , Murphy B , et al. Cancer stem cell populations in lymphoma in dogs and impact of cytotoxic chemotherapy . Vet Comp Oncol 2019 ; 17 ( 1 ): 69 – 79 .
- Hendricks WPD , Zismann V , Sivaprakasam K , et al. Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis . Plos Genet 2018 ; 14 ( 9 ): e1007589 .
- Huntly BJ , Gilliland DG . Leukaemia stem cells and the evolution of cancer-stem-cell research . Nat Rev Cancer 2005 ; 5 : 311 – 321 .
- Juliusson G , Celsing F , Turesson I , et al. Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma . Br J Haematol 2000 ; 109 ( 1 ): 89 – 96 .
- Karlsson E , Sigurdsson S , Ivansson E , et al. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B . Genome Biol 2013 ; 14 ( 12 ): R132 .
- Kim JW , Wong CW , Goldsmith JD , et al. Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells . Cancer Lett 2004 ; 213 : 203 – 212 .
- Knudson AG . Mutation and cancer: statistical study of retinoblastoma . Proc Natl Acad Sci USA 1971 ; 68 : 820 – 823 .
- Lamerato-Kozicki AR , Helm KM , Jubala CM , et al. Canine hemangiosarcoma originates from hematopoietic precursors with potential for endothelial differentiation . Exp Hematol 2006 ; 34 : 870 – 878 .
- Levine RA , Fleischli MA . Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma cell lines . Vet Pathol 2000 ; 37 : 54 – 61 .
- Levine RA , Forest T , Smith C . Tumor suppressor PTEN is mutated in canine osteosarcoma cell lines and tumors . Vet Pathol 2002 ; 39 : 372 – 378 .
- Ley TJ , Mardis ER , Ding L . DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome . Nature 2008 ; 456 : 66 – 72 .
- Lingaas F , Comstock KE , Kirkness EF , et al. A mutation in the canine BHD gene is associated with hereditary multifocal renal cystadenocarcinoma and nodular dermatofibrosis in the German shepherd dog . Hum Mol Genet 2003 ; 12 : 3043 – 3053 .
- Loeb LA . Mutator phenotype may be required for multistage carcinogenesis . Cancer Res 1991 ; 51 : 3075 – 3079 .
- Maser RS , DePinho RA . Connecting chromosomes, crisis, and cancer . Science 2002 ; 297 : 565 – 569 .
- Megquier K , Turner-Meier J , Swofford R , et al. Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma . Mol Cancer Res 2019 ; 17 ( 12 ): 2410 – 2421
- Modiano JF , Breen M , Burnett RC , et al. Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk . Cancer Res 2005 ; 65 : 5654 – 5661 .
- Modiano JF , Breen M , Valli VE , et al. Predictive value of p16 or Rb inactivation in a model of naturally occurring canine non-Hodgkin's lymphoma . Leukemia 2007 ; 21 : 184 – 187 .
- Modiano JF , Johnson LD , Bellgrau D . Negative regulators in homeostasis of naive peripheral T cells . Immunol Res 2008 ; 41 : 137 – 153 .
- Molica S , Vacca A , Ribatti D , et al. Prognostic value of enhanced bone marrow angiogenesis in early B-cell chronic lymphocytic leukemia . Blood 2002 ; 100 : 3344 – 3351 .
- Nickerson ML , Warren MB , Toro JR , et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome . Cancer Cell 2002 ; 2 : 157 – 164 .
- Nowell PC . Mechanisms of tumor progression . Cancer Res 1986 ; 46 : 2203 – 2207 .
- Ohyashiki JH , Sashida G , Tauchi T , et al. Telomeres and telomerase in hematologic neoplasia . Oncogene 2002 ; 21 : 680 – 687 .
- Ostrander EA , Dreger DL , Evans JM . Canine cancer genomics: lessons for canine and human health . Annu Rev Animal Biosci 2019 ; 7 : 449 – 472 .
- Peralta S , McCleary-Wheeler AL , Duhamel GE , et al. Ultra-frequent HRAS p.Q61R somatic mutation in canine acanthomatous ameloblastoma reveals pathogenic similarities with human ameloblastoma . Vet Comp Oncol 2019 ; 17 ( 3 ): 439 – 445 .
- Ponder BA . Cancer genetics . Nature 2001 ; 411 : 336 – 341 .
- Preziosi R , Sarli G , Paltrinieri M . Prognostic value of intratumoral vessel density in cutaneous mast cell tumors of the dog . J Comp Pathol 2004 ; 130 : 143 – 151 .
- Ranieri G , Patruno R , Lionetti A , et al. Endothelial area and microvascular density in a canine non-Hodgkin's lymphoma: an interspecies model of tumor angiogenesis . Leuk Lymphoma 2005 ; 46 : 1639 – 1643 .
- Restucci B , Borzacchiello G , Maiolino P , et al. Expression of vascular endothelial growth factor receptor Flk-1 in canine mammary tumours . J Comp Pathol 2004 ; 130 : 99 – 104 .
- Ribatti D , Nico B , Ranieri G , et al. The Role of Angiogenesis in Human Non-Hodgkin Lymphomas . Neoplasia 2013 ; 15 ( 3 ): 231 – 238 .
- Ruchatz H , Coluccia AM , Stano P , et al. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALKtransformed cells . Exp Hematol 2003 ; 31 : 309 – 315 .
- Smith GH . Mammary cancer and epithelial stem cells: a problem or a solution? Breast Cancer Res 2002 ; 4 : 47 – 50 .
- Stoica G , Lungu G , Stoica H , et al. Identification of cancer stem cells in dog glioblastoma . Vet Pathol 2009 ; 46 : 391 – 406 .
- Tamburini BA , Trapp S , Phang TL , et al. Gene expression profiles of sporadic canine hemangiosarcoma are uniquely associated with breed . PLoS ONE 2009 ; 4 ( 5 ): e5549 .
- Thomas R , Seiser EL , Motsinger-Reif A , et al. Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas . Leuk Lymphoma 2011 ; 52 ( 7 ): 1321 – 1335 .
- Thomas R , Wang HJ , Tsai P-C , et al. Influence of genetic background on tumor karyotypes: evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma . Chromosome Res 2009 ; 17 : 365 – 377 .
- Tonomura N , Elvers I , Thomas R , et al. Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers . PloS Genet 2015 ; 11 ( 2 ): e1004922 .
- Trosko JE . Commentary: is the concept of “tumor promotion” a useful paradigm? Mol Carcinogen 2001 ; 30 : 131 – 137 .
- Wang L , Xiao H , Zhang X , et al. The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation . J Hematol Oncol 2014 ; 7 : 61 .
- Wilson H , Huelsmeyer M , Chun R , et al. Isolation and characterisation of cancer stem cells from canine osteosarcoma . Vet J 2007 ; 23 : 15 – 22 .
- Wong K , van der Weyden L , Schott CR , et al. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma . Nat Commun 2019 ; 10 ( 1 ): 353 .