Free Access
Works Cited
Apostolos Syropoulos,
Theophanes Grammenos,
Apostolos Syropoulos
Search for more papers by this authorTheophanes Grammenos
Search for more papers by this authorBook Author(s):Apostolos Syropoulos,
Theophanes Grammenos,
Apostolos Syropoulos
Search for more papers by this authorTheophanes Grammenos
Search for more papers by this authorFirst published: 26 June 2020

References
- Abramsky, S. (1994). Proofs as processes. Theoretical Computer Science 135 (1: 5–9.
-
Adlassnig, K.-P. (1986). Fuzzy set theory in medical diagnosis. IEEE Transactions on Systems, Man, and Cybernetics
16 (2): 260–265.
10.1109/TSMC.1986.4308946 Google Scholar
- Akbari, M. and Sadegh, M.K. (2012). Estimators based on fuzzy random variables and their mathematical properties. Iranian Journal of Fuzzy Systems 9 (1): 79–95.
- Akiba, K. (2014). Boolean-valued sets as vague sets. In: Vague Objects and Vague Identity (ed. K. Akiba and A. Abasnezhad) [5], 175–195. Dordrecht: Springer.
-
K. Akiba and A. Abasnezhad (eds.) (2014). Vague Objects and Vague Identity,
Logic, Epistemology, and the Unity of Science, No. 33
. Dordrecht, The Netherlands: Springer.
10.1007/978-94-007-7978-5 Google Scholar
-
Akram, M. (2018). Fuzzy Lie Algebras. Singapore: Springer Nature Singapore.
10.1007/978-981-13-3221-0 Google Scholar
- Alex, R. (2007). Fuzzy point estimation and its application on fuzzy supply chain analysis. Fuzzy Sets and Systems 158 (14): 1571–1587.
- Alur, R. and Dill, D.L. (1994). A theory of timed automata. Theoretical Computer Science 126 (2): 183–235.
-
Anastasiou, G.A. (2010). Fuzzy Mathematics: Approximation Theory,
Studies in Fuzziness and Soft Computing, No. 251
. Berlin: Springer-Verlag.
10.1007/978-3-642-11220-1 Google Scholar
- Andres, J. and Rypka, M. (2016). Fuzzy fractals and hyperfractals. Fuzzy Sets and Systems 300: 40–56. Theme: Fuzzy Metric Spaces and Topology.
- Anthony, J. and Sherwood, H. (1979). Fuzzy groups redefined. Journal of Mathematical Analysis and Applications 69 (1): 124–130.
- Aristotle (1994). Ὄργανον 1: Kατηγορίαι - Περὶ ἑρμηνείας. Aθήνα: Eκδόσεις Kάκτος.
-
Aschieri, P., Dimitrijevic, M., Kulish, P. et al. (2009). Noncommutative Spacetimes: Symmetries in Noncommutative Geometry and Field Theory. Berlin: Springer-Verlag.
10.1007/978-3-540-89793-4 Google Scholar
- Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1): 87–96.
- Atanassov, K.T. (2012). On Intuitionistic Fuzzy Sets Theory, Studies in Fuzziness and Soft Computing, No. 283 . Berlin: Springer-Verlag.
- Ayres, F. Jr. and Jaisingh, L.R. (2004). Schaum's Outline of Theory and Problems of Abstract Algebra, 2e. New York: McGraw-Hill.
-
Baaz, M. and Metcalfe, G. (2007). Proof theory for first order Łukasiewicz logic. In: Automated Reasoning with Analytic Tableaux and Related Methods (ed. N. Olivetti), 28–42. Berlin: Springer-Verlag.
10.1007/978-3-540-73099-6_5 Google Scholar
- Baaz, M., Preining, N., and Zach, R. (2007). First-order Gödel logics. Annals of Pure and Applied Logic 147 (1): 23–47.
-
Balachandran, A., Kürkçüoglu, S., and Vaidya, S. (2007). Lectures on Fuzzy and Fuzzy SUSY Physics. Singapore: World Scientific Publishing Co.
10.1142/6346 Google Scholar
- Ban, A. (2008). Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval. Fuzzy Sets and Systems 159 (11): 1327–1344.
- Barnsley, M.F. and Demko, S. (1985). Iterated function systems and the global construction of fractals. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 399 (1817): 243–275.
-
Barr, M. (1979). *-Autonomous Categories,
Lecture Notes in Mathematics, No. 752
. Berlin: Springer-Verlag.
10.1007/BFb0064579 Google Scholar
-
Barr, M. (1996). Fuzzy models of linear logic. Mathematical Structures in Computer Science
6 (3): 301–312.
10.1017/S096012950000102X Google Scholar
- Bede, B. (2013). Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in Fuzziness and Soft Computing, No. 295 . Berlin: Springer-Verlag.
-
Bell, J.L. (2005). Set Theory: Boolean-Valued Models and Independence Proofs: Oxford Logic Guides, 3e, vol. 47. Oxford: Oxford University Press.
10.1093/acprof:oso/9780198568520.001.0001 Google Scholar
- Bělohlávek, R., Dauben, J.W., and Klir, G.J. (2017). Fuzzy Logic and Mathematics: A Historical Perspective. New York: Oxford University Press.
-
Benovsky, J. (2015). Vague objects with sharp boundaries. Ratio: An International Journal of Analytic Philosophy
28 (1): 29–39.
10.1111/rati.12052 Google Scholar
- Berge, C. (1976). Graphs and Hypergraphs, 2e. Amsterdam: North-Holland Publishing Company.
- Bhattacharya, P. and Suraweera, F. (1991). An algorithm to compute the supremum of max-min powers and a property of fuzzy graphs. Pattern Recognition Letters 12 (7): 413–420.
- Birkhoff, G. (1967). Lattice Theory, 3e, Colloquium Publications, No. 25. Providence, RI: American Mathematical Society.
- Biswas, R. (1989). Fuzzy fields and fuzzy linear spaces redefined. Fuzzy Sets and Systems 33 (2): 257–259.
- Bochvar, D.A. (1938). Об одном трехзначном исчислении и его применении к анализу парадоксов классического расширенного функционального исчисления. Математический сборник 4 (46), 2: 287–308. English translation: [33].
-
Bochvar, D.A. and Bergmann, M. (1981). On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus. History and Philosophy of Logic
2 (1–2): 87–112.
10.1080/01445348108837023 Google Scholar
-
Boghosian, B.M., Coveney, P.V., and Wang, H. (2019). A new pathology in the simulation of chaotic dynamical systems on digital computers. Advanced Theory and Simulations
1900125. https://doi.org/10.1002/adts.201900125.
10.1002/adts.201900125 Google Scholar
-
Boole, G. (2009). The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning,
Cambridge Library Collection - Mathematics
. Cambridge: Cambridge University Press.
10.1017/CBO9780511701337 Google Scholar
- L. Borkowski (ed.) (1970). Jan Łukasiewicz: Selected Works. Amsterdam: North-Holland Publishing Company.
-
Bouchon-Meunier, B., Coletti, G., and Marsala, C. (2002). Conditional possibility and necessity. In: Technologies for Constructing Intelligent Systems 2: Tools (ed. B. Bouchon-Meunier, J. Gutierrez-Rios, L. Magdalena, and R.R. Yager), 59–71. Heidelberg: Physica-Verlag HD.
10.1007/978-3-7908-1796-6_5 Google Scholar
- Bredon, G.E. (1993). Topology and Geometry, Graduate Texts in Mathematics, No. 139 . New York: Springer-Verlag.
-
Brown, J.G. (1971). A note on fuzzy sets. Information and Control
18 (1): 32–39.
10.1016/S0019-9958(71)90288-9 Google Scholar
- Buckley, J.J. (1989). Fuzzy complex numbers. Fuzzy Sets and Systems 33 (3): 333–345.
- Buckley, J.J. (2006). Fuzzy Probability and Statistics, Studies in Fuzziness and Soft Computing , vol. 196. Berlin: Springer-Verlag.
- Buckley, J.J. and Eslami, E. (1997a). Fuzzy plane geometry I: points and lines. Fuzzy Sets and Systems 86 (2): 179–187.
- Buckley, J.J. and Eslami, E. (1997b). Fuzzy plane geometry II: circles and polygons. Fuzzy Sets and Systems 87 (1): 79–85.
-
Buckley, J.J. and Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets,
Advances in Soft Computing, No. 13
. Berlin: Springer-Verlag.
10.1007/978-3-7908-1799-7 Google Scholar
- Buckley, J.J. and Feuring, T. (1999). Introduction to fuzzy partial differential equations. Fuzzy Sets and Systems 105 (2): 241–248.
-
Buckley, J.J. and Feuring, T. (2000). Fuzzy differential equations. Fuzzy Sets and Systems
110 (1): 43–54.
10.1016/S0165-0114(98)00141-9 Google Scholar
- Buckley, J.J. and Feuring, T. (2001). Fuzzy initial value problem for Nth-order linear differential equations. Fuzzy Sets and Systems 121 (2): 247–255.
-
Buckley, J.J. and Jowers, L.J. (2008). Monte Carlo Methods in Fuzzy Optimization. Berlin: Springer-Verlag.
10.1007/978-3-540-76290-4 Google Scholar
- Buckley, J. and Qu, Y. (1991). Solving systems of linear fuzzy equations. Fuzzy Sets and Systems 43 (1): 33–43.
-
Buckley, J.J., Eslami, E., and Feuring, T. (2002). Fuzzy Mathematics in Economics and Engineering,
Studies in Fuzziness and Soft Computing
, vol. 91. Berlin: Springer-Verlag.
10.1007/978-3-7908-1795-9 Google Scholar
-
Bueno, O. and Colyvan, M. (2012). Just what is vagueness?
Ratio: An International Journal of Analytic Philosophy
25: 19–33.
10.1111/j.1467-9329.2011.00513.x Google Scholar
- Burgin, M. (1995). Neoclassical analysis: fuzzy continuity and convergence. Fuzzy Sets and Systems 75 (3): 291–299.
- Burgin, M. (2000). Theory of fuzzy limits. Fuzzy Sets and Systems 115 (3): 433–443.
- Burgin, M. (2006). Fuzzy limits of functions, arXiv:math/0612676v1 [math.CA].
-
Butkiewicz, B.S. (2007). An approach to theory of fuzzy discrete signals. In: Foundations of Fuzzy Logic and Soft Computing (ed. P. Melin, O. Castillo, L.T. Aguilar et al.), 646–655. Berlin: Springer-Verlag.
10.1007/978-3-540-72950-1_64 Google Scholar
- Cabrelli, C.A., Forte, B., Molter, U.M., and Vrscay, E.R. (1992). Iterated fuzzy set systems: a new approach to the inverse problem for fractals and other sets. Journal of Mathematical Analysis and Applications 171 (1): 79–100.
- Cantarella, J., Needham, T., Shonkwiler, C., and Stewart, G. (2019). Random triangles and polygons in the plane. The American Mathematical Monthly 126 (2): 113–134.
- Carroll, K.K. (1975). Experimental evidence of dietary factors and hormone-dependent cancers. Cancer Research 35 (11, Part 2): 3384–3386.
- Casals, M.R., Gil, M.A., and Gil, P. (1986). On the use of Zadeh's probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets and Systems 20 (2): 175–190.
-
Castillo, O. and Melin, P. (2001). A new theory of fuzzy chaos and its application for simulation and control of robotic dynamic systems. In: 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297), vol. 1, 151–154.
10.1109/FUZZ.2001.1007269 Google Scholar
- Chachi, J. and Taheri, S.M. (2011). Fuzzy confidence intervals for mean of Gaussian fuzzy random variables. Expert Systems with Applications 38 (5): 5240–5244.
-
Chachi, J., Taheri, S.M., and Viertl, R. (2016). Testing statistical hypotheses based on fuzzy confidence intervals. Austrian Journal of Statistics
41 (4): 267–286.
10.17713/ajs.v41i4.168 Google Scholar
-
Chakrabarty, K. (2001). On fuzzy lattice. In: Rough Sets and Current Trends in Computing (ed. W. Ziarko and Y. Yao), 238–242. Berlin: Springer-Verlag.
10.1007/3-540-45554-X_28 Google Scholar
-
Chakraverty, S., Tapaswini, S., and Behera, D. (2016). Fuzzy Differential Equations and Applications for Engineers and Scientists. Boca Raton, FL: CRC Press.
10.1201/9781315372853 Google Scholar
- Chalco-Cano, Y., Báez-Sánchez, A., Román-Flores, H., and Rojas-Medar, M. (2011). On the approximation of compact fuzzy sets. Computers & Mathematics with Applications 61 (2): 412–420.
- Chang, C.L. (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications 24 (1): 182–190.
-
Chang, S.S.L. and Zadeh, L.A. (1972). On fuzzy mapping and control. IEEE Transactions on Systems, Man, and Cybernetics
SMC-2 (1): 30–34.
10.1109/TSMC.1972.5408553 Google Scholar
-
Chapin, E.W. Jr. (1974). Set-valued set theory: Part one. Notre Dame Journal of Formal Logic
15 (4): 619–634.
10.1305/ndjfl/1093891496 Google Scholar
-
Chapin, E.W. Jr. (1975). Set-valued set theory: Part two. Notre Dame Journal of Formal Logic
16 (2): 255–267.
10.1305/ndjfl/1093891706 Google Scholar
- Chen, S.-H. (1985). Operation on fuzzy numbers with function principle. Tamkang Journal of Management Science 6 (1): 13–25.
- Chen, S.-J. and Chen, S.-M. (2003). Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE Transactions on Fuzzy Systems 11 (1): 45–56.
- Cheney, E.W. (1966). Introduction to Approximation Theory. New York: McGraw-Hill Book Co.
- Cheng, C.-B. (2004). Group opinion aggregation based on a grading process: a method for constructing triangular fuzzy numbers. Computers & Mathematics with Applications 48 (10): 1619–1632.
-
Chiu, C.-H. and Wang, W.-J. (2002). A simple computation of min and max operations for fuzzy numbers. Fuzzy Sets and Systems
126 (2): 273–276.
10.1016/S0165-0114(01)00041-0 Google Scholar
-
Cho, Y.J., Rassias, T.M., and Saadati, R. (2018). Fuzzy Operator Theory in Mathematical Analysis. Cham, Switzerland: Springer Nature Switzerland AG.
10.1007/978-3-319-93501-0_10 Google Scholar
- Coletti, G. and Vantaggi, B. (2007). Comparative models ruled by possibility and necessity: a conditional world. International Journal of Approximate Reasoning 45 (2): 341–363. Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005).
- Connes, A. (1994). Noncommutative Geometry. San Diego, CA: Academic Press. Freely available from http://www.alainconnes.org.
- Coppi, R., Gil, M.A., and Kiers, H.A. (2006). The fuzzy approach to statistical analysis. Computational Statistics and Data Analysis 51 (1): 1–14.
- Corral, N. and Gil, M.A. (1988). A note on interval estimation with fuzzy data. Fuzzy Sets and Systems 28 (2): 209–215.
- Coxeter, H.S.M. (1969). Introduction to Geometry, 2e. New York: Wiley.
- Craine, W.L. (1993). Fuzzy hypergraphs and fuzzy intersection graphs. PhD thesis. University of Idaho.
- Cường, B.C. (2014). Picture fuzzy sets. Journal of Computer Science and Cybernetics 30 (4). Freely available from https://doi.org/10.15625/1813-9663/30/4/5032.
-
Darby, G. (2014). Vague objects in quantum mechanics? In: Vague Objects and Vague Identity (ed. K. Akiba and A. Abasnezhad [5], 69–108. Dordrecht, The Netherlands: Springer.
10.1007/978-94-007-7978-5_4 Google Scholar
- Das, S., Guha, D., and Dutta, B. (2016). Medical diagnosis with the aid of using fuzzy logic and intuitionistic fuzzy logic. Applied Intelligence 45 (3): 850–867.
-
Dat, L.Q., Chou, S.-Y., Dung, C.C., and Yu, V.F. (2013). Improved arithmetic operations on generalized fuzzy numbers. In: 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), 407–414. IEEE.
10.1109/iFuzzy.2013.6825474 Google Scholar
- de Andrés Sánchez, J. and Gómez, A.T. (2004). Estimating a fuzzy term structure of interest rates using fuzzy regression techniques. European Journal of Operational Research 154 (3): 804–818.
- De Baets, B. and De Meyer, H. (2003). Transitive approximation of fuzzy relations by alternating closures and openings. Soft Computing 7 (4): 210–219.
-
De Branges, L. (1959). The Stone-Weierstrass Theorem. Proceedings of the American Mathematical Society
10 (5): 822–824.
10.1090/S0002-9939-1959-0113131-7 Google Scholar
-
de Paiva, V. (1989). A dialectica-like model of linear logic. In: Proceedings of Category Theory and Computer Science, Manchester, UK, September 1989,
Lecture Notes in Computer Science, No. 389
(ed. D. Pitt, D. Rydeheard, P. Dybjer et al.), 341–356. Springer-Verlag.
10.1007/BFb0018360 Google Scholar
- de Paiva, V. (1991). The Dialectica Categories. Tech. Rep. 213. Computer Laboratory, University of Cambridge, UK,
- de Paiva, V. (2000). Dialectica and Chu constructions: cousins? Talk presented at the Workshop on Chu Spaces: Theory and Applications, Santa Barbara, California, USA.
- de Paiva, V. (2002). Lineales: algebraic models of linear logic from a categorical perspective. In: Words, Proofs and Diagrams (ed. D. Barker-Plummer, D.I. Beaver, J. van Benthem, and P.S. di Luzio), 123–142. Stanford, CA: CLSI Publications.
- de Paiva, V. (2006). Dialectica and Chu constructions: cousins? Theory and Applications of Categories 17 (7): 127–152.
- Demirci, M. (1999). Vague groups. Journal of Mathematical Analysis and Applications 230 (1): 142–156.
- Denœux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets and Systems 183 (1): 72–91.
- Deschrijver, G. and Kerre, E.E. (2003). On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133 (2): 227–235.
- Deschrijver, G. and Král, P. (2007). On the cardinalities of interval-valued fuzzy sets. Fuzzy Sets and Systems 158: 1728–1750.
- Diamond, P. (1988). Fuzzy least squares. Information Sciences 46 (3): 141–157.
- Diamond, P. and Kloeden, P. (1990). Metric spaces of fuzzy sets. Fuzzy Sets and Systems 35 (2): 241–249.
-
Diamond, P. and Kloeden, P. (1994). Metric spaces of fuzzy sets: Theory and Applications. Singapore: World Scientific.
10.1142/2326 Google Scholar
-
Diamond, P. and Kloeden, P. (2000). Metric topology of fuzzy numbers and fuzzy analysis. In: Fundamentals of Fuzzy Sets (ed. D. Dubois and H. Prade), 583–641. Boston, MA: Springer US.
10.1007/978-1-4615-4429-6_12 Google Scholar
- Dixit, V., Kumar, R., and Ajmal, N. (1992). On fuzzy rings. Fuzzy Sets and Systems 49 (2): 205–213.
- Dongale, T.D., Ghatage, S.R., and Mudholkar, R.R. (2013). Application philosophy of fuzzy regression. International Journal of Soft Computing and Engineering 2 (6): 170–172.
- Doostfatemeh, M. and Kremer, S.C. (2005). New directions in fuzzy automata. International Journal of Approximate Reasoning 38 (2): 175–214.
- Douglas, M.R. and Nekrasov, N.A. (2001). Noncommutative field theory. Reviews of Modern Physics 73 (4): 977–1029.
-
Draper, N.R. and Smith, H. (1998). Applied Regression Analysis, 3e. New York: Wiley.
10.1002/9781118625590 Google Scholar
-
Drossos, C.A., Markakis, G., and Theodoropoulos, P.L. (2000).
-fuzzy stochastics. In: Asymptotics in Statistics and Probability: Papers in Honor of George Gregory Roussas (ed. M.L. Puri), 155–170. Utrecht, Holland: VSP International Science Publishers.
10.1515/9783110942002-012 Google Scholar
- Dubois, D. (2012). Have fuzzy sets anything to do with vagueness? In: Understanding Vagueness: Logical, Philosophical, and Linguistic Perspectives (ed. P. Cintula, C.G. Fermuller, L. Godo, and P. Hájek), 317–346. London: College Publications.
-
Dubois, D. and Prade, H. (1979). Fuzzy real algebra: some results. Fuzzy Sets and Systems
2 (4): 327–348.
10.1016/0165-0114(79)90005-8 Google Scholar
- Dubois, D. and Prade, H. (1980). Sets and Systems—Theory and Applications, Mathematics in Science and Engineering, No. 144 . New York: Academic Press.
-
Dubois, D. and Prade, H. (1988). Possibility Theory: An Approach to Computerized Processing of Uncertainty. New York: Plenum Press.
10.1007/978-1-4684-5287-7 Google Scholar
-
Dubois, D. and Prade, H. (2009). Possibility theory. In: Encyclopedia of Complexity and Systems Science (ed. R.A. Meyers), 6927–6939. New York: Springer.
10.1007/978-0-387-30440-3_413 Google Scholar
-
Dubois, D., Prade, H., and Sandri, S. (1993). On possibility/probability transformations. In: Fuzzy Logic: State of the Art (ed. R. Lowen and M. Roubens), 103–112. Dordrecht: Springer Netherlands.
10.1007/978-94-011-2014-2_10 Google Scholar
-
Einstein, A. (1921). Geometrie und Erfahrung. In: Geometrie und Erfahrung: Erweiterte Fassung des Festvortrages gehalten an der Preussischen Akademie der Wissenschaften zu Berlin am 27. Januar 1921, 2–20. Heidelberg: Springer-Verlag.
10.1007/978-3-642-49903-6_1 Google Scholar
- Einstein, A. (2015). Sidelights on Relativity. London: Forgotten Books.
- Eklund, P., Galán, M., Medina, J. et al. (2002). Set functors, L-fuzzy set categories, and generalized terms. Computers & Mathematics with Applications 43 (6): 693–705.
- Encyclopedia of Mathematics. Semi-continuous function. http://www.encyclopediaofmath.org/index.php?title=Semicontinuous__function&oldid=40145.
- Engelking, R. (1978). Dimension Theory. Amsterdam: North-Holland.
- Evans, G. (1978). Can there be vague objects? Analysis 38 (4): 208.
- S. Feferman, J.W. Dawson, S.C. Kleene et al. (eds.) (1986). Kurt Gödel: Collected Works Volume I: Publications 1929–1936. Oxford: Oxford University Press.
- S. Feferman, J.W. Dawson, S.C. Kleene et al. (eds.) (1990). Kurt Gödel: Collected Works Volume II: Publications 1938–1974. Oxford: Oxford University Press.
- Feng, Y. (2000). Gaussian fuzzy random variables. Fuzzy Sets and Systems 111 (3): 325–330.
- Fiadeiro, J.L. (2004). Categories for Software Engineering. New York: Springer-Verlag.
-
Flori, C. (2013). A First Course in Topos Quantum Theory,
Lecture Notes in Physics
, vol. 868. Berlin: Springer-Verlag.
10.1007/978-3-642-35713-8_17 Google Scholar
- Forrest, P. (2016). The identity of indiscernibles. In: The Stanford Encyclopedia of Philosophy (ed. E.N. Zalta), winter 2016 ed. Metaphysics Research Lab, Stanford University.
- French, S. and Krause, D. (2003). Quantum vagueness. Erkenntnis 59: 97–124.
-
French, S. and Krause, D. (2006). Indentity in Physics: A Historical, Philosophical and Formal Analysis. Oxford: Oxford University Press.
10.1093/0199278245.001.0001 Google Scholar
- Frøyland, J. (1992). Introduction to Chaos and Coherence. Bristol: Institute of Physics Publishing.
- Gal, G.S. (1993). A fuzzy variant of the Weierstrass' approximation theorem. Journal of Fuzzy Mathematics 1 (4): 865–872.
- Gal, G.S. (1995). Fuzzy variant of the Stone-Weierstrass approximation theorem. Mathematica (Cluj) 37 (60): 103–108.
-
Gal, S.G. (2000). Approximation theory in fuzzy setting. In: Handbook of Analytic Computational Methods in Applied Mathematics (ed. G. Anastassiou). Boca Raton, FL: Chapman and Hall/CRC.
10.1201/9781420036053.ch13 Google Scholar
-
Galindo, J., Urrutia, A., and Piattini, M. (2006). Fuzzy Databases: Modeling, Design and Implementation. Hershey, PA: IGI Global.
10.4018/978-1-59140-324-1 Google Scholar
-
Gallager, R.G. (2013). Stochastic Processes: Theory for Applications. Cambridge: Cambridge University Press.
10.1017/CBO9781139626514 Google Scholar
- George, A. and Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (3): 395–399.
- Ghosh, D. and Chakraborty, D. (2012). Analytical fuzzy plane geometry I. Fuzzy Sets and Systems 209: 66–83. Theme: Fuzzy numbers and Analysis.
- Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50: 1–102.
-
Girard, J.-Y. (1995). Linear logic: its syntax and semantics. In: Advances in Linear Logic,
London Mathematical Society Lecture Note Series
, vol. 222 (ed. J.-Y. Girard, Y. Lafont, and L. Regnier), 1–42. Cambridge University Press.
10.1017/CBO9780511629150.002 Google Scholar
- Girard, J.-Y. (2003). From foundations to ludics. Bulletin of Symbolic Logic 9 (2): 131–168.
- Girard, J.-Y. (2007). Truth, modality and intersubjectivity. Mathematical Structures in Computer Science 17 (6): 1153–1167.
-
Girard, J.-Y. (2011). The Blind Spot: Lectures on Logic. Zürich: European Mathematical Society Publishing House.
10.4171/088 Google Scholar
- Glöckner, I. (2006). Fuzzy Quantifiers: A Computational Theory, Studies in Fuzziness and Soft Computing, No. 193 . Berlin: Springer-Verlag.
- Goguen, J.A. (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications 18 (1): 145–174.
- Goguen, J.A. (1969). The logic of inexact concepts. Synthese 19 (3–4): 325–373.
-
Goldblatt, R. (1998). Lectures on the Hyperreals: An Introduction to Nonstandard Analysis,
Graduate Texts in Mathematics, No. 188
. Berlin: Springer-Verlag.
10.1007/978-1-4612-0615-6 Google Scholar
-
Gomes, L.T., de Barros, L.C., and Bede, B. (2015). Fuzzy Differential Equations in Various Approaches. Heidelberg: Springer Cham.
10.1007/978-3-319-22575-3 Google Scholar
-
Gottwald, S. (2006). Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part II: Category theoretic approaches. Studia Logica
84: 23–50.
10.1007/s11225-006-9001-1 Google Scholar
-
Goudarzi, M. and Vaezpour, S.M. (2009). On the definition of fuzzy Hilbert spaces and its application. The Journal of Nonlinear Science and Applications
2 (1): 46–59.
10.22436/jnsa.002.01.07 Google Scholar
- Gouyandeh, Z., Allahviranloo, T., Abbasbandy, S., and Armand, A. (2017). A fuzzy solution of heat equation under generalized Hukuhara differentiability by fuzzy Fourier transform. Fuzzy Sets and Systems 309: 81–97.
-
Grensing, G. (2013). Structural Aspects of Quantum Field Theory and Noncommutative Geometry. Singapore: World Scientific.
10.1142/8771 Google Scholar
-
Grosan, C. and Abraham, A. (2011). Intelligent Systems: A Modern Approach,
Intelligent Systems Reference Library
, vol. 17. Berlin: Springer-Verlag.
10.1007/978-3-642-21004-4 Google Scholar
- Grzegorzewski, P. and Hryniewicz, O. (1997). Testing statistical hypotheses in fuzzy environment. Mathware & Soft Computing 4: 203–217.
- Gupta, M.M. and Qi, J. (1991). Theory of T-norms and fuzzy inference methods. Fuzzy Sets and Systems 40 (3): 431–450.
- Gupta, K. and Ray, S. (1993). Fuzzy plane projective geometry. Fuzzy Sets and Systems 54 (2): 191–206.
- Guts, A.K. (1991). A Topos-theoretic approach to the foundations of relativity theory. Doklady Akademii Nauk SSSR 318 (6): 1294–1297. English translation in Soviet Mathematics Doklady 43 (3): 904–907, 1991.
- Gödel, K. (1932). Zum intuitionistischen Aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien 69: 65–66. English translation with comments in [120, p. 222–225].
-
Gödel, K. (1958). Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica
12 (3–4): 280–287. English translation with comments in [121, p. 217–251].
10.1111/j.1746-8361.1958.tb01464.x Google Scholar
-
Hájek, P. (1998). Metamathematics of Fuzzy Logic,
Trends in Logic, No. 4
. Dordrecht, The Netherlands: Springer Netherlands.
10.1007/978-94-011-5300-3 Google Scholar
-
Halmos, P.R. (1974). Naive Set Theory. New York: Springer-Verlag.
10.1007/978-1-4757-1645-0 Google Scholar
- Hanss, M. (2005). Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Berlin: Springer-Verlag.
-
Hanss, M. and Nehls, O. (2000). Simulation of the human glucose metabolism using fuzzy arithmetic. In: PeachFuzz 2000: 19th International Conference of the North American Fuzzy Information Processing Society (ed. T. Whalen), 201–205. IEEE.
10.1109/NAFIPS.2000.877420 Google Scholar
- Hogg, R.V., Tanis, E., and Zimmerman, D. (2013). Probability and Statistical Inference, 9e. Harlow, Essex: Pearson Education Limited.
- Holzmann, C.A., Perez, C.A., and Rosselot, E. (1988). A fuzzy model for medical diagnosis. Medical Progress Through Technology 13 (4): 171–178.
- Hong, D.H. and Kim, K.T. (2006). An easy computation of MIN and MAX operations for fuzzy numbers. Journal of Applied Mathematics and Computing 21 (1–2): 555–561.
- Hutchinson, J.E. (1981). Fractals and self similarity. Indiana University Mathematics Journal 30 (5): 713–747.
-
Iske, A. (2018). Approximation. Berlin: Springer Spektrum.
10.1007/978-3-662-55465-4 Google Scholar
- Jech, T. (2003). Set Theory: The Third Millennium Edition, revised and expanded. Berlin: Springer-Verlag.
- Joshi, K.D. (1983). Introduction to General Topology. New Delhi: Wiley Eastern Limited.
- Kadak, U. and Başar, F. (2014). On Fourier series of fuzzy-valued functions. The Scientific World Journal 2014 Article ID 782652.
- C. Kahraman and O. Kabak (eds.) (2016). Fuzzy Statistical Decision-Making: Theory and Applications, Studies in Fuzziness and Soft Computing, No. 343 . Basel, Switzerland: Springer.
- Kaleva, O. (1987). Fuzzy differential equations. Fuzzy Sets and Systems 24 (3): 301–317.
- Kaleva, O. and Seikkala, S. (1984). On fuzzy metric spaces. Fuzzy Sets and Systems 12 (3): 215–229.
- Kandel, A. and Byatt, W.J. (1980). Fuzzy processes. Fuzzy Sets and Systems 4 (2): 117–152.
- Katsaras, A.K. and Liu, D.B. (1977). Fuzzy vector spaces and fuzzy topological vector spaces. Journal of Mathematical Analysis and Applications 58 (1): 135–146.
- Kaufmann, A. (1973). Eléments Théoriques de Base , vol. 1 of Introduction à la Théorie des Sous-Ensembles Flous à l'usage des ingénieurs. Masson, Paris.
-
Kleene, S.C. (1938). On notation for ordinal numbers. Journal of Symbolic Logic
3 (4): 150–155.
10.2307/2267778 Google Scholar
- Klement, E.P., Puri, M.L., and Ralescu, D.A. (1986). Limit theorems for fuzzy random variables. Proceedings of the Royal Society of London A 407 (1832): 171–182.
- Klir, G.J. and Parviz, B. (1992). Probability-possibility transformations: a comparison. International Journal of General Systems 21 (3): 291–310.
- Klir, G.J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall (Sd).
-
Kolmogoroff, A. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Verlag von Julius Springer.
10.1007/978-3-642-49888-6 Google Scholar
- Kosko, B. (1990). Fuzziness vs. Probability. International Journal of General Systems 17 (2): 211–240.
- Kramosil, I. and Michálek, J. (1975). Fuzzy metrics and statistical metric spaces. Kybernetika 11 (5): 336–344.
-
Kreinovich, V. (2013). Membership functions or α-cuts? Algorithmic (constructivist) analysis justifies an interval approach. Applied Mathematical Sciences
7 (5): 217–228.
10.12988/ams.2013.13020 Google Scholar
-
Kruse, R. and Meyer, K.D. (1987). Statistics with Vague Data,
Theory and Decision Library B
, 2e, vol. 6. Dordrecht, The Netherlands: Kluwer.
10.1007/978-94-009-3943-1 Google Scholar
- Kuchta, D. (2012). Application of fuzzy numbers to the estimation of an ongoing project's completion time. Operations Research and Decisions 22 (4): 87–103.
- Kuncheva, L.I. and Steimann, F. (1999). Fuzzydiagnosis. Artificial Intelligence in Medicine 16 (2): 121–128.
- Kwakernaak, H. (1978). Fuzzy random variables—I. Definitions and theorems. Information Sciences 15 (1): 1–29.
- Kwakernaak, H. (1979). Fuzzy random variables—II. Algorithms and examples for the discrete case. Information Sciences 17 (3): 253–278.
-
Lakshmikantham, V. and Mohapatra, R.N. (2003). Theory of Fuzzy Differential Equations and Inclusions. Boca Raton, FL: CRC Press.
10.1201/9780203011386 Google Scholar
-
Lawvere, F.W. and Schanuel, S.H. (2009). Conceptual Mathematics: A First Introduction to Categories, 2e. Cambridge: Cambridge University Press.
10.1017/CBO9780511804199 Google Scholar
- Lee, K.H. (2005). First Course on Fuzzy Theory and Applications, Advances in Soft Computing , vol. 27. Berlin: Springer-Verlag.
- Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2e. New York: Springer-Verlag.
- Lehmann, E.L. and Romano, J.P. (2005). Testing Statistical Hypotheses, 3e. New York: Springer-Verlag.
- Liu, W.-J. (1982). Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems 8 (2): 133–139.
- Lorentz, G.G. (1966). Approximation of Functions. New York: Holt, Rinehart and Winston Inc.
- Lorenz, E.N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20 (2): 130–141.
- Lowe, E.J. (1994). Vague identity and quantum indeterminacy. Analysis 54 (2): 110–114.
- Lowen, R. (1976). Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysis and Applications 56 (3): 621–633.
- Łukasiewicz, J. (1920). O logice trójwartościowej. Ruch Filozoficzny 5: 170–171. English translation in [36, p. 87–88].
- Łukasiewicz, J. (1930). Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. Comptes rendus des séance de la Société des Sciences et des Lettres de Varsovie 23: 51–77. Classe III (English translation in [36, p. 153–178].
- Łukasiewicz, J. and Tarski, A. (1930). Untersuchungen über den Aussagenkalkül. Comptes rendus des séance de la Société des Sciences et des Lettres de Varsovie 23: 30–50. Classe III (English translation in [284, p. 153–178].
-
Mac Lane, S. (1986). Mathematics: Form and Function. New York: Springer-Verlag.
10.1007/978-1-4612-4872-9 Google Scholar
- Mac Lane, S. (1998). Category Theory for the Working Mathematician, 2e. New York: Springer-Verlag.
- Madore, J. (1992). The fuzzy sphere. Classical and Quantum Gravity 9 (1): 69–89.
- Madore, J. (1997). Fuzzy space-time. Canadian Journal of Physics 75 (6): 385–399.
- Madore, J. (2000). An Introduction to Noncommutative Differential Geometry and its Physical Applications, 2e. Cambridge: Cambridge University Press.
- Majumdar, K.K. (2004). Fuzzy fractals and fuzzy turbulence. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 34 (1): 746–751.
- A. Malpass and M.A. Marfori (eds.) (2017). The History of Philosophical and Formal Logic: From Aristotle to Tarski. London: Bloomsbury Academic.
- Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156 (3775): 636–638.
- Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. San Francisco, CA: W. H. Freeman and Co..
- Matheron, G. (1975). Random Sets and Integral Geometry. New York: Wiley.
-
Mayburov, S.N. (2018). Commutative fuzzy geometry and geometric quantum mechanics. Journal of Physics: Conference Series
1051: 012022.
10.1088/1742-6596/1051/1/012022 Google Scholar
-
McCain, R.A. (1983). Fuzzy confidence intervals. Fuzzy Sets and Systems
10 (1): 281–290.
10.1016/S0165-0114(83)80121-3 Google Scholar
-
McNaughton, R. (1951). A theorem about infinite-valued sentential logic. Journal of Symbolic Logic
16 (1): 1–13.
10.2307/2268660 Google Scholar
- Meeden, G. and Noorbaloochi, S. (2013). Hypotheses testing as a fuzzy set estimation problem. Communications in Statistics—Theory and Methods 42 (10): 1806–1820.
-
Meeker, W.Q., Hahn, G.J., and Escobar, L.A. (2017). Statistical Intervals: A Guide for Practitioners and Researchers, 2e. New York: Wiley.
10.1002/9781118594841 Google Scholar
- Mendel, J.M. and John, R.I.B. (2002). Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems 10 (2): 117–127.
- Mendelson, E. (1997). Introduction to Mathematical Logic, 4e. London: Chapman & Hall.
-
Metcalfe, G., Olivetti, N., and Gabbay, D. (2009). Proof Theory for Fuzzy Logics,
Applied Logic Series, No. 36
. Dordrecht, The Netherlands: Springer Netherlands.
10.1007/978-1-4020-9409-5 Google Scholar
- Molodtsov, D.A. (1999). Soft set theory—first results. Computers & Mathematics with Applications 37 (4): 19–31.
-
Mordeson, J.N. and Malik, D.S. (2002). Fuzzy Automata and Languages: Theory and Applications. Boca Raton, FL: Chapman & Hall/CRC.
10.1201/9781420035643 Google Scholar
-
Mordeson, J.N. and Nair, P.S. (2000). Fuzzy Graphs and Fuzzy Hypergraphs, Studies in Fuzziness and Soft Computing, vol. 46. Heidelberg: Physica-Verlag HD.
10.1007/978-3-7908-1854-3 Google Scholar
- Mordeson, J.N. and Nair, P.S. (2001). Fuzzy Mathematics—An Introduction for Scientists and Engineers, 2e. Heidelberg: Physica Verlag.
-
Mordeson, J.N., Bhutani, K.R., and Rosenfeld, A. (2005). Fuzzy Group Theory,
Studies in Fuzziness and Soft Computing
, vol. 182. Berlin: Springer.
10.1007/b12359 Google Scholar
- Morreau, M. (2002). What vague objects are like. The Journal of Philosophy 99 (7): 333–361.
-
Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematicae
44 (1): 12–36. Freely available from http://eudml.org/doc/213418.
10.4064/fm-44-1-12-36 Google Scholar
- Muller, E.N. (1972). A test of a partial theory of potential for political violence. American Political Science Review 66 (3): 928–959.
-
Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences
236 (767): 333–380.
10.1098/rsta.1937.0005 Google Scholar
- Nobuhara, H., Bede, B., and Hirota, K. (2006). On various eigen fuzzy sets and their application to image reconstruction. Information Sciences 176 (20): 2988–3010.
- Ovchinnikov, S. (1991). Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1): 107–126.
- Palaniappan, N. (2002). Fuzzy Topology. Pangbourne: Alpha Science International.
- Papadopoulos, B.K. and Syropoulos, A. (2000). Fuzzy sets amd fuzzy relational structures as Chu spaces. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8 (4): 471–479.
- Papadopoulos, B.K. and Syropoulos, A. (2005). Categorical relationships between Goguen sets and “two-sided” categorical models of linear logic. Fuzzy Sets and Systems 149: 501–508.
- Papoulis, A. and Pillai, S.U. (2002). Probability, Random Variables, and Stochastic Processes, 4e. Boston, MA: McGraw-Hill.
- Parsaye, K. and Chignell, M. (1988). Expert Systems for Experts. New York: Wiley.
-
Pathinathan, T. and Dolorosa, E.A. (2019). Symmetric periodic Fourier series using pentagonal fuzzy number. Journal of Computer and Mathematical Sciences
10 (3): 510–518.
10.29055/jcms/1034 Google Scholar
- Pavlačka, O. and Talašová, J. (2010). Fuzzy vectors as a tool for modeling uncertain multidimensional quantities. Fuzzy Sets and Systems 161 (11): 1585–1603. Theme: Decision Systems.
-
Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences
11 (5): 341–356.
10.1007/BF01001956 Google Scholar
- Pedrycz, W. and Gomide, F. (2007). Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley.
-
Peitgen, H.-O., Jürgens, H., and Saupe, D. (2004). Chaos and Fractals: New Frontiers of Science. New York: Springer.
10.1007/b97624 Google Scholar
- Pelletier, F.J. (1984). The not-so-strange modal logic of indeterminacy. Logique et Analyse 27 (108): 415–422.
- Perezgonzalez, J.D. (2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. Frontiers in Psychology 6: 223.
-
Post, E.L. (1921). Introduction to a general theory of elementary propositions. American Journal of Mathematics
43 (3): 163–185.
10.2307/2370324 Google Scholar
-
Pultr, A. (1984). Fuzziness and fuzzy equality. In: Aspects of Vagueness (ed. H.J. Skala, S. Termini, and E. Trillas), 119–135. Dordrecht, Holland: D. Reidel Publishing Company.
10.1007/978-94-009-6309-2_8 Google Scholar
- Puri, M.L. and Ralescu, D.A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications 91 (2): 552–558.
- Puri, M.L. and Ralescu, D.A. (1986). Fuzzy random variables. Journal of Mathematical Analysis and Applications 114 (2): 409–422.
- Ramadan, A. (1992). Smooth topological spaces. Fuzzy Sets and Systems 48 (3): 371–375.
-
G. Ronzitti (ed.) (2011). Vagueness: A Guide,
Logic, Epistemology, and the Unity of Science, No. 19
. Dordrecht, The Netherlands: Springer.
10.1007/978-94-007-0375-9 Google Scholar
- Rosen, K.H. (2012). Discrete Mathematics and Its Applications, 7e. New York: McGraw-Hill.
- Rosenfeld, A. (1971). Fuzzy groups. Journal of Mathematical Analysis and Applications 35 (3): 512–517.
-
Rosenfeld, A. (1975). Fuzzy graphs. In: Fuzzy Sets and their Applications to Cognitive and Decision Processes (ed. L.A. Zadeh, K.-S. Fu, K. Tanaka, and M. Shimura), 77–95. New York: Academic Press.
10.1016/B978-0-12-775260-0.50008-6 Google Scholar
- Rosenfeld, A. (1998). Fuzzy geometry: an updated overview. Information Sciences 110 (3): 127–133.
-
Saadati, R. and Vaezpour, S.M. (2005). Some results on fuzzy Banach spaces. Journal of Applied Mathematics and Computing
17 (1): 475–484.
10.1007/BF02936069 Google Scholar
- Sambuc, R. (1975). Fonctions Φ-floues, Application à l'aide au diagnostic en pathologie thyroidienne. PhD thesis. France: Université de Marseille.
-
Samelson, H. (1990). Notes on Lie Algebras, 2e. New York: Springer-Verlag.
10.1007/978-1-4613-9014-5 Google Scholar
- Sezer, S. (2011). Vague rings and vague ideals. Iranian Journal of Fuzzy Systems 8 (1): 145–157.
- Shackle, G.L.S. (2010). Decision Order and Time in Human Affairs, 2e. Cambridge: Cambridge University Press.
- Shafer, G. and Vovk, V. (2006). The sources of Kolmogorov's Grundbegriffe . Statistical Science 21 (1): 70–98. Freely available from https://projecteuclid.org/euclid.ss/1149600847.
- Shapiro, A.F. (2004). Fuzzy regression and the term structure of interest rates revisited. In: Proceedings of the 14th International AFIR Colloquium 1, 29–45.
- Sharma, B.K., Syropoulos, A., and Tiwari, S.P. (2016). On fuzzy multiset regular grammars. Annals of Fuzzy Mathematics and Informatics 12 (5): 617–639.
- Shonkwiler, C. (2019). Stiefel manifolds and polygons. In: Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture (ed. S. Goldstine, D. McKenna, and K. Fenyvesi), 187–194. Phoenix, AZ: Tessellations Publishing.
-
Siler, W. and Buckley, J.J. (2005). Fuzzy Expert Systems and Fuzzy Reasoning. New York: Wiley.
10.1002/0471698504 Google Scholar
-
Smarandache, F. (2006). Neutrosophic set—a generalization of the intuitionistic fuzzy set. In: 2006 IEEE International Conference on Granular Computing, 38–42.
10.1109/GRC.2006.1635754 Google Scholar
-
Smithson, M. (1988). Possibility theory, fuzzy logic, and psychological explanation. In: Fuzzy Sets in Psychology,
Advances in Psychology
, vol. 56 (ed. T. Zétényi), 1–50. North-Holland.
10.1016/S0166-4115(08)60480-X Google Scholar
- S̆ostak, A. (1985). On a fuzzy topological structure. In: Rendiconti del Circolo Matematico di Palermo Serie II, Supplemento No. 11, 89–103. Available from http://dml.cz/dmlcz/701883.
- S̆ostak, A. (1999). Fuzzy categories related to algebra and topology. Tatra Mountains Mathematical Publications 16 (1): 159–185. Available from the web site of the Slovak Academy of Sciences.
- S̆ostak, A. (2002). Fuzzy functions and an extension of the category L-TO P of Chang-Goguen L-topological spaces. In: Proceedings of the 9th Prague Topological Symposium (ed. P. Simon). arXiv:math/0204165 [math.GN], 271–294.
-
Stone, M.H. (1937). Applications of the theory of Boolean rings to general topology. Transactions of the American Mathematical Society
41 (3): 375–481.
10.1090/S0002-9947-1937-1501905-7 Google Scholar
-
Stone, M.H. (1948). The generalized Weierstrass approximation theorem. Mathematics Magazine
21 (4): 167–184.
10.2307/3029750 Google Scholar
- Sugeno, M. and Sasaki, M. (1983). L-fuzzy category. Fuzzy Sets and Systems 11 (1): 43–64.
- Syau, Y.-R., Lee, E., and Jia, L. (2004). Convexity and upper semicontinuity of fuzzy sets. Computers & Mathematics with Applications 48 (1): 117–129.
- Syropoulos, A. (2006a). Fuzzifying P systems. The Computer Journal 49 (5): 619–628.
- Syropoulos, A. (2006b). Yet another fuzzy model for linear logic. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14 (1): 131–135.
- Syropoulos, A. (2012). On generalized fuzzy multisets and their use in computation. Iranian Journal of Fuzzy Systems 9 (2): 115–127.
- Syropoulos, A. (2014a). Fuzzy categories, arXiv:1410.1478v1 [cs.LO].
-
Syropoulos, A. (2014b). Theory of Fuzzy Computation,
IFSR International Series on Systems Science and Engineering, No. 31
. New York: Springer-Verlag.
10.1007/978-1-4614-8379-3 Google Scholar
- Syropoulos, A. (2016). Fuzzy sets and fuzzy logic. In: Encyclopedia of Computer Science and Technology (ed. P.A. Laplante), 459–468. Boca Raton, FL: CRC Press.
-
Syropoulos, A. (2017). On vague computers. In: Emergent Computation: A Festschrift for Selim G. Akl (ed. A. Adamatzky), 393–402. Cham: Springer International Publishing.
10.1007/978-3-319-46376-6_17 Google Scholar
- Syropoulos, A. (2018). A (basis for a) philosophy of a theory of fuzzy computation. Kairos. Journal of Philosophy & Science 20 (1): 181–201.
- Syropoulos, A. and de Paiva, V. (2011). Fuzzy topological systems, arXiv:1107.2513v1 [cs.LO].
- Szabo, R.J. (2003). Quantum field theory on noncommutative spaces. Physics Reports 378 (4): 207–299.
- Tahayori, H. and Antoni, G.D. (2007). A simple method for performing type-2 fuzzy set operations based on highest degree of intersection hyperplane. In: NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society (ed. M. Reformat and M.R. Berthold), 404–409.
-
Taheri, S.M. (2016). Trends in fuzzy statistics. Austrian Journal of Statistics
32 (3): 239–257.
10.17713/ajs.v32i3.459 Google Scholar
- Tanaka, H., Uejima, S., and Asai, K. (1982). Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man, and Cybernetics 12 (6): 903–907.
- Tarski, A. (1956). Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Oxford: Oxford University Press.
-
Thiele, H. (1995). On fuzzy quantifiers. In: Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems,
Theory and Decision Library (Series D: System Theory, Knowledge Engineering and Problem Solving)
, vol. 16 (ed. Z. Bien and K. Min), 343–352. Dordrecht, The Netherlands: Springer.
10.1007/978-94-009-0125-4_34 Google Scholar
- Timan, A.F. (1963). Theory of Approximation of Functions of a Real Variable. Oxford: Pergamon Press.
- Tremblay, J.-P. and Sorenson, P.G. (1985). The Theory and Practice of Compiler Writing. Singapore: McGraw-Hill.
- Tsaur, R.-C. (2014). Residual analysis using Fourier series transform in fuzzy time series model. Iranian Journal of Fuzzy Systems 11 (3): 43–54.
- Tu, L. and Wenxiang, G. (1994). Abelian fuzzy group and its properties. Fuzzy Sets and Systems 64 (3): 415–420.
- Vickers, S. (1989). Topology via Logic, Cambridge Tracts in Theoretical Computer Science, No. 6 . Cambridge: Cambridge University Press.
- Walker, C.L. (2004). Categories of fuzzy sets. Soft Computing 8 (4): 299–304.
- Wang, H. (2005). Interval neutrosophic sets and logic: theory and applications in computing. PhD thesis. Georgia State University Atlanta, GA, USA.
- Wang, G.-j. and He, Y.-Y. (2000). Intuitionistic fuzzy sets and l-fuzzy sets. Fuzzy Sets and Systems 110 (2): 271–274.
-
Wang, Z. and Klir, G.J. (2009). Generalized Measure Theory, IFSR International Series on Systems Science and Engineering, No. 25. New York: Springer Science+Business Media.
10.1007/978-0-387-76852-6 Google Scholar
- R. Wardhaugh and J.M. Fuller (eds.) (2015). An Introduction to Sociolinguistics, 7e. Chichester, West Sussex: Wiley-Blackwell.
- Weber, S. (1983). A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets and Systems 11: 115–134.
- Weisstein, E.W. Heine-Borel Theorem. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Heine-BorelTheorem.html.
- Wiedermann, J. (2004). Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines. Theoretical Computer Science 317: 61–69.
- Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena 16 (3): 285–317.
-
Wong, C. (1975). Fuzzy topology. In: Fuzzy Sets and their Applications to Cognitive and Decision Processes (ed. L.A. Zadeh, K.-S. Fu, K. Tanaka, and M. Shimura), 171–190. Academic Press.
10.1016/B978-0-12-775260-0.50012-8 Google Scholar
- Wu, C. and Gong, Z. (2001). On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets and Systems 120 (3): 523–532.
- Yager, R.R. (1986). A characterization of the extension principle. Fuzzy Sets and Systems 18 (3): 205–217.
- Yager, R.R. (2006). On the fuzzy cardinality of a fuzzy set. International Journal of General Systems 35 (2): 191–206.
- Yuan, X. and Shen, Z. (2001). Notes on “Fuzzy plane geometry I, II”. Fuzzy Sets and Systems 121 (3): 545–547.
- Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8: 338–353.
- Zadeh, L.A. (1968). Fuzzy algorithms. Information and Control 12: 94–102.
- Zadeh, L.A. (1971). Similarity relations and fuzzy orderings. Information Sciences 3 (2): 177–200.
-
Zadeh, L.A. (1972). A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of Cybernetics
2 (3): 4–34.
10.1080/01969727208542910 Google Scholar
-
Zadeh, L.A. (1975a). Calculus of fuzzy restrictions. In: Fuzzy Sets and their Applications to Cognitive and Decision Processes (ed. L.A. Zadeh, K.-S. Fu, K. Tanaka, and M. Shimura), 1–39. Academic Press.
10.1016/B978-0-12-775260-0.50006-2 Google Scholar
-
Zadeh, L.A. (1975b). Fuzzy logic and approximate reasoning. Synthese
30 (3): 407–428.
10.1007/BF00485052 Google Scholar
- Zadeh, L.A. (1975c). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences 8 (3): 199–249.
- Zadeh, L.A. (1975d). The concept of a linguistic variable and its application to approximate reasoning—II. Information Sciences 8 (3): 301–357.
- Zadeh, L.A. (1975e). The concept of a linguistic variable and its application to approximate reasoning—III. Information Sciences 9 (1): 43–80.
-
Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems
1: 3–28.
10.1016/0165-0114(78)90029-5 Google Scholar
- Zadeh, L.A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with Applications 9 (1): 149–184.
- Zadeh, L.A. (1984). Fuzzy probabilities. Information Processing & Management 20 (3): 363–372. Special Issue Information Theory Applications to Problems of Information Science.
- Zadeh, L.A. (1995). Discussion: probability theory and fuzzy logic are complementary rather than competitive. Technometrics 37 (3): 271–276.
- Zardecki, A. (1997). Fuzzy fractals, chaos, and noise. New Mexico. https://digital.library.unt.edu/ark:/67531/metadc674876/ (accessed 28 October 2019). University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department, May 1997.
- Zhang, J.-W. (1980). A unified treatment of fuzzy set theory and Boolean-valued set theory—fuzzy set structures and normal fuzzy set structures. Journal of Mathematical Analysis and Applications 76 (1): 297–301.