The PRoViDE Framework: Accurate 3D Geological Models for Virtual Exploration of the Martian Surface from Rover and Orbital Imagery
Christoph Traxler
Zentrum für Virtual Reality und Visualisierung (VRVis) Forschungs-GmbH, Vienna, Austria
Search for more papers by this authorThomas Ortner
Zentrum für Virtual Reality und Visualisierung (VRVis) Forschungs-GmbH, Vienna, Austria
Search for more papers by this authorGerd Hesina
Zentrum für Virtual Reality und Visualisierung (VRVis) Forschungs-GmbH, Vienna, Austria
Search for more papers by this authorJan-Peter Muller
University College London, London, United Kingdom
Search for more papers by this authorChristoph Traxler
Zentrum für Virtual Reality und Visualisierung (VRVis) Forschungs-GmbH, Vienna, Austria
Search for more papers by this authorThomas Ortner
Zentrum für Virtual Reality und Visualisierung (VRVis) Forschungs-GmbH, Vienna, Austria
Search for more papers by this authorGerd Hesina
Zentrum für Virtual Reality und Visualisierung (VRVis) Forschungs-GmbH, Vienna, Austria
Search for more papers by this authorJan-Peter Muller
University College London, London, United Kingdom
Search for more papers by this authorAndrea Bistacchi
Department of Environmental and Earth Sciences, University of Milano-Bicocca, Milan, Italy
Search for more papers by this authorMatteo Massironi
Department of Geosciences, University of Padua, Padua, Italy
Search for more papers by this authorSummary
In this chapter, we describe the PRoViDE (Planetary Robotics Vision Data Exploitation) framework that supports an entire workflow to generate 3D geological models of planetary surfaces from separate or fused rover and orbiter imagery, which are used for an efficient and reliable geologic analysis. PRoViDE provides a comprehensive solution for planetary geological studies including tools and data products from multiresolution co-registered orbital imagery to multiresolution rover derived imagery. A special processing called Super-Resolution Restoration (SRR) is employed to increase the spatial resolution of some orbital imagery. The main components of PRoViDE consist of a geo-database (PRoDB) to gather and manage huge volumes of data, a prototype of a planetary webGIS (PRoGIS) providing interactive map exploration, a processing pipeline producing multiresolution 3D reconstructions of planetary surfaces (PRoViP) and an interactive 3D viewer for virtual exploration and visual analysis (PRo3D). This viewer relies on advanced real-time visualization and interaction methods tailored to geospatial data. Various measurement tools are provided for a quantitative analysis of geological features. In summary, the PRoViDE framework enables an efficient and accurate investigation chain for detailed geologic interpretation of a planetary region, which also serves as decision support for mission planning.
References
- Aardvark ( 2021a ). The Aardvark Platform, website : https://aardvarkians.com , last accessed August 2021.
- Aardvark ( 2021b ). GitHub repository, website : https://github.com/aardvark-platform , last accessed August 2021.
- ArrayFire ( 2021 ). Explaining FP64 performance on GPUs, website : https://arrayfire.com/ , last accessed August 2021.
- Barnes , R. , Gupta , S. , Giordano , M. et al. ( 2015 ). Geological interpretation and analysis of surface based, spatially referenced planetary image data using PRoGIS 2.0 and Pro3D . In: European Planetary Science Congress 2015, held 27 September–2 October, 2015, in Nantes . France : Online at http://meetingorganizer.copernicus.org/EPSC2015 , id.EPSC2015-375.
- Barnes , R. , Gupta , S. , Traxler , C. et al. ( 2018 ). Geological analysis of Martian rover-derived Digital Outcrop Models using the 3-D visualization tool, Planetary Robotics 3-D Viewer—Pro3D . Earth and Space Science 5 : 285 – 307 . https://doi.org/10.1002/2018EA000374.
- Bell , J.F. , Joseph , J. , Sohl-Dickstein , J.N. et al. ( 2006 ). In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments . Journal of Geophysical Research 111, no. E , p. E02S03,: January 2006.
- Bell , J. III , Maki , J. , Mehall , G. et al. ( 2021 ). The Mars 2020 perseverance rover mast camera zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation . Space Science Reviews 217 ( 1 ): 1 – 40 .
- Bistacchi , A. , Mittempergher , S. , and Martinelli , M. ( 2021 ). Digital Outcrop Model reconstruction and interpretation . In: 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces . Wiley, this volume .
- Bristow , T.F. , Bish , D.L. , Vaniman , D.T. et al. ( 2015 ). The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars . American Mineralogist 100 : 824 – 836 . doi: 10.2138/am-2015-5077CCBYNCND.
- Coates , A.J. , Jaumann , R. , Schmitz , N. et al. ( 2015 ). PanCam on the ExoMars 2018 Rover: A Stereo, Multispectral and High-Resolution Camera System to Investigate the Surface of Mars , 1812 . 46th Lunar and Planetary Science Conference , March 16–20, 2015, The Woodlands, Texas. LPI Contribution No. 1832.
-
Cozzi , P.
and
Ring , K.
(
2011
).
3D Engine Design for Virtual Globes
.
CRC Press
.
10.1201/9781439865583 Google Scholar
- Duxbury , T.C. , Kirk , R.L. , Arch inal , B.A. , and Neumann , G.A. ( 2002 ). Mars Geodesy/Cartography Working Group recommendations on Mars cartographic constants and coordinate systems . International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34 ( 4 ): 743 – 748 .
- Edgar , L.A. , Grotzinger , J.P. , Hayes , A.G. et al. ( 2012 ). Stratigraphic Architecture of Bedrock Reference Section, Victoria Crater, Meridiani Planum, Mars, SEPM Special Publication 102 . Sedimentary Geology of Mars 195 – 209 .
- Edgar , L.A. , Gupta , S. , Rubin , D.M. et al. ( 2018 ). Shaler: in situ analysis of a fluvial sedimentary deposit on Mars . Sedimentology. doi: 10.1111/sed.12370.
- Elm ( 2021 ). The Elm Architecture, online article : https://guide.elm-lang.org , last accessed August 2021.
- Farley , K.A. , Malespin , C. , Mahaffy , P. et al. ( 2014 ). In situ radiometric and exposure age dating of the Martian surface . Science 343 ( 6169 ): 124 – 166 .
- Giordano , M.G. , Morley , J.M. , Muller , J.P. et al. ( 2015 ). Sharing knowledge of Planetary Datasets through the web-based PRoGIS . In: European Planetary Science Congress , 2015, held on 27 September–2 October, 2015, in Nantes, France. Online at: http://meetingorganizer.copernicus.org/EPSC2015 , id.EPSC2015-235.
-
Grant , J.A.
,
Wilson , S.A.
,
Cohen , B.A.
et al. (
2008
).
Degradation of Victoria crater, Mars
.
Journal of Geophysical Research E: Planets
113
:
E11010
. doi: 10.1029/2008JE003155.
10.1029/2008JE003155 Google Scholar
- Grotzinger , J.P. , Sumner , D.Y. , Kah , L.C. et al. ( 2014 ). A habitable Fluvio-Lacustrine environment at Yellowknife Bay, Gale Crater . Mars. Science 343 ( 6169 ): 1 – 15 .
-
Haaser , G.
,
Steinlechner , H.
,
Maierhofer , S.
, and
Tobler , R.F.
(
2015
).
An incremental rendering VM
. In:
Proceedings of the 7th Conference on High-Performance Graphics
,
51
–
60
.
Los Angeles
, USA, August 7–9, 2015.
10.1145/2790060.2790073 Google Scholar
- Hayes , A.G. , Grotzinger , J.P. , Edgar , L.a. et al. ( 2011 ). Reconstruction of Eolian bed forms and paleocurrents from cross-bedded strata at Victoria Crater, Meridiani Planum, Mars . Journal of Geophysical Research E: Planets 116 ( 4 ): 1 – 17 . doi: 10.1029/2010JE003688.
- Kemen , B. ( 2009 ). Logarithmic Depth Buffer. Outerra Blogspot website : http://outerra.blogspot.co.at/2009/08/logarithmic-z-buffer.html , last accessed: June 27,2017.
-
Léveillé , R.J.
,
Bridges , J.
,
Wiens , R.C.
et al. (
2014
).
Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars
.
Journal of Geophysical Research: Planets
119
:
2014JE004620
. doi:
https://doi.org/10.1002/2014JE004620
.
10.1002/2014JE004620 Google Scholar
- Luebke , D. , Watson , B. , Cohen , J.D. et al. ( 2002 ). Level of Detail for 3D Graphics . New York : Elsevier Science Inc.
- Ming , D.W. , Archer , P.D. , Glavin , D.P. et al. ( 2014 ). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater . Mars. Science 343 : 1245267 . doi: https://doi.org/10.1126/science.1245267 .
-
Möller , T.A.
,
Haines , E.
, and
Hoffman , N.
(
2008
).
Real-Time-Rendering
,
3rd
e.
A.K
:
Peters/CRC Press
ISBN-13: 978-1568814247.
10.1201/b10644 Google Scholar
- Ortner , T. , Traxler , C. , Piringer , H. et al. ( 2019 ). MINERVA: A 3D GIS and visual analysis framework . In: Proceedings of 15th Symposium on Advanced Space Technologies in Robotics and Automation . the Netherlands : (ASTRA 2019), ESA-ESTEC, Noordwijk , The Netherlands May 27–28, 2019.
- Paar , G. , Muller , J.P. , Tao , Y. et al. ( 2013 ). PRoViDE: Planetary probes' mass vision data processing . In: European Planetary Science Congress 2013 . held 8–13 September in London, UK. Online at: http://meetings.copernicus.org/epsc2013 , id.EPSC2013-289.
- Paar , G. , Muller , J.-P. , Tao , Y. et al. ( 2015 ). PRoViDE: Planetary robotics vision data processing and fusion . In: European Planetary Science Congress 2015 . held 27 September–2 October in Nantes, France. Online at: http://meetingorganizer.copernicus.org/EPSC2015 , id.EPSC2015-345.
- Paar , G. , Koeberl , C. , Hesina , G. et al. ( 2016a ). 3D Vision for Mars 2020 Mastcam-Z: Pre-assessment of processing techniques and geologic use cases . In: 47th Lunar and Planetary Science Conference . held March 21–25, 2016 at The Woodlands, Texas. LPI Contribution No. 1903, p. 2810.
- Paar , G. and the PRoViDE Consortium ( 2016b ). PRoViDE Final Report , http://www.provide-space.eu/wp-content/uploads/2015/01/PRVD-REP-JR-Final-Report_2016-04-14-Public.pdf .
- PRo3D–Planetary Robotics 3D Viewer ( 2021a ) Website https://pro3d.space , last accessed August 2021.
- PRo3D–GitHub Repository ( 2021b ) URL: https://github.com/pro3d-space/PRo3D , last accessed August 2021.
- Schieber , J. , Bish , D. , Coleman , M. et al. ( 2016 ). Encounters with an unearthly mudstone: Understanding the first mudstone found on Mars . Sedimentology, The Journal of the International Association of Sedimentologists 64 ( 2 ): February 2017, doi: 10.1111/sed.12318.
-
Siebach , K.L.
,
Grotzinger , J.P.
,
Kah , L.C.
et al. (
2014
).
Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars
.
Journal of Geophysical Research: Planets
119
: 2014JE004623. doi: 10.1002/2014JE004623.
10.1002/2014JE004623 Google Scholar
- Stack , K.M. , Grotzinger , J.P. , Kah , L.C. et al. ( 2014 ). Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars . Journal of Geophysical Research: Planets 119 : 1637 – 1664 . doi: https://doi.org/10.1002/2014JE004617 .
-
Steinlechner , H.
,
Haaser , G.
,
Maierhofer , S.
, and
Tobler , R.F.
(
2019
).
Attribute grammars for incremental scene graph rendering
. In:
Proceeding
s of VISIGRAPP, 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
,
77
–
88
.
LDA., Prague, Czech Republic
:
Scitepress Digital Library, Science and Technology Publications
February 25–27, 2019. doi: 10.5220/0007372800770088.
10.5220/0007372800770088 Google Scholar
- Tao , Y. and Muller , J.P. ( 2016 , February). A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery . Planetary and Space Science 121 : 103 – 114 , Elsevier.
- Tao , Y. and Muller , J.-P. ( 2021 ). Super-resolution restoration of spaceborne ultra-high-resolution images using the UCL OpTiGAN System Remote Sensing 13 ( 12 ): 2269 .
- Tao , Y. , Muller , J.-P. , and Poole , W. ( 2016 , June). Automated localisation of Mars rovers using co-registered HiRISE-CTX-HRSC orthorectified images and wide baseline Navcam orthorectified mosaics . Icarus 280 : 139 – 157 .
- Tao , Y. , Conway , S.J. , Muller , J.-P. et al. ( 2021 ). Single image super-resolution restoration of TGO CaSSIS colour images: Demonstration with perseverance Rover landing site and Mars science targets . Remote Sensing 13 ( 9 ): 1777 .
- Tobler , R.F. ( 2011 ). Separating semantics from rendering: A scene graph based architecture for graphics applications . Visual Computer 27 ( 6 ): 687 .
- Traxler , C. , Hesina , G. , Barnes , R. et al. ( 2016 ). The PRoViDE framework for the quantitative geologic analysis of reconstructed Martian terrain and outcrops . In: Geophysical Research Abstracts . Vol. 18, EGU2016-7196, EGU General Assembly 2016.
- Vaniman , D.T. , Bish , D.L. , Ming , D.W. et al. ( 2014 ). Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater . Mars. Science 343 : 1243480 . doi: https://doi.org/10.1126/science.1243480 .
-
Varadhan , G.
and
Manocha , D.
(
2002
).
Out-of-core rendering of massive geometric environments
. In:
Proceedings of the Conference on Visualization 02 (VIS 02)
,
69
–
76
.
Washington, DC, USA
:
IEEE Computer Society
.
10.1109/VISUAL.2002.1183759 Google Scholar
- Vasavada , A.R. , Grotzinger , J.P. , Arvidson , R.E. et al. ( 2014 ). Overview of the Mars Science Laboratory Mission: Bradbury Landing to Yellowknife Bay and Beyond . Journal of Geophysical Research E: Planets. doi: https://doi.org/10.1002/2014JE004622 .
- Vitter , J.S. ( 2001 ). External memory algorithms and data structures: Dealing with MASSIVE DATA . ACM Computing Surveys 33 ( 2 ): 209 – 271 .
- Willner , K. and Tasdelen , E. ( 2015 ). A spatial planetary image database in the context of processing . In: European Planetary Science Congress 2015 , id.EPSC2015-291, Nantes, France.
- Wlashin , S . ( 2021 ). F# for Fun and Profit, online article : https://fsharpforfunandprofit.com/why-use-fsharp/ , last accessed August 2021.
-
Wörister , M.
,
Steinlechner , H.
,
Maierhofer , S.
, and
Tobler , R.F.
(
2013
, July).
Lazy incremental computation for efficient scene graph rendering
. In:
Proceedings of the 5th High-Performance Graphics Conference
,
53
–
62
.
10.1145/2492045.2492051 Google Scholar