Advances in Gene Mapping Studies in Tree Nut Crops
Mohammad M. Arab
Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
Search for more papers by this authorAnthony Bernard
INRAE, Biologie du Fruit et Pathologie, University of Bordeaux, Villenave d'Ornon, France
Search for more papers by this authorErica A. Di Pierro
Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
Search for more papers by this authorMohammad M. Arab
Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
Search for more papers by this authorAnthony Bernard
INRAE, Biologie du Fruit et Pathologie, University of Bordeaux, Villenave d'Ornon, France
Search for more papers by this authorErica A. Di Pierro
Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
Search for more papers by this authorAbstract
Nut tree species have a great economic and cultural value for many countries across the world. Their highly nutritious content makes them one of the most favourite healthy foods of the global population, with strong evidence of their positive impact on human health. Nut tree crops are very diverse in terms of nut chemical content and shape, growing climates, and domestication history. However, all of them have a very long juvenile phase that makes classical breeding challenging and time consuming. Also, their cultivation is very resource demanding. The application of genomic-assisted breeding can accelerate the development of adaptive cultivars of nut tree species. In this article, we summarize recent successes in genomics for nut tree crops, specifically almond, chestnut, hazelnut, pecan, pistachio, and walnut. We report the recent discoveries on the genetic control of target traits for the genetic improvement of these species, with suggestions for future directions and breeding applications.
References
- Alcaide, F., Solla, A., Mattioni, C. et al. (2019). Adaptive diversity and drought tolerance in Castanea sativa assessed through EST-SSR genic markers. Forestry: An International Journal of Forest Research 92: 287–296.
10.1093/forestry/cpz007 Google Scholar
- Alcaide, F., Solla, A., Cherubini, M. et al. (2020). Adaptive evolution of chestnut forests to the impact of ink disease in Spain. Journal of Systematics and Evolution 58: 504–516.
- Alioto, T., Alexiou, K.G., Bardil, A. et al. (2020). Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. The Plant Journal 101: 455–472.
- Arab, M.M., Marrano, A., Abdollahi-Arpanahi, R. et al. (2019). Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array. Science Reports 9: 6376.
- Arab, M.M., Marrano, A., Abdollahi-arpanahi, R. et al. (2020). Combining phenotype, genotype, and environment to uncover genetic components underlying water use efficiency in Persian walnut. Journal of Experimental Botany 71: 1107–1127.
- Aradhya, M.K., Velasco, D., Wang, J.R. et al. (2019). A fine-scale genetic linkage map reveals genomic regions associated with economic traits in walnut (Juglans regia). Plant Breeding 138: 635–346.
- Aranzana, M.J., Decroocq, V., Dirlewanger, E. et al. (2019). Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticultural Research 6: 58.
- Asalone, K.C., Ryan, K.M., Yamadi, M. et al. (2020). Regional sequence expansion or collapse in heterozygous genome assemblies. PLoS Computational Biology 16 (7): e1008104.
- Ballester, J., Socias i Company, R., Arús, P., and De Vicente, M.C. (2001). Genetic mapping of a major gene delaying blooming time in almond. Plant Breeding 120: 268–270.
- Barakat, A., Staton, M., Cheng, C.H. et al. (2012). Chestnut resistance to the blight disease: insights from transcriptome analysis. BMC Plant Biology 12: 38.
- Baró-Montel, N., Eduardo, I., Usall, J. et al. (2019). Exploring sources of resistance to brown rot in an interspecific almond× peach population. Journal of the Science of Food and Agriculture 99: 4105–4113.
- Beltramo, C., Valentini, N., Portis, E. et al. (2016). Genetic mapping and QTL analysis in European hazelnut (Corylus avellana L.). Molecular Breeding 36: 1–17.
- Bentley, N., Grauke, L.J., and Klein, P. (2019). Genotyping by sequencing (GBS) and SNP marker analysis of diverse accessions of pecan (Carya illinoinensis). Tree Genetics & Genomes 15: 1–17.
- Bentley, N., Grauke, L.J., Ruhlman, E. et al. (2020). Linkage mapping and QTL analysis of pecan (Carya illinoinensis) full-siblings using genotyping-by-sequencing. Tree Genetics & Genomes 16: 1–20.
- Bernard, A., Lheureux, F., and Dirlewanger, E. (2018). Walnut: past and future of genetic improvement. Tree Genetics & Genomes 14: 1.
- Bernard, A., Marrano, A., Donkpegan, A. et al. (2020). Association and linkage mapping to unravel genetic architecture of phenological traits and lateral bearing in Persian walnut (Juglans regia L.). BMC Genomics 21: 203.
- Bernard, A., Crabier, J., Donkpegan, A.S.L. et al. (2021). Genome-wide association study reveals candidate genes involved in fruit trait variation in Persian walnut (Juglans regia L.). Frontiers in Plant Science 11: 607213.
- Bhattarai, G., Mehlenbacher, S.A., and Smith, D.C. (2017). Eastern filbert blight disease resistance from Corylus americana ‘Rush’ and selection ‘Yoder# 5’ maps to linkage group 7. Tree Genetics & Genomes 13: 1–10.
- Bielsa, B., Hewitt, S., Reyes-Chin-Wo, S. et al. (2018). Identification of water use efficiency related genes in 'Garnem' almond-peach rootstock using time-course transcriptome analysis. PLoS One 13: e0205493.
- Brachi, B., Morris, G.P., and Borevitz, J.O. (2011). Genome-wide association studies in plants: the missing heritability is in the field. Genome Biology 12: 232.
- Casasoli, M., Barreneche, T., Kremer, A. et al. (2004). An improved genetic map for Castanea mollissima/Castanea dentata and its relationship to the genetic map of Castanea sativa. III International Chestnut Congress, p. 491–496.
- Castellana, S., Martin, M.Á., Solla, A. et al. (2021). Signatures of local adaptation to climate in natural populations of sweet chestnut (Castanea sativa Mill.) from Southern Europe. Annals of Forest Science 78: 1–21.
- Chang, Y., Song, X., Zhang, Q. et al. (2022). Robust CRISPR/Cas9 mediated gene editing of JrWOX11 manipulated adventitious rooting and vegetative growth in a nut tree species of walnut. Scientia Horticulturae 303: 111199.
- Chen, K., Wang, Y., Zhang, R. et al. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70: 667–697.
- Costa, L., Ampatzidis, Y., Rohla, C. et al. (2021). Measuring pecan nut growth utilizing machine vision and deep learning for the better understanding of the fruit growth curve. Computers and Electronics in Agriculture 181: 105964.
- Daccord, N., Celton, J.M., Linsmith, G. et al. (2017). High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49: 1099–1106.
- Danilevicz, M.F., Bayer, P.E., Nestor, B.J. et al. (2021). Resources for image-based high-throughput phenotyping in crops and data sharing challenges. Plant Physiology 187: 699–715.
- De Souza, R.G.M., Schincaglia, R.M., Pimentel, G.D. et al. (2017). Nuts and human health outcomes: a systematic review. Nutrients 9.
- De Souza, R.J., Dehghan, M., Mente, A. et al. (2020). Association of nut intake with risk factors, cardiovascular disease, and mortality in 16 countries from 5 continents: analysis from the Prospective Urban and Rural Epidemiology (PURE) study. American Journal of Clinical Nutrition 112: 208–219.
- Della Coletta, R., Qiu, Y., Ou, S. et al. (2021). How the pan-genome is changing crop genomics and improvement. Genome Biology 22: 3.
- Di Guardo, M., Farneti, B., Khomenko, I. et al. (2021). Genetic characterization of an almond germplasm collection and volatilome profiling of raw and roasted kernels. Horticulture Research 8: 27.
- Díez-Palet, I., Funes, I., Savé, R. et al. (2019). Blooming under Mediterranean climate: estimating cultivar-specific chill and heat requirements of almond and apple trees using a statistical approach. Agronomy 9: 760.
10.3390/agronomy9110760 Google Scholar
- Dirlewanger, E., Graziano, E., Joobeur, T. et al. (2004). Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America 101: 9891–9896.
- Donoso, J.M., Picañol, R., Serra, O. et al. (2016). Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond × peach populations. Molecular Breeding 36: 1–17.
- Duval, H., Coindre, E., Ramos-Onsins, S.E. et al. (2023). Development and evaluation of an Axiom™ 60K SNP array for almond (Prunus dulcis). Plants (Basel) 12: 242.
- Dvorak, J., Aradhya, M., Leslie, C. et al. (2015). Discovery of the causative mutation of the lateral bearing phenotype in walnut. Walnut Research Report, p. 55–58.
- Dvorak, J., Brown, P.J., Leslie, C. et al. (2020). Use of Chandler's genepool for discovery of genes for traits important for the California walnut breeding program. Walnut Research Report, p. 1–10.
- Ebrahimi, A., Lawson, S.S., Mckenna, J.R. et al. (2020). Morpho-physiological and genomic evaluation of juglans species reveals regional maladaptation to cold stress. Frontiers in Plant Science 11: 229.
- Eckert, A.J. and Neale, D.B. (2023). Probing the dark matter of environmental associations yields novel insights into the architecture of adaptation. New Phytologist 237: 1479–1482.
- Eichler, E.E., Flint, J., Gibson, G. et al. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nature Review Genetics 11: 446–450.
- Elshire, R.J., Glaubitz, J.C., Sun, Q. et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: e19379.
- Famula, R.A., Richards, J.H., Famula, T.R. et al. (2019). Association genetics of carbon isotope discrimination and leaf morphology in a breeding population of Juglans regia L. Tree Genetics & Genomes 15: 1–13.
- Fang, H., Liu, X., Dong, Y. et al. (2021). Transcriptome and proteome analysis of walnut (Juglans regia L.) fruit in response to infection by Colletotrichum gloeosporioides. BMC Plant Biology 21: 249.
- Fernández i Martí, A., Howad, W., Tao, R. et al. (2011). Identification of quantitative trait loci associated with self-compatibility in a Prunus species. Tree genetics & genomes 7: 629–639.
- Fernández i Martí, A., Font I Forcada, C., and Socias I Company, R. (2013). Genetic analysis for physical nut traits in almond. Tree Genetics & Genomes 9: 455–465.
- Font i Forcada, C., Fernandez I Marti, A., and Socias I Company, R. (2012). Mapping quantitative trait loci for kernel composition in almond. BMC Genetics 13: 47.
- Font i Forcada, C., Oraguzie, N., Reyes-Chin-Wo, S. et al. (2015). Identification of genetic loci associated with quality traits in almond via association mapping. PLoS One 10: e0127656.
- Frary, A., Özturk, S.C., Balik, H.I. et al. (2019). Analysis of European hazelnut (Corylus avellana) reveals loci for cultivar improvement and the effects of domestication and selection on nut and kernel traits. Molecular Genetics and Genomics 294: 519–527.
- Freitas, L.C., Barbosa, J.R., Da Costa, A.L.C. et al. (2021a). From waste to sustainable industry: how can agro-industrial wastes help in the development of new products? Resources Conservation and Recycling 169: 105466.
- Freitas, T.R., Santos, J.A., Silva, A.P., and Fraga, H. (2021b). Influence of climate change on chestnut trees: a review. Plants (Basel) 10: 1463.
- Fulton, J., Norton, M., and Shilling, F. (2019). Water-indexed benefits and impacts of California almonds. Ecological Indicators 96: 711–717.
- Gabur, I., Chawla, H.S., Snowdon, R.J. et al. (2019). Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics 132: 733–750. doi: 10.1007/s00122-018-3233-0.
- Gama, T., Wallace, H.M., Trueman, S.J. et al. (2018). Quality and shelf life of tree nuts: a review. Scientia Horticulturae 242: 116–126.
- Ganal, M.W., Polley, A., Graner, E.M. et al. (2012). Large SNP arrays for genotyping in crop plants. Journal of Biosciences 37: 821–828.
- Georgi, L.L., Hebard, F.V., Nelson, C.D. et al. (2012). Adapting chestnut single nucleotide polymorphisms for use in breeding. V International Chestnut Symposium 1019: 105–112.
- Gholizadeh, J., Sadeghipour, H.R., Abdolzadeh, A. et al. (2017). Redox rather than carbohydrate metabolism differentiates endodormant lateral buds in walnut cultivars with contrasting chilling requirements. Scientia Horticulturae 225: 29–37.
- Golan, D., Lander, E.S., and Rosset, S. (2014). Measuring missing heritability: inferring the contribution of common variants. Proceedings of the National Academy of Sciences of the United States of America 111: E5272–E5281.
- Goonetilleke, S.N., March, T.J., Wirthensohn, M.G. et al. (2018). Genotyping by sequencing in almond: SNP discovery, linkage mapping, and marker design. G3 Genes / Genomes / Genetics 8: 161–172.
- Gupta, C. and Salgotra, R.K. (2022). Epigenetics and its role in effecting agronomical traits. Frontiers in Plant Science 13: 925688.
- Han, M., Peng, F., and Marshall, P. (2018). Pecan phenology in South-eastern China. Annals of Applied Biology 172: 160–169.
- Hoffman, N.E. (2022). USDA's revised biotechnology regulation's contribution to increasing agricultural sustainability and responding to climate change. Frontiers in Plant Science 13: 1055529.
- Honig, J.A., Muehlbauer, M.F., Capik, J.M. et al. (2019). Identification and mapping of eastern filbert blight resistance quantitative trait loci in European hazelnut using double digestion restriction site associated DNA sequencing. Journal of the American Society for Horticultural Science 144: 295–304.
- Hu, G., Cheng, L., Cheng, Y. et al. (2022). Pan-genome analysis of three main Chinese chestnut varieties. Frontiers in Plant Science 13: 916550.
- Huang, Y., Xiao, L., Zhang, Z. et al. (2019). The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. Gigascience 8: 1–17.
- Jackson, C.L. and Hu, F.B. (2014). Long-term associations of nut consumption with body weight and obesity. American Journal of Clinical Nutrition 100 (1): 408S–411S.
- Jaillon, O., Aury, J.M., Noel, B. et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463–467.
- Jannesar, M., Seyedi, S.M., Moazzam Jazi, M. et al. (2020). A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Scietific Reports 10: 5585.
- Jannesar, M., Seyedi, S.M., and Botanga, C. (2021). Targeted designing functional markers revealed the role of retrotransposon derived miRNAs as mobile epigenetic regulators in adaptation responses of pistachio. Scientific Reports 11: 19751.
- Ji, F., Wei, W., Liu, Y. et al. (2018). Construction of a SNP-based high-density genetic map using genotyping by sequencing (GBS) and QTL analysis of nut traits in Chinese chestnut (Castanea mollissima Blume). Frontiers in Plant Science 9: 816.
- Ji, F., Ma, Q., Zhang, W. et al. (2021). A genome variation map provides insights into the genetics of walnut adaptation and agronomic traits. Genome Biology 22: 300.
- Josephs, E.B., Berg, J.J., Ross-Ibarra, J., and Coop, G. (2019). Detecting adaptive differentiation in structured populations with genomic data and common gardens. Genetics 211: 989–1004.
- Jung, S., Lee, T., Cheng, C.H. et al. (2019). 15 years of GDR: new data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research 47: D1137–D1145.
- Kacal, M. and Koyuncu, M.A. (2017). Cracking characteristics and kernel extraction quality of hazelnuts: effects of compression speed and positions. International Journal of Food Properties 20: 1664–1167.
- Kafkas, S., Ma, X., Zhang, X. et al. (2022). Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. Plant Communications 4: 100497.
- Kang, M.J., Shin, A.Y., Shin, Y. et al. (2019). Identification of transcriptome-wide, nut weight-associated SNPs in Castanea crenata. Scientific Reports 9: 13161.
- Kapazoglou, A., Gerakari, M., Lazaridi, E. et al. (2023). Crop wild relatives: a valuable source of tolerance to various abiotic stresses. Plants (Basel) 12: 328.
- Kodad, O., Socias I Company, R., and Alonso, J.M. (2007). Fruit quality in almond: physical aspects for breeding strategies. XII EUCARPIA Symposium on Fruit Breeding and Genetics 814: 475–480.
- Komaei Koma, G., Sekerli, M., Snelling, J.W. et al. (2021). New sources of eastern filbert blight resistance and simple sequence repeat markers on linkage group 6 in hazelnut (Corylus avellana L.). Frontiers in Plant Science 12: 684122.
- Korte, A., Vilhjalmsson, B.J., Segura, V. et al. (2012). A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics 44: 1066–1071.
- Kotobuki, K., Saito, T., Kashimura, Y. et al. (1998). Chestnut breeding program in national institute of fruit tree science, Japan. II International Symposium on Chestnut, p. 323–326.
- Koyuncu, M.A., Ekinci, K.A.M.İ.L., and Savran, E. (2004). Cracking characteristics of walnut. Biosystems Engineering 87: 305–311.
- Kremer, A., Abbott, A.G., Carlson, J.E. et al. (2012). Genomics of fagaceae. Tree Genetics & Genomes 8: 583–610.
- Kubisiak, T.L., Hebard, F.V., Nelson, C.D. et al. (1997). Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87: 751–759.
- Kubisiak, T.L., Nelson, C.D., Staton, M.E. et al. (2013). A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes 9: 557–571.
- Lampinen, B., Buchner, R., Fulton, A. et al. (2004). Irrigation management in walnut using evapotranspiration, soil and plant-based data. Report to the California Walnut Board 113–136.
- Larue, C., Barreneche, T., and Petit, R.J. (2021). Efficient monitoring of phenology in chestnuts. Scientia Horticulturae 281: 109958.
- Lelli, V., Molinari, R., Merendino, N. et al. (2021). Detection and comparison of bioactive compounds in different extracts of two hazelnut skin varieties, Tonda Gentile Romana and Tonda Di Giffoni, using a metabolomics approach. Metabolites 11: 296.
- Li, Y., Sun, P., Lu, Z. et al. (2021). The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Horticulture Research 8: 54.
- Liang, M., Zhang, X., Dong, Q. et al. (2023). Metabolomics and transcriptomics provide insights into lipid biosynthesis in the embryos of walnut (Juglans regia L.). Plants (Basel) 12: 538.
- Liu, W., Liu, C., Jin, J. et al. (2020). High-throughput phenotyping of morphological seed and fruit characteristics using X-ray computed tomography. Frontiers in Plant Science 11: 601475.
- Liu, Z., Tan, P., Liang, Y. et al. (2022). Grafting with different rootstocks induced dna methylation alterations in pecan [Carya illinoinensis (Wangenh.) K. Koch]. Forests 14: 4.
- Lovell, J.T., Bentley, N.B., Bhattarai, G. et al. (2021). Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nature Communications 12: 4125.
- Lucas, S.J., Kahraman, K., Avsar, B. et al. (2020). A chromosome-scale genome assembly of European hazel (Corylus avellana L.) reveals targets for crop improvement. The Plant Journal 105: 1413–1430.
- Ma, Y., Dias, M.C., and Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science 11: 591911.
- Manolio, T.A., Collins, F.S., Cox, N.J. et al. (2009). Finding the missing heritability of complex diseases. Nature 461: 747–753.
- Marrano, A. and Neale, D.B. (2018). Towards sustainable production of walnut (Juglans regia L.). In: Achieving Sustainable Cultivation of Tree Nuts (ed. Ü. Serdar and D. Fulbright), 205–232. Cambridge, UK: Burleigh Dodds Science Publishing Limited.
- Marrano, A., Martinez-Garcia, P.J., Bianco, L. et al. (2019a). A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density Axiom J. regia 700K SNP genotyping array. Plant Biotechnology Journal 17: 1027–1036.
- Marrano, A., Sideli, G.M., Leslie, C.A. et al. (2019b). Deciphering of the genetic control of phenology, yield, and pellicle color in Persian walnut (Juglans regia L.). Frontiers in Plant Science 10: 1140.
- Marrano, A., Britton, M., Zaini, P.A. et al. (2020). High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 9: giaa050.
- Martin, G.C., Sibbett, G.S., and Ramos, D.E. (1975). Effect of delays between harvesting and drying on kernel quality of walnuts. Journal of the American Society for Horticultural Science 100: 55–57.
- Martinez-Garcia, P.J., Crepeau, M.W., Puiu, D. et al. (2016). The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. The Plant Journal 87: 507–532.
- Martínez-García, P.J., Famula, R.A., Leslie, C. et al. (2017). Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia). Tree Genetics & Genomes 13: 1–12.
- Mcgranahan, G. and Leslie, C. (2012). Walnut. In: Fruit Breeding (ed. M.L. Badenes and D.H. Byrne), 827–846. New York: Springer-Verlag.
10.1007/978-1-4419-0763-9_22 Google Scholar
- Mehlenbacher, S.A. (1991). Hazelnuts (Corylus). Genetic Resources of Temperate Fruit and Nut Crops 290: 791–838.
- Mehlenbacher, S.A., Brown, R.N., Davis, J.W. et al. (2004). RAPD markers linked to eastern filbert blight resistance in Corylus avellana. Theoretical and Applied Genetics 108: 651–656.
- Meier, U. (2003). Phenological growth stages: mono-and dicotyledonous plants. In: Phenology: An Integrative Environmental Science, Tasks for Vegetation Science, vol. 39 (ed. M.D. Schwartz), 269–283. Dordrecht: Springer.
10.1007/978-94-007-0632-3_17 Google Scholar
- Merkel, H.W. (1905). A deadly fungus on the chestnut. Tenth Annual Report of the New York Zoological Society, p. 97–103.
- Micheletti, D., Dettori, M.T., Micali, S. et al. (2015). Whole-genome analysis of diversity and snp-major gene association in peach germplasm. PLoS One 10: e0136803.
- Moazzam Jazi, M., Seyedi, S.M., Ebrahimie, E. et al. (2017). A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genomics 18: 627.
- Mohammadifard, N., Salehi-Abargouei, A., Salas-Salvado, J. et al. (2015). The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. American Journal of Clinical Nutrition 101: 966–982.
- Molnar, T.J., Goffreda, J.C., and Funk, C.R. (2004). Developing hazelnuts for the eastern Unites States. VI International Congress on Hazelnut, p. 609–618.
- Nagle, M., Dejardin, A., Pilate, G. et al. (2018). Opportunities for innovation in genetic transformation of forest trees. Frontiers in Plant Science 9: 1443.
- Ning, D.L., Wu, T., Xiao, L.J. et al. (2020). Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis. Gigascience 9: giaa006.
- Nishio, S., Takada, N., Yamamoto, T. et al. (2013). Mapping and pedigree analysis of the gene that controls the easy peel pellicle trait in Japanese chestnut (Castanea crenata Sieb. et Zucc.). Tree Genetics & Genomes 9: 723–730.
- Nishio, S., Hayashi, T., Yamamoto, T. et al. (2018). Bayesian genome-wide association study of nut traits in Japanese chestnut. Molecular Breeding 38: 1–16.
- Nishio, S., Hayashi, T., Shirasawa, K. et al. (2022). Detecting a novel locus associated with pellicle peelability in Japanese chestnut populations preselected for a major peelability gene. Scientia Horticulturae 306: 111446.
- Nock, C.J., Hardner, C.M., Montenegro, J.D. et al. (2019). Wild origins of macadamia domestication identified through intraspecific chloroplast genome sequencing. Frontiers in Plant Science 10: 334.
- O'Connor, K., Hayes, B., and Topp, B. (2018). Prospects for increasing yield in macadamia using component traits and genomics. Tree Genetics & Genomes 14: 1–14.
- O'Connor, K., Hayes, B., Hardner, C. et al. (2020). Genome-wide association studies for yield component traits in a macadamia breeding population. BMC Genomics 21: 199.
- Ozturk, S.C., Ozturk, S.E., Celik, I. et al. (2017). Molecular genetic diversity and association mapping of nut and kernel traits in Slovenian hazelnut (Corylus avellana) germplasm. Tree Genetics & Genomes 13: 1–14.
- Paizila, A., Karci, H., Ziya Motalebipour, E. et al. (2022). Quantitative trait loci analysis for flower-related traits in almond (Prunus dulcis). Plant Breeding 141: 119–132.
- Pavan, S., Delvento, C., Mazzeo, R. et al. (2021). Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. Horticulture Research 8: 15.
- Pavese, V., Moglia, A., Corredoira, E. et al. (2021). First report of CRISPR/Cas9 gene editing in Castanea sativa Mill. Frontiers in Plant Science 12: 728516.
- Plomion, C., Aury, J.M., Amselem, J. et al. (2018). Oak genome reveals facets of long lifespan. Nature Plants 4: 440–452.
- Poland, J.A. and Rife, T.W. (2012). Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome 5: 92–102.
- Pope, K.S., Dose, V., Da Silva, D. et al. (2013). Detecting nonlinear response of spring phenology to climate change by Bayesian analysis. Global Change Biology 19: 1518–1525.
- Prudencio, Á.S., Hoeberichts, F.A., Dicenta, F. et al. (2021). Identification of early and late flowering time candidate genes in endodormant and ecodormant almond flower buds. Tree Physiology 41: 589–605.
- Ramos, D.E. (1997). Walnut Production Manual. UCANR Publications.
- Rasheed, A., Hao, Y., Xia, X. et al. (2017). Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Molecular Plant 10: 1047–1064.
- Revord, R.S., Lovell, S.T., Brown, P. et al. (2020). Using genotyping-by-sequencing derived SNPs to examine the genetic structure and identify a core set of Corylus americana germplasm. Tree Genetics & Genomes 16: 1–11.
- Rowley, E.R., Vanburen, R., Bryant, D.W. et al. (2018). A draft genome and high-density genetic map of European hazelnut (Corylus avellana L.). bioRxiv. doi: 10.1101/469015.
10.1101/469015 Google Scholar
- Sadat-Hosseini, M., Arab, M.M., Soltani, M. et al. (2022). Predictive modeling of Persian walnut (Juglans regia L.) in vitro proliferation media using machine learning approaches: a comparative study of ANN, KNN and GEP models. Plant Methods 18: 48.
- Sagawa, C.H.D., De, A.B., Assis, R. et al. (2020). Proteome analysis of walnut bacterial blight disease. International Journal of Molecular Science 21 (20): 7453.
- Sakar, E.H., Yamani, M.E., Boussakouran, A. et al. (2019). Codification and description of almond (Prunus dulcis) vegetative and reproductive phenology according to the extended BBCH scale. Scientia Horticulturae 247: 224–234.
- Sanchez-Perez, R., Del Cueto, J., Dicenta, F. et al. (2014). Recent advancements to study flowering time in almond and other Prunus species. Frontiers in Plant Science 5: 334.
- Sanchez-Perez, R., Pavan, S., Mazzeo, R. et al. (2019). Mutation of a bHLH transcription factor allowed almond domestication. Science 364: 1095–1098.
- Sanden, B.L., Ferguson, L., and Corwin, D.L. (2013). Development and long-term salt tolerance of pistachios from planting to maturity using saline groundwater. VI International Symposium on Almonds and Pistachios, p. 327–332.
- Sandercock, A.M., Westbrook, J.W., Zhang, Q. et al. (2022). Frozen in time: rangewide genomic diversity, structure, and demographic history of relict American chestnut populations. Molecular Ecology 31: 4640–4655.
- Santamaria, M.E., Hasbun, R., Valera, M.J. et al. (2009). Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. Journal of Plant Physiology 166: 1360–1369.
- Santos, C., Duarte, S., Tedesco, S. et al. (2017a). Expression profiling of Castanea genes during resistant and susceptible interactions with the oomycete pathogen Phytophthora cinnamomi reveal possible mechanisms of immunity. Frontiers in Plant Science 8: 515.
- Santos, C., Nelson, C.D., Zhebentyayeva, T. et al. (2017b). First interspecific genetic linkage map for Castanea sativa × Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi. PLoS One 12: e0184381.
- Sathuvalli, V., Mehlenbacher, S.A., and Smith, D.C. (2017). High-resolution genetic and physical mapping of the eastern filbert blight resistance region in 'Jefferson' hazelnut (Corylus avellana L.). Plant Genome 10: 1–12.
- Savadi, S., Mangalassery, S., and Sandesh, M.S. (2021). Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 113: 3718–3734.
- Scheben, A., Batley, J., and Edwards, D. (2017). Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol Journal 15: 149–161.
- Şekerli, M., Koma, G.K., Snelling, J.W. et al. (2021). New simple sequence repeat markers on linkage groups 2 and 7, and investigation of new sources of eastern filbert blight resistance in hazelnut. Journal of the American Society for Horticultural Science 146: 252–266.
- Shook, J.M., Zhang, J., Jones, S.E. et al. (2021). Meta-GWAS for quantitative trait loci identification in soybean. G3 Genes / Genomes / Genetics 11: jkab117.
- Sibbett, G., Hendricks, L., Carnill, G. et al. (1974). Walnut quality and value maximized by harvest management. California Agriculture 28: 15–17.
- Sideli, G.M., Marrano, A., Montanari, S. et al. (2020a). Quantitative phenotyping of shell suture strength in walnut (Juglans regia L.) enhances precision for detection of QTL and genome-wide association mapping. PLoS One 15: e0231144.
- Sideli, G.M., Mcatee, P., Marrano, A. et al. (2020b). Genetic analysis of walnut (Juglans regia L.) pellicle pigment variation through a novel, high-throughput phenotyping platform. G3 Genes / Genomes / Genetics 10: 4411–4424.
- Sideli, G.M., Hardner, C., Pourreza, A. et al. (2023a). High throughput aerial phenotyping enables genomic prediction of bloom time in almond. Plant and Animal Genome Conference, p. 30.
- Sideli, G.M., Mather, D., Wirthensohn, M. et al. (2023b). Genome-wide association analysis and validation with KASP markers for nut and shell traits in almond (Prunus dulcis [Mill.] DA Webb). Tree Genetics & Genomes 19: 13.
- Silva, C., Garcia-Mas, J., Sanchez, A.M. et al. (2005). Candidate gene analysis of quantitative trait variation in flowering time in almond [Prunus dulcis (Mill.) D.A. Webb]. Options Méditerranéennes Série A: Séminaires Méditerranéens (CIHEAM), p. 141–145.
- Singh, P., Dave, A., Vaistij, F.E. et al. (2017). Jasmonic acid-dependent regulation of seed dormancy following maternal herbivory in Arabidopsis. New Phytologist 214: 1702–1711.
- Sisco, P.H., Kubisiak, T.L., Casasoli, M. et al. (2005). An improved genetic map for Castanea mollissima/Castanea dentata and its relationship to the genetic map of Castanea sativa. II International Chestnut Congress, p. 491–495.
- Sonah, H., Bastien, M., Iquira, E. et al. (2013). An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8: e54603.
- Sorkheh, K., Shiran, B., Khodambashi, M. et al. (2010). Correlations between quantitative tree and fruit almond traits and their implications for breeding. Scientia Horticulturae 125: 323–331.
- Staton, M., Addo-Quaye, C., Cannon, N. et al. (2020). A reference genome assembly and adaptive trait analysis of Castanea mollissima ‘Vanuxem,’a source of resistance to chestnut blight in restoration breeding. Tree Genetics & Genomes 16: 1–23.
- Stevens, K.A., Woeste, K., Chakraborty, S. et al. (2018). Genomic variation among and within six Juglans species. G3 Genes / Genomes / Genetics 8: 2153–2165.
- Swarup, S., Cargill, E.J., Crosby, K. et al. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science 61: 839–852.
- Taghavi, T., Rahemi, A., and Suarez, E. (2022). Development of a uniform phenology scale (BBCH) in hazelnuts. Scientia Horticulturae 296: 110837.
- Takada, N., Nishio, S., Yamada, M. et al. (2012). Inheritance of the easy-peeling pellicle trait of Japanese chestnut cultivar Porotan. HortScience 47: 845–847.
- Tao, Y., Zhao, X., Mace, E. et al. (2019). Exploring and exploiting pan-genomics for crop improvement. Molecular Plant 12: 156–169.
- Torello Marinoni, D., Valentini, N., Portis, E. et al. (2018). High density SNP mapping and QTL analysis for time of leaf budburst in Corylus avellana L. PLoS One 13: e0195408.
- Trouern-Trend, A.J., Falk, T., Zaman, S. et al. (2020). Comparative genomics of six Juglans species reveals disease-associated gene family contractions. The Plant Journal 102: 410–423.
- Vahdati, K., Arab, M.M., Sarikhani, S. et al. (2019). Advances in Persian walnut (Juglans regia L.) breeding strategies. In: Advances in Plant Breeding Strategies: Nut and Beverage Crops (ed. J. Al-Khayri, S. Jain and D. Johnson), 401–472. Cham: Springer.
10.1007/978-3-030-23112-5_11 Google Scholar
- Velasco, D., Hough, J., Aradhya, M., and Ross-Ibarra, J. (2016). Evolutionary genomics of peach and almond domestication. G3 Genes / Genomes / Genetics 6: 3985–3993.
- Velasquez, A.C., Castroverde, C.D.M., and He, S.Y. (2018). Plant-pathogen warfare under changing climate conditions. Current Biology 28: R619–R634.
- Verde, I., Bassil, N., Scalabrin, S. et al. (2012). Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7: e35668.
- Verde, I., Jenkins, J., Dondini, L. et al. (2017). The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18: 225.
- Viguiliouk, E., Kendall, C.W., Blanco Mejia, S. et al. (2014). Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS One 9: e103376.
- Vogel, E., Donat, M.G., Alexander, L.V. et al. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters 14: 054010.
- Walawage, S.L., Zaini, P.A., Mubarik, M.S. et al. (2019). Deploying genome editing tools for dissecting the biology of nut trees. Frontiers in Sustainable Food Systems 3: 100.
10.3389/fsufs.2019.00100 Google Scholar
- Wang, Y., Tang, H., Debarry, J.D. et al. (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40: e49.
- Wang, J., Tian, S., Sun, X. et al. (2020). Construction of pseudomolecules for the Chinese chestnut (Castanea mollissima) genome. G3 Genes / Genomes / Genetics 10: 3565–3574.
- Wang, J., Ye, H., Zhou, H. et al. (2022). Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.). BMC Plant Biology 22: 436.
- Wells, L. (2015). Irrigation water management for pecans in humid climates. HortScience 50 (7): 1070–1074.
- Wood, B.W., Payne, J.A., and Grauke, L.J. (1990). The rise of the U.S. pecan industry. HortScience 25: 594–723.
10.21273/HORTSCI.25.6.594 Google Scholar
- Woodruff, J.G. (1979). Tree Nuts: Production, Processing, Products. Westport, CT, USA: AVI Publishing Co. Inc.
- You, F.M., Deal, K.R., Wang, J. et al. (2012). Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genomics 13: 354.
- Zeng, L., Tu, X.L., Dai, H. et al. (2019). Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biology 20: 79.
- Zhang, J., Zhang, W., Ji, F. et al. (2020). A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication. Plant Biotechnology Journal 18: 1848–1850.
- Zhao, J., Sauvage, C., Zhao, J. et al. (2019). Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications 10: 1534.
- Zhao, T., Ma, W., Yang, Z. et al. (2021). A chromosome-level reference genome of the hazelnut, Corylus heterophylla Fisch. Gigascience 10: giab027.
- Zhebentyayeva, T.N., Sisco, P.H., Georgi, L.L. et al. (2019). Dissecting resistance to Phytophthora cinnamomi in interspecific hybrid chestnut crosses using sequence-based genotyping and QTL mapping. Phytopathology 109: 1594–1604.
- Zhu, T., Wang, L., You, F.M. et al. (2019). Sequencing a Juglans regia × J. microcarpa hybrid yields high-quality genome assemblies of parental species. Horticulture Research 6: 55.
- Zuk, O., Hechter, E., Sunyaev, S.R. et al. (2012). The mystery of missing heritability: genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences of the United States of America 109: 1193–1198.
Browse other articles of this reference work: