Advances in Plant Metabolomics
Marta-Marina Pérez-Alonso
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Search for more papers by this authorVíctor Carrasco-Loba
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Search for more papers by this authorStephan Pollmann
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
Search for more papers by this authorMarta-Marina Pérez-Alonso
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Search for more papers by this authorVíctor Carrasco-Loba
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Search for more papers by this authorStephan Pollmann
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
Search for more papers by this authorAbstract
Over recent years, metabolomics found its way into daily laboratory routine as an additional ‘omics’ platform technology, playing an increasingly important role in modern plant sciences. It is often complementing other approaches such as transcriptomics or proteomics in systems biology experiments. Representing the end products of biochemical processes, metabolites can be regarded as the ultimate readout of cellular regulatory processes, giving account on adaptations or changes of biological systems challenged by environmental or developmental stimuli. In analogy to the terms transcriptome and proteome, the entire set of metabolites produced by a biological system is referred to as its metabolome. Due to their extensive secondary metabolism, plants possess a metabolome extremely rich in small molecule metabolites. This makes metabolomics in plant sciences a particularly challenging task. In general terms, metabolomics refers to the systematic and comprehensive investigation of the greatest possible part of low molecular weight molecules in a biological sample. In first place, this is achieved by the unbiased assessment of mass spectrometric (MS) data. Metabolomics is a highly relevant method to improve our knowledge on alterations of biological processes in response to external and internal cues. Substantial advances in instrument technology promoted the advent of metabolomics approaches over the last 15 years. Future studies and further improvements in the field can be expected to provide an even deeper insight into the regulatory and biochemical intricacies in plants that will likely pave the way to novel breeding strategies and a more sustainable agriculture. This article strives to provide an overview of the state-of-the-art in the research field, summarising the main MS-based approaches that are commonly used to perform targeted and untargeted metabolomics experiments. Moreover, possible pitfalls and future trends will be discussed.
References
- de Abreu e Lima, F., Westhues, M., Cuadros-Inostroza, Á. et al. (2017). Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field. Plant Journal 90: 319–329.
- Ali, K., Maltese, F., Fortes, A.M. et al. (2011). Pre-analytical method for NMR-based grape metabolic fingerprinting and chemometrics. Analytica Chimica Acta 703: 179–186.
- Allen, F., Pon, A., Wilson, M. et al. (2014). CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Research 42: W94–W99.
- Allwood, J.W. and Goodacre, R. (2010). An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochemical Analysis 21: 33–47.
- Allwood, J., Weber, R., Zhou, J. et al. (2013). CASMI—the small molecule identification process from a Birmingham perspective. Metabolites 3: 397.
- Alonso, A., Marsal, S., and Julia, A. (2015). Analytical methods in untargeted metabolomics: state of the art in 2015. Frontiers in Bioengineering and Biotechnology 3: 23.
- Bain, J.R., Stevens, R.D., Wenner, B.R. et al. (2009). Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 58: 2429–2443.
- Barupal, D.K., Haldiya, P.K., Wohlgemuth, G. et al. (2012). MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics 13: 99.
- Baumann, S., Kalkhof, S., Hackermuller, J. et al. (2013). Requirements and perspectives for integrating metabolomics with other omics data. Current Metabolomics 1: 15–27.
- Bensu, K. (2016). Overview of systems biology and omics technologies. Current Medicinal Chemistry 23: 4221–4230.
- Benthin, B., Danz, H., and Hamburger, M. (1999). Pressurized liquid extraction of medicinal plants. Journal of Chromatography A 837: 211–219.
- Böcker, S., Letzel, M.C., Lipták, Z. et al. (2009). SIRIUS: decomposing isotope patterns for metabolite identification†. Bioinformatics 25: 218–224.
- Bolstad, B.M., Irizarry, R.A., Astrand, M. et al. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.
- Bonn, B., Leandersson, C., Fontaine, F. et al. (2010). Enhanced metabolite identification with MS(E) and a semi-automated software for structural elucidation. Rapid Communications in Mass Spectrometry 24: 3127–3138.
- Böttcher, C., Roepenack-Lahaye, E.V., Willscher, E. et al. (2007). Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Analytical Chemistry 79: 1507–1513.
- Cajka, T. and Fiehn, O. (2016). Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Analytical Chemistry 88: 524–545.
- Camacho, D., de la Fuente, A., and Mendes, P. (2005). The origin of correlations in metabolomics data. Metabolomics 1: 53–63.
- Carrasco-Loba, V., Pérez-Alonso, M.M., and Pollmann, S. (2017). Monitoring of crosstalk between jasmonate and auxin in the framework of plant stress responses of roots. Methods in Molecular Biology 1569: 175–185.
- Caspi, R., Foerster, H., Fulcher, C.A. et al. (2008). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research 36: D623–D631.
- Castioni, P., Christen, P., and Veuthey, J.L. (1995). Supercritical-fluid extraction of compounds from plant origin. Analusis 23: 95–106.
- Chae, L., Kim, T., Nilo-Poyanco, R. et al. (2014). Genomic signatures of specialized metabolism in plants. Science 344: 510–513.
- Chain, E.B. (1965). Landmarks and perspectives in biochemical research—I. British Medical Journal 1: 209–220.
- Chen, R., Mias, G.I., Li-Pook-Than, J. et al. (2012). Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148: 1293–1307.
- Chubukov, V., Gerosa, L., Kochanowski, K. et al. (2014). Coordination of microbial metabolism. Nature Reviews Microbiology 12: 327–340.
- Corrales, A.R., Nebauer, S.G., Carrillo, L. et al. (2014). Characterization of tomato cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany 65: 995–1012.
- Corrales, A.R., Carrillo, L., Lasierra, P. et al. (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant, Cell & Environment 40: 748–764.
- Creek, D.J., Jankevics, A., Burgess, K.E.V. et al. (2012). IDEOM: an excel interface for analysis of LC–MS-based metabolomics data. Bioinformatics 28: 1048–1049.
- Creydt, M. and Fischer, M. (2017). Plant metabolomics: maximizing metabolome coverage by optimizing mobile phase additives for nontargeted mass spectrometry in positive and negative electrospray ionization mode. Analytical Chemistry 89: 10474–10486.
- Draper, J., Enot, D.P., Parker, D. et al. (2009). Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics 10: 227.
- Droste, P., Nöh, K., and Wiechert, W. (2013). Omix – a visualization tool for metabolic networks with highest usability and customizability in focus. Chemie Ingenieur Technik 85: 849–862.
- Dunn, W.B. and Ellis, D.I. (2005). Metabolomics: current analytical platforms and methodologies. Trends in Analytical Chemistry 24: 285–294.
- Ellis, D.I., Cowcher, D.P., Ashton, L. et al. (2013). Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138: 3871–3884.
- Épron, D. and Dreyer, E. (1996). Starch and soluble carbohydrates in leaves of water-stressed oak saplings. Annals of Forest Science 53: 263–268.
- FDA (2013). Guidance for Industry: Bioanalytical Method Validation, DRAFT GUIDANCE. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM).
- Fernández-Albert, F., Llorach, R., Andrés-Lacueva, C. et al. (2014). An R package to analyse LC/MS metabolomic data: MAIT (metabolite automatic identification toolkit). Bioinformatics 30: 1937–1939.
- Fernie, A.R. and Stitt, M. (2012). On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiology 158: 1139–1145.
- Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative Functional Genomics 2: 155–168.
- Fiehn, O. (2008). Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends in Analytical Chemistry 27: 261–269.
- Fiehn, O., Kopka, J., Dormann, P. et al. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology 18: 1157–1161.
- Fujii, T., Matsuda, S., Tejedor, M.L. et al. (2015). Direct metabolomics for plant cells by live single-cell mass spectrometry. Nature Protocols 10: 1445.
- Furey, A., Moriarty, M., Bane, V. et al. (2013). Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 115: 104–122.
- Garcia-Alcalde, F., Garcia-Lopez, F., Dopazo, J. et al. (2011). Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27: 137–139.
- Ge, F., Hu, H., Huang, X. et al. (2017). Metabolomic and proteomic analysis of maize embryonic callus induced from immature embryo. Scientific Reports 7: 1004.
- Gerlich, M. and Neumann, S. (2013). MetFusion: integration of compound identification strategies. Journal of Mass Spectrometry 48: 291–298.
- Giavalisco, P., Li, Y., Matthes, A. et al. (2011). Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S isotope labelling, in combination with high-resolution mass spectrometry. Plant Journal 68: 364–376.
- Gibon, Y., Usadel, B., Blaesing, O.E. et al. (2006). Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes . Genome Biology 7: R76.
- Glauser, G., Grata, E., Dubugnon, L. et al. (2008). Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. Journal of Biological Chemistry 283: 16400–16407.
- Goodacre, R. (2005). Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. Journal of Experimental Botany 56: 245–254.
- Grapov, D., Wanichthanarak, K., and Fiehn, O. (2015). MetaMapR: pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics 31: 2757–2760.
- Grata, E., Guillarme, D., Glauser, G. et al. (2009). Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. Journal of Chromatography A 1216: 5660–5668.
-
Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in Botany
2014: 208747.
10.1155/2014/208747 Google Scholar
- van der Greef, J., Martin, S., Juhasz, P. et al. (2007). The art and practice of systems biology in medicine: mapping patterns of relationships. Journal of Proteome Research 6: 1540–1559.
- Gromski, P.S., Muhamadali, H., Ellis, D.I. et al. (2015). A tutorial review: metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Analytica Chimica Acta 879: 10–23.
- Gugisch, R., Kerber, A., Kohnert, A. et al. (2014). MOLGEN 5.0, a molecular structure generator. In: Advances in Mathematical Chemistry and Applications (ed. S.C. Basak, G. Restrepo and J.L. Villaveces). Sharjah, UAE: Bentham.
- Heinonen, M., Rantanen, A., Mielikäinen, T. et al. (2008). FiD: a software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Communications in Mass Spectrometry 22: 3043–3052.
- Horai, H., Arita, M., Kanaya, S. et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry 45: 703–714.
- Huan, T., Tang, C., Li, R. et al. (2015). MyCompoundID MS/MS search: metabolite identification using a library of predicted fragment-ion-spectra of 383,830 possible human metabolites. Analytical Chemistry 87: 10619–10626.
-
Hummel, J., Strehmel, N., Bölling, C. et al. (2013). Mass spectral search and analysis using the golm metabolome database. In: The Handbook of Plant Metabolomics. Wiley-VCH.
10.1002/9783527669882.ch18 Google Scholar
- Jewison, T., Su, Y., Disfany, F.M. et al. (2014). SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Research 42: D478–D484.
- Jonsson, P., Bruce, S.J., Moritz, T. et al. (2005). Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130: 701–707.
- Jorge, T.F., Rodrigues, J.A., Caldana, C. et al. (2015). Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrometry Reviews 35: 620–649.
- Jozefczuk, S., Klie, S., Catchpole, G. et al. (2010). Metabolomic and transcriptomic stress response of Escherichia coli . Molecular Systems Biology 6: 364.
- Kamburov, A., Cavill, R., Ebbels, T.M. et al. (2011). Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27: 2917–2918.
- Kanehisa, M., Furumichi, M., Tanabe, M. et al. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research 45: D353–D361.
- Kangas, L.J., Metz, T.O., Isaac, G. et al. (2012). In silico identification software (ISIS): a machine learning approach to tandem mass spectral identification of lipids. Bioinformatics 28: 1705–1713.
- Karnovsky, A., Weymouth, T., Hull, T. et al. (2012). Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28: 373–380.
- Kelder, T., van Iersel, M.P., Hanspers, K. et al. (2012). WikiPathways: building research communities on biological pathways. Nucleic Acids Research 40: D1301–D1307.
- Kim, H.K. and Verpoorte, R. (2010). Sample preparation for plant metabolomics. Phytochemical Analysis 21: 4–13.
- Kim, H.K., Choi, Y.H., and Verpoorte, R. (2011). NMR-based plant metabolomics: where do we stand, where do we go? Trends in Biotechnology 29: 267–275.
- Kind, T. and Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8: 105.
- Kind, T., Wohlgemuth, G., Lee, D.Y. et al. (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry 81: 10038–10048.
- Kind, T., Tsugawa, H., Cajka, T. et al. (2017). Identification of small molecules using accurate mass MS/MS search. Mass Spectrometry Reviews 9999: 1–20.
- van der Kloet, F.M., Bobeldijk, I., Verheij, E.R. et al. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research 8: 5132–5141.
- Kohl, M., Wiese, S., and Warscheid, B. (2011). Cytoscape: software for visualization and analysis of biological networks. Methods in Molecular Biology 696: 291–303.
- Kojima, M., Kamada-Nobusada, T., Komatsu, H. et al. (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa . Plant & Cell Physiology 50: 1201–1214.
- Kotze, H.L., Armitage, E.G., Sharkey, K.J. et al. (2013). A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. BMC Systems Biology 7: 107.
- Krumsiek, J., Suhre, K., Illig, T. et al. (2011). Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Systems Biology 5: 21.
-
Krumsiek, J., Stückler, F., Kastenmüller, G. et al. (2012). Systems biology meets metabolism. In: Genetics Meets Metabolomics: from Experiment to Systems Biology (ed. K. Suhre). New York, NY: Springer New York.
10.1007/978-1-4614-1689-0_17 Google Scholar
- Kühnel, E., Laffan, D.D.P., Lloyd-Jones, G.C. et al. (2007). Mechanism of methyl esterification of carboxylic acids by trimethylsilyldiazomethane. Angewandte Chemie International Edition 46: 7075–7078.
- Kuo, T.C., Tian, T.F., and Tseng, Y.J. (2013). 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Systems Biology 7: 64.
- Langfelder, P. and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.
- Last, R.L., Jones, A.D., and Shachar-Hill, Y. (2007). Towards the plant metabolome and beyond. Nature Reviews Molecular Cell Biology 8: 167–174.
- Lee, D.-K., Ahn, S., Cho, H.Y. et al. (2016). Metabolic response induced by parasitic plant–fungus interactions hinder amino sugar and nucleotide sugar metabolism in the host. Scientific Reports 6: 37434.
- Lehmann, T., Janowitz, T., Sánchez-Parra, B. et al. (2017). Arabidopsis NITRILASE 1 contributes to the regulation of root growth and development through modulation of auxin biosynthesis in seedlings. Frontiers in Plant Sciences 8: 36.
- Lei, Z., Huhman, D.V., and Sumner, L.W. (2011). Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry 286: 25435–25442.
- Li, Y., Zhang, Z., Liu, X. et al. (2015). A novel approach to the simultaneous extraction and non-targeted analysis of the small molecules metabolome and lipidome using 96-well solid phase extraction plates with column-switching technology. Journal of Chromatography A 1409: 277–281.
- Little, J.L. (1999). Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. Journal of Chromatography A 844: 1–22.
- Lu, P., Vogel, C., Wang, R. et al. (2007). Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnology 25: 117–124.
- Mahieu, N.G., Genenbacher, J.L., and Patti, G.J. (2016). A roadmap for the XCMS family of software solutions in metabolomics. Current Opinion in Chemical Biology 30: 87–93.
- Markley, J.L., Brüschweiler, R., Edison, A.S. et al. (2017). The future of NMR-based metabolomics. Current Opinion in Biotechnology 43: 34–40.
- McKnight, S.L. (2010). On getting there from here. Science 330: 1338–1339.
- Meyer, M.R., Peters, F.T., and Maurer, H.H. (2010). Automated mass spectral deconvolution and identification system for GC–MS screening for drugs, poisons, and metabolites in urine. Clinical Chemistry 56: 575–584.
- Milman, B.L. and Zhurkovich, I.K. (2016). Mass spectral libraries: a statistical review of the visible use. Trends in Analytical Chemistry 80: 636–640.
- Morales, C.G., Pino, M.T., and del Pozo, A. (2013). Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae 162: 234–241.
- Mousavi, F., Bojko, B., and Pawliszyn, J. (2015). Development of high throughput 96-blade solid phase microextraction–liquid chromatrography–mass spectrometry protocol for metabolomics. Analytica Chimica Acta 892: 95–104.
- Mueller, L.A., Zhang, P., and Rhee, S.Y. (2003). AraCyc: a biochemical pathway database for Arabidopsis . Plant Physiology 132: 453–460.
- Müller, A., Düchting, P., and Weiler, E.W. (2002). A multiplex GC–MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana . Planta 216: 44–56.
- Namiesnik, J. and Górecki, T. (2000). Sample preparation for chromatographic analysis of plant material. Journal of Planar Chromatography 13: 404–413.
- Neuweger, H., Persicke, M., Albaum, S.P. et al. (2009). Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Systems Biology 3: 82.
- Newgard, C.B., An, J., Bain, J.R. et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism 9: 311–326.
- Nicholson, S.D.D.E. (1970). An Introduction to Metabolic Pathways. Oxford, Edinburgh: Blackwell.
- Novak, O., Henykova, E., Sairanen, I. et al. (2012). Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant Journal 72: 523–536.
- Oliver, S.G., Winson, M.K., Kell, D.B. et al. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology 16: 373–378.
- Peironcely, J.E., Rojas-Chertó, M., Fichera, D. et al. (2012). OMG: open molecule generator. Journal of Cheminformatics 4: 21.
- Peng, J., Chen, Y.-T., Chen, C.-L. et al. (2014). Development of a universal metabolome-standard method for long-term LC–MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Analytical Chemistry 86: 6540–6547.
- Petersson, S.V., Johansson, A.I., Kowalczyk, M. et al. (2009). An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21: 1659–1668.
- Ridder, L., van der Hooft, J.J., Verhoeven, S. et al. (2012). Substructure-based annotation of high-resolution multistage MS(n) spectral trees. Rapid Communications in Mass Spectrometry 26: 2461–2471.
- Rohn, H., Junker, A., Hartmann, A. et al. (2012). VANTED v2: a framework for systems biology applications. BMC Systems Biology 6: 139.
- Ruttkies, C., Schymanski, E.L., Wolf, S. et al. (2016). MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics 8: 3.
- Sánchez-Parra, B., Frerigmann, H., Pérez Alonso, M.-M. et al. (2014). Characterization of four bifunctional plant IAM/PAM-amidohydrolases capable of contributing to auxin biosynthesis. Plants 3: 324–347.
- Sangster, T., Major, H., Plumb, R. et al. (2006). A pragmatic and readily implemented quality control strategy for HPLC–MS and GC–MS-based metabonomic analysis. Analyst 131: 1075–1078.
- Sargenti, S.R. and Vichnewski, W. (2000). Sonication and liquid chromatography as a rapid technique for extraction and fractionation of plant material. Phytochemical Analysis 11: 69–73.
- Schellenberger, J., Lewis, N.E., and Palsson, B.O. (2011). Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophysical Journal 100: 544–553.
- Schmitke, J.L., Wescott, C.R., and Klibanov, A.M. (1996). The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents. Journal of the American Chemical Society 118: 3360–3365.
- Schwaiger, M., Rampler, E., Hermann, G. et al. (2017). Anion-exchange chromatography coupled to high-resolution mass spectrometry: a powerful tool for merging targeted and non-targeted metabolomics. Analytical Chemistry 89: 7667–7674.
- Schwanhäusser, B., Busse, D., Li, N. et al. (2011). Global quantification of mammalian gene expression control. Nature 473: 337–342.
- Serrano-Mislata, A., Schiessl, K., and Sablowski, R. (2015). Active control of cell size generates spatial detail during plant organogenesis. Current Biology 25: 2991–2996.
- Shen, H., Dührkop, K., Böcker, S. et al. (2014). Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics 30: i157–i164.
- Shurubor, Y.I., Matson, W.R., Martin, R.J. et al. (2005). Relative contribution of specific sources of systematic errors and analytical imprecision to metabolite analysis by HPLC–ECD. Metabolomics 1: 159–168.
- Silva-Navas, J., Moreno-Risueno, M.A., Manzano, C. et al. (2016). Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation transition. Plant Cell 28: 1372–1387.
- Smith, C.A., Want, E.J., O'Maille, G. et al. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry 78: 779–787.
- Stein, S.E. (1995). Chemical substructure identification by mass spectral library searching. Journal of the American Society for Mass Spectrometry 6: 644–655.
- Steuer, R. (2006). Review: on the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics 7: 151–158.
- Steuer, R., Kurths, J., Fiehn, O. et al. (2003a). Interpreting correlations in metabolomic networks. Biochemical Society Transactions 31: 1476–1478.
- Steuer, R., Kurths, J., Fiehn, O. et al. (2003b). Observing and interpreting correlations in metabolomic networks. Bioinformatics 19: 1019–1026.
- Sumner, L.W., Mendes, P., and Dixon, R.A. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817–836.
- Sweetlove, L.J. and Ratcliffe, R.G. (2011). Flux-balance modeling of plant metabolism. Frontiers in Plant Sciences 2: 38.
- t'Kindt, R., Morreel, K., Deforce, D. et al. (2009). Joint GC–MS and LC–MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences 877: 3572–3580.
- Trethewey, R.N. (2004). Metabolite profiling as an aid to metabolic engineering in plants. Current Opinion in Plant Biology 7: 196–201.
- Urbanczyk-Wochniak, E., Baxter, C., Kolbe, A. et al. (2005). Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221: 891–903.
- Vinaixa, M., Schymanski, E.L., Neumann, S. et al. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. Trends in Analytical Chemistry 78: 23–35.
- Wang, W., Zhou, H., Lin, H. et al. (2003). Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Analytical Chemistry 75: 4818–4826.
- Want, E.J., O'Maille, G., Smith, C.A. et al. (2006). Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Analytical Chemistry 78: 743–752.
- Weber, R.J.M. and Viant, M.R. (2010). MI-pack: increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems 104: 75–82.
- Wellen, K.E. and Thompson, C.B. (2012). A two-way street: reciprocal regulation of metabolism and signalling. Nature Reviews Molecular Cell Biology 13: 270.
- Willighagen, E.L., Mayfield, J.W., Alvarsson, J. et al. (2017). The chemistry development kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. Journal of Cheminformatics 9: 33.
- Wolfender, J.L., Rudaz, S., Choi, Y.H. et al. (2013). Plant metabolomics: from holistic data to relevant biomarkers. Current Medicinal Chemistry 20: 1056–1090.
- Woodfield, H.K., Cazenave-Gassiot, A., Haslam, R.P. et al. (2018). Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.). Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 1863: 339–348.
- Workman, C., Jensen, L.J., Jarmer, H. et al. (2002). A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biology 3: research0048.
- Wu, S., Tohge, T., Cuadros-Inostroza, Á. et al. (2018). Mapping the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Molecular Plant 11: 118–134.
- Xia, J. and Wishart, D.S. (2010). MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Research 38: W71–W77.
- Xia, J. and Wishart, D.S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. In: Current Protocols in Bioinformatics. Wiley.
- Yi, L., Dong, N., Yun, Y. et al. (2016). Chemometric methods in data processing of mass spectrometry-based metabolomics: a review. Analytica Chimica Acta 914: 17–34.
- Zamboni, N., Saghatelian, A., and Patti, G.J. (2015). Defining the metabolome: size, flux, and regulation. Molecular Cell 58: 699–706.
- Zhang, P., Foerster, H., Tissier, C.P. et al. (2005). MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiology 138: 27–37.
- Zhang, A., Sun, H., Wang, P. et al. (2012). Modern analytical techniques in metabolomics analysis. Analyst 137: 293–300.
- Zhang, J., Luo, W., Zhao, Y. et al. (2016). Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. New Phytologist 211: 1295–1310.
- Zhou, B., Wang, J., and Ressom, H.W. (2012). MetaboSearch: tool for mass-based metabolite identification using multiple databases. PLoS One 7: e40096.
- Zivy, M., Wienkoop, S., Renaut, J. et al. (2015). The quest for tolerant varieties: the importance of integrating ‘omics’ techniques to phenotyping. Frontiers in Plant Sciences 6: 448.
Citing Literature
Browse other articles of this reference work: