Lignification and Advances in Lignin Imaging in Plant Cell Walls
Clémence Simon
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorCedric Lion
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorChristophe Biot
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorNotburga Gierlinger
Institute for Biophysics, BOKU – University of Natural Resources and Life Sciences, Vienna, Austria
Search for more papers by this authorSimon Hawkins
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorClémence Simon
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorCedric Lion
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorChristophe Biot
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorNotburga Gierlinger
Institute for Biophysics, BOKU – University of Natural Resources and Life Sciences, Vienna, Austria
Search for more papers by this authorSimon Hawkins
UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Univ. Lille, Lille, France
Search for more papers by this authorAbstract
Lignin is the second most abundant plant biopolymer after cellulose on the planet. This phenolic polymer is a major constituent of the cell wall in certain specialised plant tissues where it plays a vital role in many aspects of plant growth. Both the amount and the chemical composition of lignin in cell walls have important effects on the characteristics of plant biomass thereby impacting strongly on the quality of a wide range of economically important products derived from plants. A better understanding of how the lignin polymer contributes to the development of the plant interacts with the environment during the carbon cycle and influences the characteristics of lignocellulose biomass depends upon the availability of appropriate analytical tools permitting a complete characterisation of lignin composition. While several chemical and physical techniques are able to provide both qualitative and quantitative analyses of the chemical composition of extracted cell wall material and/or lignin, they are generally unable to provide detailed spatial information at the tissue/cell-wall level. Recently, the development and application of vibrational spectroscopy and bioorthogonal chemical approaches to lignin imaging are allowing us to obtain a better understanding of the heterogeneity and dynamics of lignin structure in situ. In this article, we discuss lignification and the different techniques that are available to the plant biologist interested in characterising lignin structure with a focus on new imaging techniques.
References
- Agarwal, U.P. (2006). Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224: 1141–1153.
- Agarwal, U.P. and Atalla, R.H. (1986). In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill) Bsp. Planta 169: 325–332.
- Agarwal, U.P., Mcsweeny, J.D., and Ralph, S.A. (2011). FT-Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. Journal of Wood Chemistry and Technology 31: 324–344.
- Agarwal, U.P. and Ralph, S.A. (1997). FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Applied Spectroscopy 51: 1648–1655.
- Alejandro, S., Lee, Y., Tohge, T. et al. (2012). AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Current Biology 22 (13): 1207–1212.
- Ali, M. and Sreekrishnan, T.R. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in Environmental Research 5 (2): 175–196.
- Araújo, P., Ferreira, M.S., de Oliveira, D.N. et al. (2014). Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in eucalyptus. Analytical Chemistry 86: 3415–3419.
- Auxenfans, T., Terryn, C., and Paës, G. (2017). Seeing biomass recalcitrance through fluorescence. Scientific Reports 7 (1): 8838.
- Banoub, J., Delmas, G.H., Joly, N. et al. (2015). A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. Journal of Mass Spectrometry 50 (1): 5–48.
- Boija, E., Lundquist, A., Edwards, K., and Johansson, G. (2007). Evaluation of bilayer disks as plant cell membrane models in partition studies. Analytical Biochemistry 364 (2): 145–152.
- Bonawitz, N.D., Soltau, W.L., Blatchley, M.R. et al. (2012). REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. Journal of Biological Chemistry 287 (8): 5434–5445.
- Bonawitz, N.D., Im Kim, J., Tobimatsu, Y. et al. (2014). Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509 (7500): 376.
- Bostock, R.M. and Stermer, B.A. (1989). Perspectives on wound healing in resistance to pathogens. Annual Review of Phytopathology 27 (1): 343–371.
- Boughton, B.A., Thinagaran, D., Sarabia, D. et al. (2016). Mass spectrometry imaging for plant biology: a review. Phytochemistry Reviews 15 (3): 445–488.
- Browning, B.L. (1967). Methods of Wood Chemistry, vol. II. Wiley (Interscience).
- Bukowski, N., Pandey, J.L., Doyle, L. et al. (2014). Development of a clickable designer monolignol for interrogation of lignification in plant cell walls. Bioconjugate Chemistry 25: 2189–2196.
- Cabane, M., Afif, D., and Hawkins, S. (2012). Lignins and abiotic stresses. Advances in Botanical Research 61: 219–262.
- Carocha, V., Soler, M., Hefer, C. et al. (2015). Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytologist 206 (4): 1297–1313.
- Chantreau, M., Portelette, A., Dauwe, R. et al. (2014). Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition. Plant Cell 26 (11): 4462–4482.
- Chen, F., Tobimatsu, Y., Havkin-Frenkel, D. et al. (2012). A polymer of caffeyl alcohol in plant seeds. Proceedings of the National Academy of Sciences 109 (5): 1772–1777.
- Coletta, V.C., Rezende, C.A., da Conceição, F.R. et al. (2013). Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. Biotechnology for Biofuels 6 (1): 43.
- Costa, M.A., Collins, R.E., Anterola, A.M. et al. (2003). An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64 (6): 1097–1112.
- Dalisay, D.S., Kim, K.W., Lee, C. et al. (2015). Dirigent protein-mediated lignan and cyanogenicglucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. Journal of Natural Products 78 (6): 1231–1242.
- Day, A., Neutelings, G., Nolin, F. et al. (2009). Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem. Plant Physiology and Biochemistry 47 (1): 9–19.
- Day, A., Ruel, K., Neutelings, G. et al. (2005). Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222 (2): 234–245.
-
De Juan, A., Maeder, M., Hancewicz, T. et al. (2009). Chemometric Tools for Image Analysis. In: Infrared and Raman Spectroscopic Imaging (ed. R. Salzer and H.W. Siesler). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
10.1002/9783527628230.ch2 Google Scholar
- Del Río, J.C., Gutierrez, A., Rodriguez, I.M. et al. (2007a). Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT- IR. Journal of Analytical and Applied Pyrolysis 79: 39–46.
- Del Río, J.C., Marques, G., Rencoret, J. et al. (2007b). Occurrence of naturally acetylated lignin units. Journal of Agricultural and Food Chemistry 55 (14): 5461–5468.
- Del Río, J.C., Rencoret, J., Prinsen, P. et al. (2012). Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry 60 (23): 5922–5935.
- De Meester, B., De Vries, L., Ozparpucu, M. et al. (2018). Vessel-specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed ccr1 mutants restores vessel and xylary fiber integrity and increases biomass. Plant Physiology 176: 611–633.
- Devaux, M.F., Jamme, F., Andre, W. et al. (2018). Synchrotron time-lapse imaging of lignocellulosic biomass hydrolysis: tracking enzyme localization by protein autofluorescence and biochemical modification of cell walls by microfluidic infrared microspectroscopy. Frontiers in Plant Science 9: 200.
- Dharmawardhana, D.P., Ellis, B.E., and Carlson, J.E. (1992). Characterization of vascular lignification in Arabidopsis thaliana . Canadian Journal of Botany 70 (11): 2238–2244.
- Dixon, R.A. and Paiva, N.L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell 7 (7): 1085.
- Dolan, W.L., Dilkes, B.P., Stout, J.M. et al. (2017). Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis. The Plant Cell 29 (12): 3269–3285.
- Donaldson, L. (2013). Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. International Association of Wood Anantomists Journal 34 (1): 3–19.
- Donaldson, L.A. and Radotic, K. (2013). Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Journal of Microscopy 251 (2): 178–187.
- Foster, C.E., Martin, T.M., and Pauly, M. (2010). Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. Journal of Visualized Experiments: JoVE 37: 1745.
- Freudenberg, K. (1956). Beiträge zur Erforschung des Lignins. Angewandte Chemie 68 (16): 508–512.
- Fuchs, C.H. (1963). Fuchsin staining with NaOH clearing for lignified elements of whole plants or plants organs. Stain Technology 38 (3): 141–144.
- Gierlinger, N. (2014). Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Frontiers in Plant Science 5: 306.
- Gierlinger, N. (2018). New insights into plant cell walls by vibrational microspectroscopy. Applied Spectroscopy Reviews 53: 1–35.
- Gierlinger, N., Goswami, L., Schmidt, M. et al. (2008). In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromolecules 9: 2194–2201.
- Gierlinger, N., Keplinger, T., and Harrington, M. (2012). Imaging of plant cell walls by confocal Raman microscopy. Nature Protocols 7: 1694–1708.
- Gierlinger, N. and Schwanninger, M. (2006). Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiology 140: 1246–1254.
- Gierlinger, N., Schwannunger, M., Reinecke, A., and Burgert, I. (2006). Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7: 2077–2081.
- Hamberger, B., Ellis, M., Friedmann, M. et al. (2007). Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Botany 85 (12): 1182–1201.
- Hanninen, T., Kontturi, E., and Vuorinen, T. (2011). Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Phytochemistry 72: 1889–1895.
- Hatfield, R.D., Grabber, J., Ralph, J., and Brei, K. (1999). Using the acetyl bromide assay to determine lignin concentration in herbaceous plants: some cautionary notes. Journal of Agricultural and Food Chemistry 47: 628–632.
- Hatfield, R. and Fukushima, R.S. (2005). Can lignin be accurately measured? Crop Science 45 (3): 832–839.
- Hawkins, S.W. and Boudet, A.M. (1994). Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from the periderm of Eucalyptus gunnii Hook. Plant Physiology 104 (1): 75–84.
- Hawkins, S. and Boudet, A. (1996). Wound-induced lignin and suberin deposition in a woody angiosperm (Eucalyptus gunnii Hook.): histochemistry of early changes in young plants. Protoplasma 191 (1): 96–104.
-
Heitner, C. (1993). Light-induced yellowing of wood-containing papers: an evolution of the mechanism. In: Phytochemistry of Lignocellulosic Material, vol. 531, 2–25. American Chemical Society Symposium Series.
10.1021/bk-1992-0531.ch001 Google Scholar
- Henderson, J., Davies, H.A., Heyes, S.J., and Osborne, D.J. (2001). The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses. Phytochemistry 56 (2): 131–139.
- Hepler, P.K., Fosket, D.E., and Newcomb, E.H. (1970). Lignification during secondary wall formation in Coleus: an electron microscopic study. American Journal of Botany 85–96.
- Horvath, L., Peszlen, I., Gierlinger, N. et al. (2012). Distribution of wood polymers within the cell wall of transgenic aspen imaged by Raman microscopy. Holzforschung 66: 717–725.
- Huis, R., Morreel, K., Fliniaux, O. et al. (2012). Natural hypolignification is associated with extensive oligolignol accumulation in flax stems. Plant Physiology 158 (4): 1893–1915.
- Iiyama, K. and Wallis, A.F.A. (1990). Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. Journal of the Science of Food and Agriculture 51: 145–161.
- Iiyama, K. and Wallis, A.F.A. (1988). An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Science and Technology 22: 271–280.
- Johnson, D.B., Moore, W.E., and Zank, L.C. (1961). The spectrophoto-metric determination of lignin in small wood samples. Tappi 44: 793–798.
- Joseleau, J.P. and Ruel, K. (1997). Study of lignification by noninvasive techniques in growing maize internodes (An investigation by Fourier transform infrared cross-polarization-magic angle spinning 13C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy). Plant Physiology 114 (3): 1123–1133.
- Jung, H.G. and Allen, M.S. (1995). Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science 73 (9): 2774–2790.
- Kabalka, G.W., Yao, M.L., and Borella, S. (2006). Generation of cations from alkoxides: allylation of propargyl alcohols. Journal of the American Chemical Society 128 (35): 11320–11321.
- Kaneda, M., Rensing, K.H., Wong, J.C. et al. (2008). Tracking monolignols during wood development in lodgepole pine. Plant Physiology 147 (4): 1750–1760.
- Kaneda, M., Schuetz, M., Lin, B.S. et al. (2011). ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. Journal of Experimental Botany 62 (6): 2063–2077.
- Kapp, N., Barnes, W.J., Richard, T.L., and Anderson, C.T. (2015). Imaging with the fluorogenic dye basic fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodiumdistachyon. Journal of Experimental Botany 66 (14): 4295–4304.
- Kirby, J. and Keasling, J.D. (2009). Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annual Review of Plant Biology 60: 335–355.
- Kiyoto, S., Yoshinaga, A., and Takabe, K. (2015). Relative deposition of xylan and 8-5′-linked lignin structure in Chamaecyparisobtusa, as revealed by double immunolabeling by using monoclonal antibodies. Planta 241 (1): 243–256.
- Ko, J.H., Kim, W.C., and Han, K.H. (2009). Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. The Plant Journal 60 (4): 649–665.
- Komis, G., Šamajová, O., Ovečka, M., and Šamaj, J. (2015). Super-resolution microscopy in plant cell imaging. Trends in Plant Science 20 (12): 834–843.
- Kreszies, T., Schreiber, L., and Ranathunge, K. (2018). Suberized transport barriers in Arabidopsis, barley and rice roots: from the model plant to crop species. Journal of Plant Physiology. doi: https://doi.org/10.1016/j.jplph.2018.02.002.
- Kurihara, D., Mizuta, Y., Sato, Y., and Higashiyama, T. (2015). ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development (Cambridge, England) . Journal 142: 4168–4179.
- Lahdetie, A., Nousiainen, P., Sipila, J. et al. (2013). Laser-induced fluorescence (LIF) of lignin and lignin model compounds in Raman spectroscopy. Holzforschung 67: 531–538.
- Lapierre, C. (1993). Application of new methods for the investigation of lignin structure. In: Forage Cell Wall Structure and Digestibility (ed. H.G. Jung, D.R. Buxton, R.D. Hatfield and J. Ralph), pp. 133–166. Madison, WI: ASA CSSA SSSA.
- Lee, Y., Rubio, M.C., Alassimone, J., and Geldner, N. (2013). A mechanism for localized lignin deposition in the endodermis. Cell 153 (2): 402–412.
- Lee, Y., Yoon, T.H., Lee, J. et al. (2018). A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell 173 (6): 1468–1480.
- Legay, S., Sivadon, P., Blervacq, A.S. et al. (2010). EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytologist 188 (3): 774–786.
- Lehringer, C., Gierlinger, N., and Koch, G. (2008). Topochemical investigation on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Holzforschung 62: 255–263.
- Le Roy, J., Huss, B., Creach, A. et al. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science 7: 735.
- Le Roy, J., Blervacq, A.S., Créach, A. et al. (2017). Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC Plant Biology 17 (1): 124.
- Lewis, N.G. and Yamamoto, E. (1990). Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Biology 41 (1): 455–496.
- Liesche, J., Ziomkiewicz, I., and Schulz, A. (2013). Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant Biology 13: 226.
- Lion, C., Simon, C., Huss, B. et al. (2017). BLISS: A bioorthogonal dual labeling strategy to unravel lignification dynamics in plants. Cell Chemical Biology 24 (3): 326–338.
- Liu, B., Wang, P., Kim, J.I. et al. (2015). Vibrational fingerprint mapping reveals spatial distribution of functional groups of lignin in plant cell wall. Analytical Chemistry 87: 9436–9442.
- Lupoi, J.S., Singh, S., Parthasarathi, R. et al. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable and Sustainable Energy Reviews 49: 871–906.
- Mansfield, S.D., Kim, H., Lu, F., and Ralph, J. (2012). Whole plant cell wall characterization using solution-state 2D NMR. Nature Protocols 7 (9): 1579–1589.
- Martin, B.R. and Cravatt, B.F. (2009). Large-scale profiling of protein palmitoylation in mammalian cells. Nature Methods 6: 135–138.
- Mateu, B.P., Hauser, M.T., Herdia, A., and Gierlinger, N. (2016). Waterproofing in Arabidopsis: following phenolics and lipids in situ by confocal Raman microscopy. Frontiers in Chemistry 4.
- McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83 (1): 37–46.
-
Meier, D. and Faix, O. (1992). Pyrolysis–gas chromatography–mass spectrometry of lignin in solid state. In: Methods in Lignin Chemistry (ed. S.Y. Lin and C.W. Dence), pp. 177–199. Berlin (DE): Springer-Verlag.
10.1007/978-3-642-74065-7_13 Google Scholar
- Meshitsuka, G. and Nakano, J. (1979). Studies on the mechanism of lignin color reaction. XIII. Maule color reaction. Journal of the Japan Wood Research Society 9: 232–236.
- Miao, Y.C. and Liu, C.J. (2010). ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proceedings of the National Academy of Sciences 107 (52): 22728–22733.
- Miedes, E., Vanholme, R., Boerjan, W., and Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science 5: 358.
- Mitsuda, N., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17: 2993–3006.
- Monties B (1989) Lignins. In: PM Dey, JB Harborne (eds) Methods in Plant Biochemistry. Academic, pp 113–157.
- Moreira-Vilar, F.C., de CássiaSiqueira-Soares, R., Finger-Teixeira, A. et al. (2014). The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS One 9 (10): e110000.
- Morreel, K., Ralph, J., Kim, H. et al. (2004). Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiology 136 (3): 3537–3549.
- Morreel, K., Dima, O., Kim, H. et al. (2010). Mass spectrometry-based sequencing of lignin oligomers. Plant Physiology 153: 1464–1478.
- Mottiar, Y., Vanholme, R., Boerjan, W. et al. (2016). Designer lignins: harnessing the plasticity of lignification. Current Opinion in Biotechnology 37: 190–200.
- Musha, Y. and Goring, D.A.I. (1975). Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Science and Technology 9 (1): 45–58.
- Neef, A.B. and Luedtke, N.W. (2014). An azide-modified nucleoside for metabolic labeling of DNA. ChemBioChem 15 (6): 789–793.
- Paës, G., Habrant, A., and Terryn, C. (2018). Fluorescent nano-probes to image plant cell walls by super-resolution STED microscopy. Plants 7 (1): 11.
- Pandey, J.L., Wang, B., Diehl, B.G. et al. (2015). A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls. PLoS One 10: e0121334.
- Pandey, J.L., Kiemle, S.N., Richard, T.L. et al. (2016). Investigating biochemical and developmental dependencies of lignification with a click-compatible monolignol analog in Arabidopsis thaliana stems. Frontiers in Plant Science 7: 1309.
- Park, K.D., Kim, D., Reamtong, O. et al. (2011). Identification of a lacosamide binding protein using an affinity bait and chemical reporter strategy: 14-3-3 ζ. Journal of the American Chemical Society 133 (29): 11320–11330.
- Perera, P.N., Schmidt, M., Chiang, V.L. et al. (2012). Raman-spectroscopy-based noninvasive microanalysis of native lignin structure. Analytical and Bioanalytical Chemistry 402: 983–987.
- Perera, P.N., Schmidt, M., Schuck, P.J., and Adams, P.D. (2011). Blind image analysis for the compositional and structural characterization of plant cell walls. Analytica Chimica Acta 702: 172–177.
- Pesquet, E., Zhang, B., Gorzsás, A. et al. (2013). Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans . Plant Cell 25 (4): 1314–1328.
- Pickett-Heaps, J.D. (1968). Xylem wall deposition. Protoplasma 65 (1–2): 181–205.
- Ragauskas, A.J., Beckham, G.T., Biddy, M.J. et al. (2014). Lignin valorization: improving lignin processing in the biorefinery. Science 344 (6185): 1246843.
- Ralph, J. (1996). An unusual lignin from kenaf. Journal of Natural Products 59 (4): 341–342.
- Rencoret, J., Marques, G., Gutierrez, A. et al. (2008). Structural characterization of milled wood lignins from different eucalypt species. Holzforschung 62: 514–526.
- Rencoret, J., Gutierrez, A., Nieto, L. et al. (2011). Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiology 155: 667–682.
- Richter, S., Mussig, J., and Gierlinger, N. (2011). Functional plant cell wall design revealed by the Raman imaging approach. Planta 233: 763–772.
- Rinaldi, R., Jastrzebski, R., Clough, M.T. et al. (2016). Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition 55 (29): 8164–8215.
- Rodrigues, J., Meier, D., Faix, O., and Pereira, H. (1999). Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis 48 (2): 121–128.
- Ruel, K., Faix, O., and Joseleau, J.P. (1994). New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis. Journal of Trace and Microprobe Techniques 247–265.
- Rydahl, M.G., Hansen, A.R., Kracun, S.K., and Mravec, J. (2018). Report on the current inventory of the toolbox for plant cell wall analysis: proteinaceous and small molecular probes. Frontiers in Plant Science 9: 581.
- Saito, K., Watanabe, Y., Shirakawa, M. et al. (2012). Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry. The Plant Journal 69: 542–552.
- Salmen, L. and Bergstrom, E. (2009). Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16: 975–982.
- Salmén, L. (2015). Wood morphology and properties from molecular perspectives. Annals of Forest Science 72 (6): 679–684.
- Salzer, R., Steiner, G., Mantsch, H.H. et al. (2000). Infrared and Raman imaging of biological and biomimetic samples. Fresenius' Journal of Analytical Chemistry 366: 712–726.
- Schmidt, M., Schwartzberg, A.M., Perera, P.N. et al. (2009). Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa . Planta 230: 589–597.
-
Schrader, B. (1995). Infrared and Raman Spectroscopy. Weinheim: VCH.
10.1002/9783527615438 Google Scholar
- Schreiber, N., Gierlinger, N., Putz, N. et al. (2010). G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. The Plant Journal 61: 854–861.
- Sexton, R. and Roberts, J.A. (1982). Cell biology of abscission. Annual Review of Plant Physiology 33 (1): 133–162.
- Shi, R., Sun, Y.H., Li, Q. et al. (2009). Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant and Cell Physiology 51 (1): 144–163.
- Simmons, B.A., Loque, D., and Ralph, J. (2010). Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology 13 (3): 312–319.
- Simon, C., Lion, C., Huss, B. et al. (2017). BLISS: shining a light on lignification. Plant Signaling and Behavior 12 (8): 326–338.
- Smith, R.A., Gonzales-Vigil, E., Karlen, S.D. et al. (2015). Engineering monolignol p-coumarate conjugates into poplar and Arabidopsis lignins . Plant Physiology 169 (4): 2992–3001.
- Smith, R.A., Schuetz, M., Roach, M. et al. (2013). Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25 (10): 3988–3999.
- Sun, L., Simmons, B.A., and Singh, S. (2011). Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging. Biotechnology and Bioengineering 108: 286–295.
- Tamagnone, L., Merida, A., Parr, A. et al. (1998). The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10 (2): 135–154.
- Terashima, N., Atalla, R.H., Ralph, S.A. et al. (1995). New preparations of lignin polymer models under conditions that approximate cell wall lignification. I. Synthesis of novel lignin polymer models and their structural characterization by 13C NMR. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 49 (6): 521–527.
- Tobimatsu, Y., Davidson, C.L., Grabber, J.H., and Ralph, J. (2011). Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification. Biomacromolecules 12: 1752–1761.
- Tobimatsu, Y., Wagner, A., Donaldson, L. et al. (2013). Visualization of plant cell wall lignification using fluorescence-tagged monolignols. The Plant Journal 76: 357–366.
- Tobimatsu, Y., de Wouwer, D.V., Allen, E. et al. (2014). A click chemistry strategy for visualization of plant cell wall lignification. Chemical Communications 50: 12262–12265.
- Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment – a review. Renewable and Sustainable Energy Reviews 78: 764–772.
- Tsuyama, T., Kawai, R., Shitan, N. et al. (2013). Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. Plant Physiology 162 (2): 918–926.
- Ursache, R., Andersen, T.G., Marhavý, P., and Geldner, N. (2018). A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. The Plant Journal 93 (2): 399–412.
- Vanholme, R., Morreel, K., Ralph, J., and Boerjan, W. (2008). Lignin engineering. Current Opinion in Plant Biology 11 (3): 278–285.
- Vanholme, R., Demedts, B., Morreel, K. et al. (2010). Lignin biosynthesis and structure. Plant Physiology 153 (3): 895–905.
- vanParijs, F.R., Morreel, K., Ralph, J. et al. (2010). Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers. Plant Physiology 153 (3): 1332–1344.
- Voelker, S.L., Lachenbruch, B., Meinzer, F.C., and Strauss, S.H. (2011). Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytologist 189 (4): 1096–1109.
- Wang, Y., Chantreau, M., Sibout, R., and Hawkins, S. (2013). Plant cell wall lignification and monolignol metabolism. Frontiers in Plant Science 4: 220.
- Wang, X.Q., Keplinger, T., Gierlinger, N., and Burgert, I. (2014). Plant material features responsible for bamboo's excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Annals of Botany 114: 1627–1635.
- Wen, J.L., Sun, S.L., Xue, B.L., and Sun, R.C. (2013). Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6 (1): 359–391.
- Weng, J.K. and Chapple, C. (2010). The origin and evolution of lignin biosynthesis. New Phytologist 187: 273–285.
- Wilkerson, C.G., Mansfield, S.D., Lu, F. et al. (2014). Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344 (6179): 90–93.
- Yamashita, D., Kimura, S., Wada, M., and Takabe, K. (2016). Improved Mäule color reaction provides more detailed information on syringyl lignin distribution in hardwood. Journal of Wood Science 62 (2): 131–137.
- Yoshinaga, A., Morikawa, Y., Kamitakahara, H. et al. (2010). Cellular distribution of coniferin in differentiating xylem of Chamaecyparis obtusa as revealed by Raman microscopy. Holzforschung 64: 61–67.
-
Zeng, Y. and Donohoe, B.S. (2018). Lignin visualization: advanced microscopy techniques for lignin characterization. In: Lignin Valorization, 477–498.
10.1039/9781788010351-00477 Google Scholar
- Zeng, Y., Zhao, S., Wei, H. et al. (2015). In situ micro-spectroscopic investigation of lignin in poplar cell walls pretreated by maleic acid. Biotechnology for Biofuels 8 (1): 126.
- Zhao, Q. and Dixon, R.A. (2011). Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science 16 (4): 227–233.
- Zhou, C., Li, Q., Chiang, V.L. et al. (2011). Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry. Analytical Chemistry 83: 7020–7026.
- Zimmermann, T. (2005). Spectral imaging and linear unmixing in light microscopy. In Microscopy Techniques 95, 245–265. Springer, Berlin, Heidelberg.
Citing Literature
Browse other articles of this reference work: