Cereal Architecture and Its Manipulation
Laura E. Dixon
School of Biological Sciences, University of Leeds, Leeds, UK
Search for more papers by this authorWilma van Esse
Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
Search for more papers by this authorDominique Hirsz
School of Biological Sciences, University of Leeds, Leeds, UK
Search for more papers by this authorViola Willemsen
Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
Search for more papers by this authorSarah M. McKim
Division of Plant Sciences, University of Dundee, Dundee, UK
Search for more papers by this authorLaura E. Dixon
School of Biological Sciences, University of Leeds, Leeds, UK
Search for more papers by this authorWilma van Esse
Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
Search for more papers by this authorDominique Hirsz
School of Biological Sciences, University of Leeds, Leeds, UK
Search for more papers by this authorViola Willemsen
Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
Search for more papers by this authorSarah M. McKim
Division of Plant Sciences, University of Dundee, Dundee, UK
Search for more papers by this authorAbstract
Our lives depend on an incredibly small number of cereal species whose grain provides more calories to our diet than any other source. The extraordinary productivity of cultivated cereals reflects millennia of selection, recent directed breeding, and modern agricultural practices. Here, we examine selected architectural and agronomic features of major cereal body parts: leaf, branch, inflorescence, stem, and root; and discuss how their manipulation enhanced crop performance. Highlighting synergistic research across laboratory models and field-based systems, we consider how diversified molecular circuitry, novel regulators and conserved components of genetic, hormonal, and molecular mechanisms control cereal architecture. Lastly, we emphasise the agricultural importance of developmental decisions during cereal growth and propose future perspectives for robust architectural improvement, made ever more urgent by our accelerating climate crisis.
References
- Abdel-Ghani, A.H., Parzies, H.K., Omary, A., and Geiger, H.H. (2004). Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theoretical and Applied Genetics 109 (3): 588–595.
- Aguilar-Martínez, J.A., Poza-Carrión, C., and Cubas, P. (2007). Arabidopsis Branched1 acts as an integrator of branching signals within axillary buds. The Plant Cell 19 (2): 458–472.
- Aida, M., Beis, D., Heidstra, R. et al. (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119 (1): 109–120.
- Alewell, C., Ringeval, B., Ballabio, C. et al. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications 11 (1): 1–12.
- Alvarez, M.A., Tranquilli, G., Lewis, S. et al. (2016). Genetic and physical mapping of the earliness per se locus Eps-A m 1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Functional & Integrative Genomics 16 (4): 365–382.
- Arber, A. (2010). The Gramineae. Cambridge: Cambridge University Press.
10.1017/CBO9780511700668 Google Scholar
- Arite, T., Iwata, H., Ohshima, K. et al. (2007). DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. The Plant Journal 51 (6): 1019–1029.
- Arite, T., Umehara, M., Ishikawa, S. et al. (2009). d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant & Cell Physiology 50 (8): 1416–1424.
- Ashikari, M., Sakakibara, H., Lin, S. et al. (2005). Cytokinin oxidase regulates rice grain production. Science 309 (5735): 741–745.
- Atkinson, J.A., Rasmussen, A., Traini, R. et al. (2014). Branching out in roots: uncovering form, function, and regulation. Plant Physiology 166 (2): 538–550.
- Austin, R.B., FORD, M.A., EDRICH, J.A., and HOOPER, B.E. (1976). Some effects of leaf posture on photosynthesis and yield in wheat. The Annals of Applied Biology 83 (3): 425–446.
- Azpiroz, R., Wu, Y., LoCascio, J.C., and Feldmann, K.A. (1998). An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. The Plant Cell 10 (2): 219–230.
- Bai, M.Y., Zhang, L.Y., Gampala, S.S. et al. (2007). Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences of the United States of America 104 (34): 13839–13844.
- Bai, F., Reinheimer, R., Durantini, D. et al. (2012a). TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Proceedings of the National Academy of Sciences 109 (30): 12225–12230.
- Bai, M.Y., Shang, J.X., Oh, E. et al. (2012b). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology 14 (8): 810–817.
- Bai, X., Huang, Y., Hu, Y. et al. (2017). Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants 3 (11): 885–893.
- Bauer, B. and von Wirén, N. (2020). Modulating tiller formation in cereal crops by the signalling function of fertilizer nitrogen forms. Scientific Reports 10 (1): 1–11.
- Becraft, P.W., Bongard-Pierce, D.K., Sylvester, A.W. et al. (1990). The liguleless-1 gene acts tissue specifically in maize leaf development. Developmental Biology 141 (1): 220–232.
- Bednarek, J., Boulaflous, A., Girousse, C. et al. (2012). Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. Journal of Experimental Botany 63 (16): 5945–5955.
- Bentley, A.R., Horsnell, R., Werner, C.P. et al. (2013). Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles. Journal of Experimental Botany 64 (7): 1783–1793.
- Berry, S. and Dean, C. (2015). Environmental perception and epigenetic memory: mechanistic insight through FLC. The Plant Journal 83 (1): 133–148.
- Bi, X., van Esse, W., Mulki, M.A. et al. (2019). CENTRORADIALIS interacts with FLOWERING LOCUS T -Like genes to control floret development and grain number. Plant Physiology 180 (2): 1013–1030.
- Boden, S.A., Cavanagh, C., Cullis, B.R. et al. (2015). Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature Plants 1: 14016.
- Bolduc, N., O'Connor, D., Moon, J. et al. (2012). How to Pattern a Leaf. Cold Spring Harbor Symposia on Quantitative Biology 77: 47–51.
- Bommert, P. and Whipple, C. (2018). Grass inflorescence architecture and meristem determinacy. Seminars in Cell & Developmental Biology 79: 37–47.
- Bommert, P., Satoh-Nagasawa, N., Jackson, D., and Hirano, H.-Y. (2005). Genetics and evolution of inflorescence and flower development in grasses. Plant & Cell Physiology 46 (1): 69–78.
- Bommert, P., Nagasawa, N.S., and Jackson, D. (2013). Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics 45 (3): 334–337.
- Booker, J., Sieberer, T., Wright, W. et al. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell 8 (3): 443–449.
- Bossinger, G. (2009). Segments (Phytomers). In: Encyclopedia of Life Sciences (ed. Alistair M. Hetherington). Chichester: John Wiley & Sons, Ltd.
10.1002/9780470015902.a0002093.pub2 Google Scholar
- Brinton, J. and Uauy, C. (2019). A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology 61 (3): 337–358.
- Brown, R.H. and Bregitzer, P. (2011). A Ds insertional mutant of a barley miR172 gene results in indeterminate spikelet development. Crop Science 51 (4): 1664–1672.
- Bull, H., Casao, M.C., Zwirek, M. et al. (2017). Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Communications 8 (1): 936.
- Byrne, M.E., Simorowski, J., and Martienssen, R.A. (2002). ASYMMETRIC LEAVES1reveals knox gene redundancy in Arabidopsis. Development 129 (8): 1957–1965.
- Cal, A.J., Sanciangco, M., Rebolledo, M.C. et al. (2019). Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant, Cell & Environment 42 (5): 1532–1544.
- Callens, C., Tucker, M.R., Zhang, D., and Wilson, Z.A. (2018). Dissecting the role of MADS-box genes in monocot floral development and diversity. Journal of Experimental Botany 69 (10): 2435–2459.
- Cao, H. and Chen, S. (1995). Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regulation 16 (2): 189–196.
- Cao, Y., Zeng, H., Ku, L. et al. (2020). ZmIBH1-1 regulates plant architecture in maize. Journal of Experimental Botany 71 (10): 2943–2955.
- Casao, M.C., Karsai, I., Igartua, E. et al. (2011). Adaptation of barley to mild winters: a role for PPDH2. BMC Plant Biology 11 (1): 164.
- Castorina, G., Persico, M., Zilio, M. et al. (2018). The maize lilliputian1 (lil1) gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response. Annals of Botany 122 (2): 227–238.
- Chang, S.H., Tan, C.M., Wu, C.T. et al. (2018). Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. Journal of Experimental Botany 69 (22): 5389–5401.
- Chatfield, S.P., Stirnberg, P., Forde, B.G., and Leyser, O. (2000). The hormonal regulation of axillary bud growth in Arabidopsis. The Plant Journal 24 (2): 159–169.
- Che, R., Tong, H., Shi, B. et al. (2016). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2 (1): 15195.
- Chen, Y., Fan, X., Song, W. et al. (2012). Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal 10 (2): 139–149.
- Chen, A., Li, C., Hu, W. et al. (2014). PHYTOCHROME C accelerates wheat flowering. Proceedings of the National Academy of Sciences 111 (28): 10037–10044.
- Chen, X.X., Zhang, W., Liang, X.Y. et al. (2019). Physiological and developmental traits associated with the grain yield of winter wheat as affected by phosphorus fertilizer management. Scientific Reports 9 (1): 1–12.
- Cho, S.-H., Yoo, S.-C., Zhang, H. et al. (2013). The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. The New Phytologist 198 (4): 1071–1084.
- Choe, S., Noguchi, T., Fujioka, S. et al. (1999). The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. The Plant Cell 11 (2): 207–221.
- Chono, M., Honda, I., Zeniya, H. et al. (2003). A Semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiology 133 (3): 1209–1219.
- Chuck, G. (2002). The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298 (5596): 1238–1241.
- Chuck, G., Meeley, R.B., and Hake, S. (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes & Development 12 (8): 1145–1154.
- Chuck, G., Meeley, R., Irish, E. et al. (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics 39 (12): 1517–1521.
- Chuck, G., Meeley, R., and Hake, S. (2008). Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 135 (18): 3013–3019.
- Comadran, J., Kilian, B., Russell, J. et al. (2012). Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics 44: 1388–1392.
- Corbesier, L., Vincent, C., Jang, S. et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316 (5827): 1030–1033.
- Coudert, Y., Périn, C., Courtois, B. et al. (2010). Genetic control of root development in rice, the model cereal. Trends in Plant Science 15 (4): 219–226.
- Dai, M., Hu, Y., Zhao, Y. et al. (2007). A WUSCHEL - LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiology 144 (1): 380–390.
- Dai, Z., Wang, J., Zhu, M. et al. (2016, 1891). OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice. Frontiers in Plant Science 7: 1891.
- De Vos, D., Nelissen, H., AbdElgawad, H. et al. (2020). How grass keeps growing: an integrated analysis of hormonal crosstalk in the maize leaf growth zone. New Phytologist 225 (6): 2513–2525.
- Debernardi, J.M., Lin, H., Chuck, G. et al. (2017). microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144 (11): 1966–1975.
- Debernardi, J.M., Greenwood, J.R., Jean Finnegan, E. et al. (2020). APETALA 2- like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. The Plant Journal 101 (1): 171–187.
- Del Bianco, M. and Kepinski, S. (2018). Building a future with root architecture. Journal of Experimental Botany 69 (22): 5319–5323.
- Dello Ioio, R., Nakamura, K., Moubayidin, L. et al. (2008). A genetic framework for the control of cell division and differentiation in the root meristem. Science 322 (5906): 1380–1384.
- Deng, W., Casao, M.C., Wang, P. et al. (2015). Direct links between the vernalization response and other key traits of cereal crops. Nature Communications 6: 5882.
- Derbyshire, P. and Byrne, M.E. (2013). MORE SPIKELETS1 is required for spikelet fate in the inflorescence of Brachypodium. Plant Physiology 161 (3): 1291–1302.
- Di Mambro, R., De Ruvo, M., Pacifici, E. et al. (2017). Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences 114 (36): E7641–E7649.
- Didon, U.M.E. (2002). Variation between barley cultivars in early response to weed competition. Journal of Agronomy and Crop Science 188 (3): 176–184.
- Digel, B., Pankin, A., and von Korff, M. (2015). Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. The Plant Cell 27 (9): 2318–2334.
- Dixon, L.E., Greenwood, J.R., Bencivenga, S. et al. (2018). TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). The Plant Cell 30 (3): 563–581.
- Dobrovolskaya, O., Pont, C., Sibout, R. et al. (2015). FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiology 167 (1): 189–199.
- Dobrovolskaya, O.B., Amagai, Y., Popova, K.I. et al. (2017). Genes WHEAT FRIZZY PANICLE and SHAM RAMIFICATION 2 independently regulate differentiation of floral meristems in wheat. BMC Plant Biology 17 (2): 15–27.
- Dockter, C., Gruszka, D., Braumann, I. et al. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiology 166 (4): 1912–1927.
- Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386 (6624): 485–488.
- Doebley, J.F., Gaut, B.S., and Smith, B.D. (2006). The molecular genetics of crop domestication. Cell 127 (7): 1309–1321.
- Dolan, L., Janmaat, K., Willemsen, V. et al. (1993). Cellular organisation of the Arabidopsis thaliana root. Development 119 (1): 71–84.
- Donald, C.M. (1968). The breeding of crop ideotypes. Euphytica 17 (3): 385–403.
- Dong, H., Zhao, H., Xie, W. et al. (2016). A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genetics 12 (11): e1006412–e1006412.
- Dong, Z., Li, W., Unger-Wallace, E. et al. (2017). Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proceedings of the National Academy of Sciences 114 (41): E8656–E8664.
- Dong, Z., Xiao, Y., Govindarajulu, R. et al. (2019). The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nature Communications 10 (1): 3810.
- Dreni, L. and Zhang, D. (2016). Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. Journal of Experimental Botany 67 (6): 1625–1638.
- Dreni, L., Jacchia, S., Fornara, F. et al. (2007). The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. The Plant Journal 52 (4): 690–699.
- Duan, P., Ni, S., Wang, J. et al. (2016). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 2 (1): 15203.
- Duvick, D.N. (2005). The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy 86: 83–145.
- van Es, S.W., Muñoz-Gasca, A., Romero-Campero, F.J. et al. (2020). A gene regulatory network critical for axillary bud dormancy. bioRxiv . doi: 10.1101/2020.12.14.394403.
10.1101/2020.12.14.394403 Google Scholar
- van Esse, G.W., Walla, A., Finke, A. et al. (2017). Six-rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiology 174 (4): 2397–2408.
- Eveland, A.L., Goldshmidt, A., Pautler, M. et al. (2014). Regulatory modules controlling maize inflorescence architecture. Genome Research 24 (3): 431–443.
- Fakorede, M.A.B. and Mock, J.J. (1978). Changes in morphological and physiological traits associated with recurrent selection for grain yield in maize. Euphytica 27 (2): 397–409.
- Fang, Z., Ji, Y., Hu, J. et al. (2020). Strigolactones and brassinosteroids antagonistically regulate the stability of the D53–OsBZR1 complex to determine FC1 expression in rice tillering. Molecular Plant 13 (4): 586–597.
- Fang, J., Guo, T., Xie, Z. et al. (2021). The URL1–ROC5–TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. Plant Physiology 185 (4): 1722–1744.
- FAO (2015). FAO Cereal Supply and Demand Brief. FAO: Rome
- Faris, J.D., Simons, K.J., Zhang, Z., and Gill, B.S. (2005). The wheat super domestication gene Q. Frontiers of Wheat Bioscience: Memorial Issue, Wheat Information Service 100: 129–148.
- Faure, S., Turner, A.S., Gruszka, D. et al. (2012). Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proceedings of the National Academy of Sciences 109 (21): 8328–8333.
- Fisher, J.B. and French, J.C. (1978). Internodal meristems of monocotyledons: further studies and a general taxonomic survey. Annals of Botany 42: 41–50.
- Foster, T., Yamaguchi, J., Wong, B.C. et al. (1999). Gnarley1 is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity. Plant Cell 11 (7): 1239–1252.
- Freeling, M. and Hake, S. (1985). Developmental genetics of mutants that specify knotted leaves in maize. Genetics 111 (3): 617–634.
- Fuller, D.Q. and Allaby, R. (2018). Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. In: Annual Plant Reviews online (ed. L. Østergaard), 238–295. Chichester, UK: John Wiley & Sons, Ltd.
10.1002/9781119312994.apr0414 Google Scholar
- Furbank, R.T., Sharwood, R., Estavillo, G.M. et al. (2020). Photons to food: genetic improvement of cereal crop photosynthesis. Journal of Experimental Botany 71 (7): 2226–2238.
- Gale, M. and Youssefian, S. (1985). Dwarfing genes in wheat. In: Progress in Plant Breeding (ed. G. Russell), 1–35. London: Butterworth.
10.1016/B978-0-407-00780-2.50005-9 Google Scholar
- Galinha, C., Hofhuis, H., Luijten, M. et al. (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449 (7165): 1053–1057.
- Gallavotti, A., Yang, Y., Schmidt, R.J., and Jackson, D. (2008). The relationship between auxin transport and maize branching. Plant Physiology 147 (4): 1913–1923.
- Gallavotti, A., Long, J.A., Stanfield, S. et al. (2010). The control of axillary meristem fate in the maize ramosa pathway. Development 137 (17): 2849–2856.
- Gallego-Bartolomé, J., Minguet, E.G., Grau-Enguix, F. et al. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109 (33): 13446–13451.
- Gao, F., Wang, K., Liu, Y. et al. (2015). Blocking miR396 increases rice yield by shaping inflorescence architecture. Nature Plants 2 (1): 1–9.
- Gao, X.-Q., Wang, N., Wang, X.-L., and Zhang, X.S. (2019). Architecture of Wheat Inflorescence: Insights from Rice. Trends in Plant Science 24 (9): 802–809.
- Gasparis, S., Przyborowski, M., Kała, M., and Nadolska-Orczyk, A. (2019). Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-Guided Cas9 Nuclease affects the regulation of cytokinin metabolism and root morphology. Cell 8 (8): 782.
- Gauley, A. and Boden, S.A. (2019). Genetic pathways controlling inflorescence architecture and development in wheat and barley. Journal of Integrative Plant Biology 61 (3): 296–309.
- Gauley, A. and Boden, S.A. (2021). Stepwise increases in FT1 expression regulate seasonal progression of flowering in wheat (Triticum aestivum). New Phytologist 229 (2): 1163–1176.
- Gómez-Ariza, J., Brambilla, V., Vicentini, G. et al. (2019). A transcription factor coordinating internode elongation and photoperiodic signals in rice. Nature Plants 5 (4): 358–362.
- Greb, T., Clarenz, O., Schäfer, E. et al. (2003). Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes & Development 17 (9): 1175–1187.
- Greenwood, J.R., Finnegan, E.J., Watanabe, N. et al. (2017). New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development. Development 144 (11): 1959–1965.
- Guo, M., Thomas, J., Collins, G., and Timmermans, M.C.P. (2008). Direct repression of KNOX Loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. The Plant Cell 20 (1): 48–58.
- Guo, Q., Major, I.T., and Howe, G.A. (2018). Resolution of growth–defense conflict: mechanistic insights from jasmonate signaling. Current Opinion in Plant Biology 44: 72–81.
- Guo, W., Chen, L., Herrera-Estrella, L. et al. (2020a). Altering plant architecture to improve performance and resistance. Trends in Plant Science 25 (11): 1154–1170.
- Guo, Y., Wu, Q., Xie, Z. et al. (2020b). OsFPFL4 is involved in the root and flower development by affecting auxin levels and ROS accumulation in rice (Oryza sativa). Rice 13 (1): 1–15.
- Halliwell, J., Borrill, P., Gordon, A. et al. (2016). Systematic investigation of FLOWERING LOCUS T-like poaceae gene families identifies the short-day expressed flowering pathway gene, TaFT3 in wheat (Triticum aestivum L.). Frontiers in Plant Science 7: 857.
- Harmoko, R., Yoo, J.Y., Ko, K.S. et al. (2016). N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). The New Phytologist 212 (1): 108–122.
- Hay, A., Kaur, H., Phillips, A. et al. (2002). The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Current Biology 12 (18): 1557–1565.
- He, Z., Zeng, J., Ren, Y. et al. (2017). OsGIF1 positively regulates the sizes of stems, leaves, and grains in rice. Frontiers in Plant Science 8: 1730.
- Hedden, P. (2003). The genes of the Green Revolution. Trends in Genetics 19 (1): 5–9.
- Hepworth, S.R., Zhang, Y., McKim, S. et al. (2005). BLADE-ON-PETIOLE–dependent signaling controls leaf and floral patterning in Arabidopsis. The Plant Cell 17 (5): 1434–1448.
- Hirano, K., Kawamura, M., Araki-Nakamura, S. et al. (2017). Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Scientific Reports 7 (1): 126.
- Hochholdinger, F., Yu, P., and Marcon, C. (2018). Genetic control of root system development in maize. Trends in Plant Science 23 (1): 79–88.
- Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S. et al. (2002). Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal 32 (4): 495–508.
- Horton, P. (2000). Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. Journal of Experimental Botany 51 (suppl_1): 475–485.
- Houston, K., McKim, S.M., Comadran, J. et al. (2013). Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proceedings of the National Academy of Sciences 110 (41): 16675–16680.
- Hu, J., Wang, Y., Fang, Y. et al. (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Molecular Plant 8 (10): 1455–1465.
- Hu, M., Lv, S., Wu, W. et al. (2018). The domestication of plant architecture in African rice. The Plant Journal 94 (4): 661–669.
- Huang, X., Qian, Q., Liu, Z. et al. (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics 41: 494.
- Huang, Y., Zhao, S., Fu, Y. et al. (2018). Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. The Plant Journal 96 (4): 716–733.
- Huang, L.-J., Luo, J., Wang, Y., and Li, N. (2021). From green revolution to green balance: the nitrogen and gibberellin mediated rice tiller growth. Plant Signaling & Behavior 16: 1917838.
- Hubbard, L., McSteen, P., Doebley, J., and Hake, S. (2002). Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162 (4): 1927–1935.
- Huijser, P. and Schmid, M. (2011). The control of developmental phase transitions in plants. Development 138 (19): 4117–4129.
- Hussien, A., Tavakol, E., Horner, D.S. et al. (2014). Genetics of tillering in rice and barley. Plant Genome 7 (1).
- Hyles, J., Bloomfield, M.T., Hunt, J.R. et al. (2020). Phenology and related traits for wheat adaptation. Heredity (Edinb) 125 (6): 417–430.
- Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y. et al. (2001). slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell 13 (5): 999–1010.
- Irish, V. (2017). The ABC model of floral development. Current Biology 27 (17): R887–R890.
- Ishikawa, S., Maekawa, M., Arite, T. et al. (2005). Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant & Cell Physiology 46 (1): 79–86.
- Ishiwata, A., Ozawa, M., Nagasaki, H. et al. (2013). Two WUSCHEL-related homeobox Genes, narrow leaf2 and narrow leaf3, control leaf width in rice. Plant & Cell Physiology 54 (5): 779–792.
- Isidro, J., Knox, R., Clarke, F. et al. (2012). Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta 236 (6): 1713–1723.
- Itoh, J.-I., Nonomura, K.-I., Ikeda, K. et al. (2005). Rice plant development: from zygote to spikelet. Plant & Cell Physiology 46 (1): 23–47.
- Itoh, J.-I., Hibara, K.-I., Sato, Y., and Nagato, Y. (2008). Developmental role and auxin responsiveness of Class III homeodomain leucine zipper gene family members in rice. Plant Physiology 147 (4): 1960–1975.
- Jackson, D., Veit, B., and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 413 (2): 405–413.
10.1242/dev.120.2.405 Google Scholar
- Jang, S., An, G., and Li, H.-Y. (2017). Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiology 173 (1): 688–702.
- Jang, S., Shim, S., Lee, Y.K. et al. (2021). Major QTLs, qARO1 and qARO9, additively regulate adaxial leaf rolling in rice. Frontiers in Plant Science 12: 64.
- Jasinski, S., Piazza, P., Craft, J. et al. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology 15 (17): 1560–1565.
- Je, B.I., Gruel, J., Lee, Y.K. et al. (2016). Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics 48 (7): 785–791.
- Jeon, J.S., Jang, S., Lee, S. et al. (2000). leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell 12 (6): 871–884.
- Jiang, L., Ma, X., Zhao, S. et al. (2019). The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. The Plant Cell 31 (1): 17–36.
- Jiao, Y., Wang, Y., Xue, D. et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics 42 (6): 541–544.
- Jiao, Z., Du, H., Chen, S. et al. (2021). LAZY gene family in plant gravitropism. Frontiers in Plant Science 11: 2096.
- Jofuku, K.D., den Boer, B.G.W., Van Montagu, M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell 6 (9): 1211–1225.
- Johnston, R., Wang, M., Sun, Q. et al. (2014). Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. The Plant Cell 26 (12): 4718–4732.
- Johnston, R., Leiboff, S., and Scanlon, M.J. (2015). Ontogeny of the sheathing leaf base in maize (Zea mays). New Phytologist 205 (1): 306–315.
- Jones, J.W. and Adair, C.R. (1938). A “lazy” mutation in rice. The Journal of Heredity 29 (8): 315–318.
10.1093/oxfordjournals.jhered.a104527 Google Scholar
- Jöst, M., Hensel, G., Kappel, C. et al. (2016). The INDETERMINATE DOMAIN protein BROAD LEAF1 limits barley leaf width by restricting lateral proliferation. Current Biology 26 (7): 903–909.
- Kaneko-Suzuki, M., Kurihara-Ishikawa, R., Okushita-Terakawa, C. et al. (2018). TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant & Cell Physiology 59 (3): 458–468.
- Kebrom, T.H., Burson, B.L., and Finlayson, S.A. (2006). Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiology 140 (3): 1109–1117.
- Kebrom, T.H., Brutnell, T.P., and Finlayson, S.A. (2010). Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant, Cell and Environment 33 (1): 48–58.
- Kebrom, T.H., Spielmeyer, W., and Finnegan, E.J. (2013). Grasses provide new insights into regulation of shoot branching. Trends in Plant Science 18 (1): 41–48.
- Kellogg, E.A. (2015). Flowering Plants. Monocots, vol. XIII, 1–416. Cham: Springer International Publishing AG.
- Kellogg, E.A., Camara, P.E.A.S., Rudall, P.J. et al. (2013). Early inflorescence development in the grasses (Poaceae). Frontiers in Plant Science 4 (JUL): 250.
- Kende, H., van der Knaap, E., and Cho, H.-T. (1998). Deepwater rice: a model plant to study stem elongation. Plant Physiology 118 (4): 1105–1110.
- Khanday, I., Yadav, S.R., and Vijayraghavan, U. (2013). Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. Plant Physiology 161 (4): 1970–1983.
- Khew, C.-Y., Teo, C.-J., Chan, W.-S. et al. (2015). Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice. Journal of Plant Physiology 182: 23–32.
- Kim, J.H. (2019). Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Reports 52 (4): 227–238.
- Kippes, N., Chen, A., Zhang, X. et al. (2016). Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes. Theoretical and Applied Genetics 129 (7): 1417–1428.
- Kirby, E.J.M., Appleyard, M., and Simpson N a. (1994). Co-ordination of stem elongation and Zadoks growth stages with leaf emergence in wheat and barley. The Journal of Agricultural Science 122 (01): 21.
- Kirschner, G.K., Stahl, Y., Von Korff, M., and Simon, R. (2017). Unique and conserved features of the barley root meristem. Frontiers in Plant Science 8: 1240.
- Kirschner, G.K., Stahl, Y., Imani, J. et al. (2018). Fluorescent reporter lines for auxin and cytokinin signalling in barley (Hordeum vulgare). PLoS One 13 (4): e0196086.
- Kitagawa, M. and Jackson, D. (2019). Control of meristem size. Annual Review of Plant Biology 70: 269–291.
- Knöller, A.S., Blakeslee, J.J., Richards, E.L. et al. (2010). Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. Journal of Experimental Botany 61 (13): 3689–3696.
- Ko, D. and Helariutta, Y. (2017). Shoot–root communication in flowering plants. Current Biology 27 (17): R973–R978.
- Kobayashi, Y., Kaya, H., Goto, K. et al. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286 (5446): 1960–1962.
- Koevoets, I.T., Venema, J.H., Elzenga, J.T.M., and Testerink, C. (2016). Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science 07: 1335.
- Komatsu, M., Chujo, A., Nagato, Y. et al. (2003). FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130 (16): 3841–3850.
- Komatsuda, T., Pourkheirandish, M., He, C. et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences 104 (4): 1424–1429.
- Kong, F., Zhang, T., Liu, J. et al. (2017). Regulation of leaf angle by auricle development in maize. Molecular Plant 10 (3): 516–519.
- Koppolu, R. and Schnurbusch, T. (2019). Developmental pathways for shaping spike inflorescence architecture in barley and wheat. Journal of Integrative Plant Biology 61 (3): 278–295.
- Koppolu, R., Anwar, N., Sakuma, S. et al. (2013). Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proceedings of the National Academy of Sciences of the United States of America 110 (32): 13198–13203.
- Kumar, V., Kim, S.H., Adnan, M.R. et al. (2021). Tiller Outgrowth in rice (Oryza sativa L.) is controlled by OsGT1, which acts downstream of FC1 in a PhyB-independent manner. Journal of Plant Biology 64 (5): 417–430.
- Kurakawa, T., Ueda, N., Maekawa, M. et al. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445 (7128): 652–655.
- Laurie, D.A., Pratchett, N., Snape, J.W., and Bezant, J.H. (1995). RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter× spring barley (Hordeum vulgare L.) cross. Genome 38 (3): 575–585.
- Lee, D.-Y. and An, G. (2012). Two AP2 family genes, SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. The Plant Journal 69 (3): 445–461.
- Lee, D.Y., Lee, J., Moon, S. et al. (2007a). The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. The Plant Journal 49 (1): 64–78.
- Lee, J., Park, J.-J., Kim, S.L. et al. (2007b). Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Molecular Biology 65 (4): 487–499.
- Lee, Y.-S., Lee, D.-Y., Cho, L.-H., and An, G. (2014). Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7 (1): 31.
- Lee, K.H., Park, S.W., Kim, Y.J. et al. (2018). Grain width 2 (GW2) and its interacting proteins regulate seed development in rice (Oryza sativa L.). Botanical Studies 59 (1): 23.
- Leiboff, S., Strable, J., Johnston, R. et al. (2021). Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. New Phytologist 230 (1): 218–227.
- Lenhard, M. (2017). Plant development: keeping on the straight and narrow and flat. Current Biology 27 (23): R1277–R1280.
- Lev-Yadun, S., Gopher, A., and Abbo, S. (2000). The cradle of agriculture. Science 288 (5471): 1602–1603.
- Li, N. and Li, Y. (2016). Signaling pathways of seed size control in plants. Current Opinion in Plant Biology 33: 23–32.
- Li, X., Qian, Q., Fu, Z. et al. (2003). Control of tillering in rice. Nature 422 (6932): 618–621.
- Li, P., Wang, Y., Qian, Q. et al. (2007). LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Research 17 (5): 402–410.
- Li, H., Liang, W., Hu, Y. et al. (2011). Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell 23 (7): 2536–2552.
- Li, Q.-F., Wang, C., Jiang, L. et al. (2012). An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling 5 (244): ra72.
- Li, P.-F., Cheng, Z.-G., Ma, B.-L. et al. (2014). Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy. PLoS One 9 (9): e95825.
- Li, C., Li, Y., Shi, Y. et al. (2015). Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One 10 (3): e0121624.
- Li, B., Liu, D., Li, Q. et al. (2016a). Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa. Journal of Experimental Botany 67 (14): 4155–4167.
- Li, S., Gao, F., Xie, K. et al. (2016b). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal 14 (11): 2134–2146.
- Li, Z., Li, B., Liu, J. et al. (2016c). Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis. Journal of Integrative Plant Biology 58 (12): 959–970.
- Li, C., Lin, H., Chen, A. et al. (2019a). Wheat VRN1 , FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 146 (14).
- Li, N., Xu, R., and Li, Y. (2019b). Molecular networks of seed size control in plants. Annual Review of Plant Biology 70 (1): 435–463.
- Li, Y., Zhu, J., Wu, L. et al. (2019c). Functional divergence of PIN1 paralogous genes in rice. Plant & Cell Physiology 60 (12): 2720–2732.
- Li, Z., Liang, Y., Yuan, Y. et al. (2019d). OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Molecular Plant 12 (8): 1143–1156.
- Li, X., Wu, P., Lu, Y. et al. (2020). Synergistic interaction of phytohormones in determining leaf angle in crops. International Journal of Molecular Sciences 21 (14): 5052.
- Li, G., Kuijer, H.N.J., Yang, X. et al. (2021). MADS1 maintains barley spike morphology at high ambient temperatures. Nature Plants 7 (8): 1093–1107.
- Liao, Z., Yu, H., Duan, J. et al. (2019). SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature Communications 10 (1): 2738.
- Liebsch, D. and Palatnik, J.F. (2020). MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Current Opinion in Plant Biology 53: 31–42.
- Liller, C.B., Neuhaus, R., von Korff, M. et al. (2015). Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS One 10 (10): e0140246.
- Lim, J., Helariutta, Y., Specht, C.D. et al. (2000). Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. The Plant Cell 12 (8): 1307–1318.
- Lin, W.C. (2003). The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. The Plant Cell 15 (10): 2241–2252.
- Liu, L., Sun, G., Ren, X. et al. (2015). Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genetics 16 (1): 29.
- Liu, J.M., Park, S.J., Huang, J. et al. (2016). Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice. Journal of Experimental Botany 67 (6): 1883–1895.
- Liu, C., Zheng, S., Gui, J. et al. (2018a). Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Molecular Plant 11 (2): 288–299.
- Liu, K., Xu, H., Liu, G. et al. (2018b). QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 131 (4): 839–849.
- Liu, K., Cao, J., Yu, K. et al. (2019). Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiology 181 (1): 179–194.
- Liu, H., Li, G., Yang, X. et al. (2020a). Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence. The Crop Journal 8 (1): 71–86.
- Liu, H., Zhou, X., Li, Q. et al. (2020b). CCT domain-containing genes in cereal crops: flowering time and beyond. Theoretical and Applied Genetics 133 (5): 1385–1396.
- Liu, L., Gallagher, J., Arevalo, E.D. et al. (2021). Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nature Plants 7 (3): 287–294.
- Lombardo, F. and Yoshida, H. (2015). Interpreting lemma and palea homologies: a point of view from rice floral mutants. Frontiers in Plant Science 6: 61.
- Long, S.P., ZHU, X., Naidu, S.L., and Ort, D.R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment 29 (3): 315–330.
- Lu, Z., Yu, H., Xiong, G. et al. (2013). Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. The Plant Cell 25 (10): 3743–3759.
- Lu, Y., Meng, Y., Zeng, J. et al. (2020). Coordination between GROWTH-REGULATING FACTOR1 and GRF-INTERACTING FACTOR1 plays a key role in regulating leaf growth in rice. BMC Plant Biology 20 (1): 200.
- Lundqvist, U., Abebe, B., and Lundqvist, A. (1989). Gene interaction of induced intermedium mutations of two-row barley. Hereditas 111 (1): 37–47.
- Luo, M., Yu, C.-W., Chen, F.-F. et al. (2012). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genetics 8 (12): e1003114.
- Luo, X., Zheng, J., Huang, R. et al. (2016). Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Reports 35 (12): 2423–2433.
- Lv, L.H., Zhao, M., Zhao, J.R. et al. (2008). Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica 41 (9): 2624–2632.
- Lv, H., Zheng, J., Wang, T. et al. (2014). The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Molecular Biology 84 (3): 243–257.
- Lynch, J.P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany 112 (2): 347–357.
- Lyu, J., Huang, L., Zhang, S. et al. (2020a). Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nature Communications 11 (1): 725.
- Lyu, J., Wang, D., Duan, P. et al. (2020b). Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice. The Plant Cell 32 (6): 1905–1918.
- Ma, D.L., Xie, R.Z., Niu, X.K. et al. (2014). Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. European Journal of Agronomy 58: 1–10.
- Ma, X., Feng, F., Zhang, Y. et al. (2019). A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population. PLoS Genetics 15 (5): e1008191.
- Magne, K., Liu, S., Massot, S. et al. (2020). Roles of BdUNICULME4 and BdLAXATUM-A in the non-domesticated grass Brachypodium distachyon. The Plant Journal 103 (2): 645–659.
- Mähönen, A.P., Ten Tusscher, K., Siligato, R. et al. (2014). PLETHORA gradient formation mechanism separates auxin responses. Nature 515 (7525): 125–129.
- Malcomber, S.T. and Kellogg, E.A. (2004). Heterogenous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. The Plant Cell 16 (7): 1692–1706.
- Malcomber, S.T., Preston, J.C., Reinheimer, R. et al. (2006). Developmental gene evolution and the origin of grass inflorescence diversity. In: Advances in Botanical Research, vol. 44, 425–481. Academic Press.
- Mantilla-Perez, M.B. and Salas Fernandez, M.G. (2017). Differential manipulation of leaf angle throughout the canopy: current status and prospects. Journal of Experimental Botany 68 (21–22): 5699–5717.
- Mathan, J., Singh, A., Jathar, V., and Ranjan, A. (2019). Anatomical features, efficient photosystem, and Rubisco activity contribute to high leaf photosynthesis in wild rice. bioRxiv 754887.
- Matsuoka, M., Ichikawa, H., Saito, A. et al. (1993). Expression of a rice homeobox gene causes altered morphology of transgenic plants. The Plant Cell 5 (9): 1039–1048.
- McKeown, M., Schubert, M., Preston, J.C., and Fjellheim, S. (2017). Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae. Molecular Phylogenetics and Evolution 114: 111–121.
- McKim, S.M., Stenvik, G.-E., Butenko, M.A. et al. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135 (8): 1537–1546.
- McKim, S.M., Koppolu, R., and Schnurbusch, T. (2018). Barley Inflorescence Architecture, 171–208. Cham: Springer.
- McKim, S.M. (2019). How plants grow up. Journal of Integrative Plant Biology 61 (3): 257–277.
- McMullen, M.D., Kresovich, S., Villeda, H.S. et al. (2009). Genetic properties of the Maize Nested Association Mapping Population. Science 325 (5941): 737–740.
- McSteen, P. (2009). Hormonal regulation of branching in grasses. Plant Physiology 149 (1): 46–55.
- Mekonnen, M.M. and Hoekstra, A.Y. (2018). Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resources Research 54 (1): 345–358.
- Meng, F., Xiang, D., Zhu, J. et al. (2019). Molecular mechanisms of root development in rice. Rice 12 (1): 1.
- Milla, R. and Matesanz, S. (2017). Growing larger with domestication: a matter of physiology, morphology or allocation? Plant Biology 19 (3): 475–483.
- Milne, R.J., Perroux, J.M., Rae, A.L. et al. (2017). Sucrose transporter localization and function in phloem unloading in developing stems. Plant Physiology 173 (2): 1330–1341.
- Miura, K., Ikeda, M., Matsubara, A. et al. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics 42 (6): 545–549.
- Miyoshi, K., Ahn, B.O., Kawakatsu, T. et al. (2004). PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America 101 (3): 875–880.
- Mock, J.J. and Pearce, R.B. (1975). An ideotype of maize. Euphytica 24 (3): 613–623.
- Modrusan, Z., Reiser, L., Feldmann, K.A. et al. (1994). Homeotic transformation of ovules into carpel-like structures in Arabidopsis. The Plant Cell 6 (3): 333–349.
- Moon, J., Candela, H., and Hake, S. (2013). The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development 140 (2): 405–412.
- Moreno, M.A., Harper, L.C., Krueger, R.W. et al. (1997). liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development 11 (5): 616–628.
- Muehlbauer, G.J., Fowler, J.E., Girard, L. et al. (1999). Ectopic expression of the maize homeobox gene Liguleless3 alters cell fates in the leaf1. Plant Physiology 119 (2): 651–662.
- Mulki, M.A., Bi, X., and von Korff, M. (2018). FLOWERING LOCUS T3 controls spikelet initiation but not floral development. Plant Physiology 178 (3): 1170–1186.
- Multani, D.S., Briggs, S.P., Chamberlin, M.A. et al. (2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302 (5642): 81–84.
- Nagasawa, N., Miyoshi, M., Sano, Y. et al. (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130 (4): 705–718.
- Nagel, M., Behrens, A.-K., and Börner, A. (2013). Effects of Rht dwarfing alleles on wheat seed vigour after controlled deterioration. Crop & Pasture Science 64 (9): 857–864.
- Nair, S.K., Wang, N., Turuspekov, Y. et al. (2010). Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proceedings of the National Academy of Sciences 107 (1): 490–495.
- Nardmann, J. and Werr, W. (2012). The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. Plant Molecular Biology 78 (1–2): 123–134.
- Nardmann, J., Ji, J., Werr, W., and Scanlon, M.J. (2004). The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131 (12): 2827–2839.
- Nelissen, H., Rymen, B., Jikumaru, Y. et al. (2012). A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Current Biology 22 (13): 1183–1187.
- Nelissen, H., Eeckhout, D., Demuynck, K. et al. (2015). Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell 27 (6): 1605–1619.
- Nelissen, H., Gonzalez, N., and Inzé, D. (2016). Leaf growth in dicots and monocots: so different yet so alike. Current Opinion in Plant Biology 33: 72–76.
- Nicholls, P.B. and May, L.H. (1964). Studies on the growth of the barley apex. II. on the initiation of internode elongation in the inflorescence. Australian Journal of Biological Sciences 17: 619–630.
- Niklas, K.J. (1990). The mechanical significance of clasping leaf sheaths in grasses: evidence from two cultivars of Avena sativa. Annals of Botany 65 (5): 505–512.
- Ning, J., Zhang, B., Wang, N. et al. (2011). Increased Leaf Angle1, a Raf-Like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell 23 (12): 4334–4347.
- O'Connor, D.L., Runions, A., Sluis, A. et al. (2014). A division in PIN-mediated auxin patterning during organ initiation in grasses. PLoS Computational Biology 10 (1): e1003447.
- O'Connor, K., González-Suárez, P., and Dixon, L.E. (2020). Temperature control of plant development. Annual Plant Reviews Online 3: 563–606.
- Ohmori, S., Kimizu, M., Sugita, M. et al. (2009). MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. The Plant Cell 21 (10): 3008–3025.
- Ohto, M.-A., Fischer, R.L., Goldberg, R.B. et al. (2005). Control of seed mass by APETALA2. Proceedings of the National Academy of Sciences 102 (8): 3123–3128.
- Okamura, M., Hirose, T., Hashida, Y. et al. (2013). Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Functional Plant Biology 40 (11): 1137–1146.
- Ort, D.R., Merchant, S.S., Alric, J. et al. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences 112 (28): 8529–8536.
- Patil, V., McDermott, H.I., McAllister, T. et al. (2019). APETALA2 control of barley internode elongation. Development 146 (11).
- Pendleton, J.W., Smith, G.E., Winter, S.R., and Johnston, T.J. (1968). Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis1. Agronomy Journal 60 (4): 422–424.
- Peng, J. and Harberd, N.P. (1997). Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiology 113 (4): 1051–1058.
- Peng, J., Richards, D.E., Hartley, N.M. et al. (1999). “Green revolution” genes encode mutant gibberellin response modulators. Nature 400 (6741): 256–261.
- Phelps-Durr, T.L., Thomas, J., Vahab, P., and Timmermans, M.C.P. (2005). Maize rough sheath2 and its Arabidopsis Orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. The Plant Cell 17 (11): 2886–2898.
- Pieper, R., Tomé, F., Pankin, A., and von Korff, M. (2021). FLOWERING LOCUS T4 delays flowering and decreases floret fertility in barley. Journal of Experimental Botany 72 (1): 107–121.
- Poursarebani, N., Seidensticker, T., Koppolu, R. et al. (2015). The genetic basis of composite spike form in barley and ‘miracle-wheat.’ Genetics 201 (1): 155–165.
- Poursarebani, N., Trautewig, C., Melzer, M. et al. (2020). COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nature Communications 11 (1): 1–16.
- Prasad, K., Sriram, P., Kumar, S. et al. (2001). Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Development Genes and Evolution 211 (6): 281–290.
- Prasad, K., Parameswaran, S., and Vijayraghavan, U. (2005). OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. The Plant Journal 43 (6): 915–928.
- Preece, C., Livarda, A., Christin, P.-A. et al. (2017). How did the domestication of fertile crescent grain crops increase their yields? Functional Ecology 31 (2): 387–397.
- Ramsay, L., Comadran, J., Druka, A. et al. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genetics 43 (2): 169–172.
- Ren, D., Rao, Y., Leng, Y. et al. (2016). Regulatory Role of OsMADS34 in the determination of glumes fate, grain yield, and quality in rice. Frontiers in Plant Science 7: 1853.
- Ren, D., Hu, J., Xu, Q. et al. (2018a). FZP determines grain size and sterile lemma fate in rice. Journal of Experimental Botany 69 (20): 4853–4866.
- Ren, D., Yu, H., Rao, Y. et al. (2018b). ‘Two-floret spikelet’ as a novel resource has the potential to increase rice yield. Plant Biotechnology Journal 16 (2): 351–353.
- Ren, D., Li, Y., He, G., and Qian, Q. (2020). Multifloret spikelet improves rice yield. The New Phytologist 225 (6): 2301–2306.
- Richards, R.A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51 (suppl_1): 447–458.
- Richardson, A.E. and Hake, S. (2018). Drawing a line: grasses and boundaries. Plants (Basel, Switzerland) 8 (1): 4.
- Rodríguez, D., Andrade, F.H., and Goudriaan, J. (1999). Effects of phosphorus nutrition on tiller emergence in wheat. Plant and Soil 209 (2): 283–295.
- Rönspies, M., Dorn, A., Schindele, P., and Puchta, H. (2021). CRISPR–Cas-mediated chromosome engineering for crop improvement and synthetic biology. Nature Plants 7 (5): 566–573.
- Ruan, B., Shang, L., Zhang, B. et al. (2020). Natural variation in the promoter of TGW2 determines grain width and weight in rice. The New Phytologist 227 (2): 629–640.
- Sachs, R.M. (1965). Stem elongation. Annual Review of Plant Physiology 16 (1): 73–96.
- Sachs, R.M., Lang, A., Bretz, C.F., and Roach, J. (1960). Shoot histogenesis: subapical meristematic activity in a caulescent plant and the action of gibberellic acid and Amo-1618. American Journal of Botany 47 (4): 260–266.
- Sadok, W., Lopez, J.R., Zhang, Y. et al. (2020). Sheathing the blade: significant contribution of sheaths to daytime and nighttime gas exchange in a grass crop. Plant, Cell & Environment 43 (8): 1844–1861.
- Sakamoto, T., Morinaka, Y., Ohnishi, T. et al. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology 24 (1): 105–109.
- Sakuma, S. and Schnurbusch, T. (2020). Of floral fortune: tinkering with the grain yield potential of cereal crops. The New Phytologist 225 (5): 1873–1882.
- Sakuma, S., Pourkheirandish, M., Matsumoto, T. et al. (2010). Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions. Functional & Integrative Genomics 10 (1): 123–133.
- Sakuma, S., Lundqvist, U., Kakei, Y. et al. (2017). Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. Plant Physiology 175 (4): 1720–1731.
- Sakuma, S., Golan, G., Guo, Z. et al. (2019). Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences 116 (11): 5182–5187.
- Salazar-Henao, J.E., Lehner, R., Betegón-Putze, I. et al. (2016). BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root. Journal of Experimental Botany 67 (17): 4951–4961.
- Sang, D., Chen, D., Liu, G. et al. (2014). Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 111 (30): 11199–11204.
- Satterlee, J.W. and Scanlon, M.J. (2019). Coordination of leaf development across developmental axes. Plants 8 (10): 433.
- Satterlee, J.W., Strable, J., and Scanlon, M.J. (2020). Plant stem-cell organization and differentiation at single-cell resolution. Proceedings of the National Academy of Sciences 117 (52): 33689–33699.
- Scanlon, M.J. and Freeling, M. (1998). The narrow sheath leaf domain deletion: a genetic tool used to reveal developmental homologies among modified maize organs. The Plant Journal 13 (4): 547–561.
- Scanlon, M.J., Schneeberger, R.G., and Freeling, M. (1996). The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122 (6): 1683–1691.
- Schneeberger, R.G., Becraft, P.W., Hake, S., and Freeling, M. (1995). Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes & Development 9 (18): 2292–2304.
- Schneeberger, R., Tsiantis, M., Freeling, M., and Langdale, J.A. (1998). The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125 (15): 2857–2865.
- Schrager-Lavelle, A., Klein, H., Fisher, A., and Bartlett, M. (2017). Grass flowers: an untapped resource for floral evo-devo. Journal of Systematics and Evolution 55 (6): 525–541.
- Schreiber, A.W., Shi, B.-J., Huang, C.-Y. et al. (2011). Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12 (1): 129.
- Semiarti, E., Ueno, Y., Tsukaya, H. et al. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128 (10): 1771–1783.
- Senapati, N. and Semenov, M.A. (2020). Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Global Food Security 24: 100340.
- Shaaf, S., Bretani, G., Biswas, A. et al. (2019). Genetics of barley tiller and leaf development. Journal of Integrative Plant Biology 61 (3): 226–256.
- Sharman, B.C. (1942). Developmental anatomy of the shoot of Zea mays L. Annals of Botany 6 (22): 245–282.
10.1093/oxfordjournals.aob.a088407 Google Scholar
- Shaw, L.M., Turner, A.S., and Laurie, D.A. (2012). The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). The Plant Journal 71 (1): 71–84.
- Shimano, S., Hibara, K.I., Furuya, T. et al. (2018). Conserved functional control, but distinct regulation, of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of GRF-INTERACTING FACTOR 1 orthologs. Development 145 (7): dev159624.
- Shindo, M., Yamamoto, S., Shimomura, K., and Umehara, M. (2020). Strigolactones decrease leaf angle in response to nutrient deficiencies in rice. Frontiers in Plant Science 11: 135.
- Shoesmith, J.R., Solomon, C.U., Yang, X. et al. (2021). APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development 148 (5): dev194894.
- Si, L., Chen, J., Huang, X. et al. (2016). OsSPL13 controls grain size in cultivated rice. Nature Genetics 48 (4): 447–456.
- Simkin, A.J., López-Calcagno, P.E., and Raines, C.A. (2019). Feeding the world: improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany 70 (4): 1119–1140.
- Simons, K.J., Fellers, J.P., Trick, H.N. et al. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics 172 (1): 547–555.
- Sinclair, T.R. and Sheehy, J.E. (1999). Erect leaves and photosynthesis in rice. Science 283 (5407): 1455–1455.
- Sinha, N. and Hake, S. (1990). Mutant characters of Knotted maize leaves are determined in the innermost tissue layers. Developmental Biology 141 (1): 203–210.
- Sirault, X.R.R., Condon, A.G., Wood, J.T. et al. (2015). “Rolled-upness”: phenotyping leaf rolling in cereals using computer vision and functional data analysis approaches. Plant Methods 11 (1): 1–11.
- Somssich, M., Je, B., Simon, R., and Jackson, D. (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143 (18): 3238–3248.
- Song, X.-J., Huang, W., Shi, M. et al. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39 (5): 623–630.
- Song, X., Lu, Z., Yu, H. et al. (2017). IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Research 27 (9): 1128–1141.
- Song, G., Sun, G., Kong, X. et al. (2019). The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q. The Crop Journal 7 (1): 113–117.
10.1016/j.cj.2018.11.001 Google Scholar
- Sormacheva, I., Golovnina, K., Vavilova, V. et al. (2015). Q gene variability in wheat species with different spike morphology. Genetic Resources and Crop Evolution 62 (6): 837–852.
- de Souza, M.T., van Es, S.W., Hernández-Pinzón, I. et al. (2021). The TCP transcription factor HvTB2 heterodimerizes with VRS5(HvTB1) and controls spike architecture in barley. bioRxiv . doi: 10.1101/2021.04.14.439785.
10.1101/2021.04.14.439785 Google Scholar
- Spielmeyer, W., Ellis, M.H., and Chandler, P.M. (2002). Semidwarf (sd-1),“green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America 99 (13): 9043–9048.
- Stahl, Y. and Simon, R. (2009). Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? Plant Signaling & Behavior 4 (7): 634–635.
- Stirnberg, P., Chatfield, S.P., and Leyser, H.M.O. (1999). AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiology 121 (3): 839–847.
- Strable, J., Wallace, J.G., Unger-Wallace, E. et al. (2017). Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. The Plant Cell 29 (7): 1622–1641.
- Studer, A., Zhao, Q., Ross-Ibarra, J., and Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics 43 (11): 1160–1163.
- Subudhi, P.K., De Leon, T.B., Tapia, R. et al. (2018). Genetic interaction involving photoperiod-responsive Hd1 promotes early flowering under long-day conditions in rice. Scientific Reports 8 (1): 2081.
- Sun, T. (2008). Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists 2008 (6): e0103.
- Sun, Y., Fan, X.-Y., Cao, D.-M. et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19 (5): 765–777.
- Sun, X., Cahill, J., Van Hautegem, T. et al. (2017). Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nature Communications 8 (1): 14752.
- Sun, Q., Li, T.Y., Li, D.D. et al. (2019). Overexpression of Loose Plant Architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN-FORMED 1a in rice. Plant Biotechnology Journal 17 (5): 855–857.
- Takeda, T., Suwa, Y., Suzuki, M. et al. (2003). The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal 33 (3): 513–520.
- Tang, Y., Liu, H., Guo, S. et al. (2018). OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice. Plant Physiology 176 (1): 946–959.
- Tavakol, E., Okagaki, R., Verderio, G. et al. (2015). The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiology 168 (1): 164–174.
- Theißen, G., Melzer, R., and Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143 (18): 3259–3271.
- Theodoris, G., Inada, N., and Freeling, M. (2003). Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proceedings of the National Academy of Sciences 100 (11): 6837–6842.
- Thiel, J., Koppolu, R., Trautewig, C. et al. (2021). Transcriptional landscapes of floral meristems in barley. Science Advances 7 (18): eabf0832.
- Thompson, B.E., Bartling, L., Whipple, C. et al. (2009). bearded-ear encodes a MADS box transcription factor critical for maize floral development. The Plant Cell 21 (9): 2578–2590.
- Thornsberry, J.M., Goodman, M.M., Doebley, J. et al. (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28 (3): 286–289.
- Tian, F., Bradbury, P.J., Brown, P.J. et al. (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics 43 (2): 159–162.
- Tian, J., Wang, C., Xia, J. et al. (2019). Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365 (6454): 658–664.
- Timmermans, M.C.P. (1999). ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284 (5411): 151–153.
- Tong, H., Jin, Y., Liu, W. et al. (2009). DWARF and LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. The Plant Journal 58 (5): 803–816.
- Tong, H., Xiao, Y., Liu, D. et al. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell 26 (11): 4376–4393.
- Toriba, T., Tokunaga, H., Shiga, T. et al. (2019). BLADE-ON-PETIOLE genes temporally and developmentally regulate the sheath to blade ratio of rice leaves. Nature Communications 10 (1): 619.
- Toriba, T., Tokunaga, H., Nagasawa, K. et al. (2020). Suppression of leaf blade development by BLADE-ON-PETIOLE orthologs is a common strategy for underground rhizome growth. Current Biology 30 (3): 509–516.
- Trevaskis, B., Bagnall, D.J., Ellis, M.H. et al. (2003). MADS box genes control vernalization-induced flowering in cereals. Proceedings of the National Academy of Sciences 100 (22): 13099–13104.
- Trung, K.H., Tran, Q.H., Bui, N.H. et al. (2020). A weak allele of FASCIATED EAR 2 (FEA2) increases maize kernel row number (KRN) and yield in elite maize hybrids. Agronomy 10 (11): 1774.
- Truong, S.K., McCormick, R.F., Rooney, W.L., and Mullet, J.E. (2015). Harnessing genetic variation in leaf angle to increase productivity of Sorghum bicolor. Genetics 201 (3): 1229–1238.
- Tsuda, K., Abraham-Juarez, M.-J., Maeno, A. et al. (2017). KNOTTED1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize. The Plant Cell 29 (5): 1105–1118.
- Turner, A., Beales, J., Faure, S. et al. (2005). The pseudo-response regulator ppd-h1 provides adaptation to photoperiod in barley. Science 310 (5750): 1031–1034.
- Ueno, Y., Ishikawa, T., Watanabe, K. et al. (2007). Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in leaves of Arabidopsis. The Plant Cell 19 (2): 445–457.
- Urano, D., Miura, K., Wu, Q. et al. (2016). Plant morphology of heterotrimeric G protein mutants. Plant & Cell Physiology 57 (3): 437–445.
- Verma, A., Niranjana, M., Jha, S.K. et al. (2020). QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Scientific Reports 10 (1): 18696.
- Voss-Fels, K.P., Robinson, H., Mudge, S.R. et al. (2018). VERNALIZATION1 modulates root system architecture in wheat and barley. Molecular Plant 11 (1): 226–229.
- Waites, R. and Hudson, A. (1995). phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121 (7): 2143–2154.
- Walla, A., Wilma van Esse, G., Kirschner, G.K. et al. (2020). An Acyl-CoA N-Acyltransferase regulates meristem phase change and plant architecture in Barley. Plant Physiology 183 (3): 1088–1109.
- Wang, M., Le Moigne, M.-A., Bertheloot, J. et al. (2019). BRANCHED1: a key hub of shoot branching. Frontiers in Plant Science 10: 76.
- Wang, H. and Wang, H. (2015). The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant 8 (5): 677–688.
- Wang, J.R., Hu, H., Wang, G.H. et al. (2009). Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Molecular Plant 2 (4): 823–831.
- Wang, S., Wu, K., Yuan, Q. et al. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44 (8): 950–954.
- Wang, L., Chu, H., Li, Z. et al. (2014a). Origin and development of the root cap in rice. Plant Physiology 166 (2): 603–613.
- Wang, W., Li, G., Zhao, J. et al. (2014b). DWARF TILLER1, a WUSCHEL-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genetics 10 (3): e1004154.
- Wang, L., Sun, S., Jin, J. et al. (2015). Coordinated regulation of vegetative and reproductive branching in rice. Proceedings of the National Academy of Sciences 112 (50): 15504–15509.
- Wang, Y., Lu, J., Ren, T. et al. (2017). Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants 9 (2).
- Wang, B., Smith, S.M., and Li, J. (2018a). Genetic regulation of shoot architecture. Annual Review of Plant Biology 69 (1): 437–468.
- Wang, H., Chen, W., Eggert, K. et al. (2018b). Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany 69 (16): 3883–3898.
- Wang, F., Han, T., Song, Q. et al. (2020a). The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. The Plant Cell 32 (10): 3124–3138.
- Wang, S.-S., Chung, C.-L., Chen, K.-Y., and Chen, R.-K. (2020b). A novel variation in the FRIZZLE PANICLE ( FZP ) gene promoter improves grain number and yield in rice. Genetics 215 (1): 243–252.
- Wang, C., Yang, X., and Li, G. (2021). Molecular sciences molecular insights into inflorescence meristem specification for yield potential in cereal crops molecular insights into inflorescence meristem specification for yield potential in cereal crops. International Journal of Molecular Sciences 22: 3508.
- Watson, D.J. (1952). The physiological basis of variation in yield. In: Advances in Agronomy, vol. 4 (ed. A. Norman), 101–145. Academic Press.
- Weatherwax, P. (1923). The Story of the Maize Plant. University of Chicago Press.
- Werner, T., Nehnevajova, E., Köllmer, I. et al. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. The Plant Cell 22 (12): 3905–3920.
- Whipple, C.J., Kebrom, T.H., Weber, A.L. et al. (2011). Grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proceedings of the National Academy of Sciences 108 (33): E506–E512.
- Wilkinson, L.G., Bird, D.C., and Tucker, M.R. (2018). Exploring the role of the ovule in cereal grain development and reproductive stress tolerance. Annual Plant Reviews Online 1 (1): 181–216.
- Wolbang, C.M., Chandler, P.M., Smith, J.J., and Ross, J.J. (2004). Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiology 134 (2): 769–776.
- Woods, D.P., Ream, T.S., Bouché, F. et al. (2017). Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1. Proceedings of the National Academy of Sciences 114 (25): 6623–6628.
- Wu, X. (2009). Prospects of developing hybrid rice with super high yield. Agronomy Journal 101 (3): 688–695.
- Wu, L., Liu, D., Wu, J. et al. (2013a). Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. The Plant Cell 25 (11): 4363–4377.
- Wu, X., Tang, D., Li, M. et al. (2013b). Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiology 161 (1): 317–329.
- Wu, Y., Zhao, S., Li, X. et al. (2018). Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nature Communications 9 (1): 4157.
- Xiang, J.-J., Zhang, G.-H., Qian, Q., and Xue, H.-W. (2012). SEMI - ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiology 159 (4): 1488–1500.
- Xiao, J., Xu, S., Li, C. et al. (2014). O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nature Communications 5 (1): 4572.
- Xie, Q., Mayes, S., and Sparkes, D.L. (2015). Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany 66 (21): 6715–6730.
- Xie, Q., Li, N., Yang, Y. et al. (2018). Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta 247 (5): 1089–1098.
- Xu, M., Zhu, L., Shou, H., and Wu, P. (2005). A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant & Cell Physiology 46 (10): 1674–1681.
- Xu, H., Zhao, M., Zhang, Q. et al. (2016). The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breeding Science 66 (5): 659–667.
- Xu, W., Tao, J., Chen, M. et al. (2017). Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. Journal of Experimental Botany 68 (3): 483–498.
- Xu, P., Ali, A., Han, B., and Wu, X. (2018). Current advances in molecular basis and mechanisms regulating leaf morphology in rice. Frontiers in Plant Science 9: 1528.
- Xu, F., Chen, S., Yang, X. et al. (2021). Genome-wide association study on seminal and nodal roots of wheat under different growth environments. Frontiers in Plant Science 11: 2124.
- Yamaguchi, T., Nagasawa, N., Kawasaki, S. et al. (2004). The YABBY Gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell 16 (2): 500–509.
- Yamaguchi, T., Lee, D.Y., Miyao, A. et al. (2006). Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. The Plant Cell 18 (1): 15–28.
- Yamamuro, C., Ihara, Y., Wu, X. et al. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12 (9): 1591–1605.
- Yan, L., Artem, L., Ann, B. et al. (2004). The Wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303 (5664): 1640–1644.
- Yanai, O., Shani, E., Dolezal, K. et al. (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology 15 (17): 1566–1571.
- Yang, J., Thames, S., Best, N.B. et al. (2018). Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in Setaria viridis. The Plant Cell 30 (1): 48–66.
- Yoshida, H. (2012). Is the lodicule a petal: molecular evidence? Plant Science 184: 121–128.
- Yoshihara, T. and Spalding, E.P. (2017). LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiology 175 (2): 959–969.
- Yoshihara, T. and Spalding, E.P. (2020). Switching the direction of stem gravitropism by altering two amino acids in Atlazy1. Plant Physiology 182 (2): 1039–1051.
- Yoshikawa, T., Tanaka, S.-Y., Masumoto, Y. et al. (2016). Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs. Breeding Science 66 (3): 416–424.
- Youssef, H.M., Eggert, K., Koppolu, R. et al. (2017). VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics 49 (1): 157–161.
- Zakhrabekova, S., Gough, S.P., Braumann, I. et al. (2012). Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proceedings of the National Academy of Sciences 109 (11): 4326–4331.
- Zhang, G.-H., Xu, Q., Zhu, X.-D. et al. (2009a). SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. The Plant Cell 21 (3): 719–735.
- Zhang, L.-Y., Bai, M.-Y., Wu, J. et al. (2009b). Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. The Plant Cell 21 (12): 3767–3780.
- Zhang, X., Wang, J., Huang, J. et al. (2012). Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences 109 (52): 21534–21539.
- Zhang, J., Ku, L.X., Han, Z.P. et al. (2014). The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). Journal of Experimental Botany 65 (17): 5063–5076.
- Zhang, X., Davidson, E.A., Mauzerall, D.L. et al. (2015). Managing nitrogen for sustainable development. Nature 528 (7580): 51–59.
- Zhang, D., Sun, W., Singh, R. et al. (2018a). GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. The Plant Cell 30 (2): 360–374.
- Zhang, N., Yu, H., Yu, H. et al. (2018b). A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. The Plant Cell 30 (7): 1461–1475.
- Zhang, W., Tan, L., Sun, H. et al. (2019). Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Molecular Plant 12 (8): 1075–1089.
- Zhao, Y., Christensen, S.K., Fankhauser, C. et al. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291 (5502): 306–309.
- Zhao, J., Huang, X., Ouyang, X. et al. (2012). OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One 7 (8): e43705.
- Zhong, J., van Esse, G.W., Bi, X. et al. (2021). INTERMEDIUM-M encodes an HvAP2L-H5 ortholog and is required for inflorescence indeterminacy and spikelet determinacy in barley. Proceedings of the National Academy of Sciences 118 (8): e2011779118.
- Zhou, Y., Lu, D., Li, C. et al. (2012). Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. The Plant Cell 24 (3): 1034–1048.
- Zhou, Y., Zhou, G., Broughton, S. et al. (2018). Towards the identification of a gene for prostrate tillers in barley (Hordeum vulgare L.). PLoS One 13 (2): e0192263.
- Zhu, Y., Nomura, T., Xu, Y. et al. (2006). ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. The Plant Cell 18 (2): 442–456.
- Zhu, X.-G., Long, S.P., and Ort, D.R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61 (1): 235–261.
- Zhu, C., Liu, L., Crowell, O. et al. (2021a). The CLV3 homolog in Setaria viridis selectively controls inflorescence meristem size. Frontiers in Plant Science 12: 151.
- Zhu, M., Hu, Y., Tong, A. et al. (2021b). LAZY1 controls tiller angle and shoot gravitropism by regulating the expression of auxin transporters and signaling factors in rice. Plant & Cell Physiology 61 (12): 2111–2125.
- Zikhali, M., Wingen, L.U., Leverington-Waite, M. et al. (2017). The identification of new candidate genes Triticum aestivum FLOWERING LOCUS T3-B1 (TaFT3-B1) and TARGET OF EAT1 (TaTOE1-B1) controlling the short-day photoperiod response in bread wheat. Plant, Cell & Environment 40 (11): 2678–2690.
- Zombori, Z., Nagy, B., Mihály, R. et al. (2020). Ring-type e3 ubiqitin ligase barley genes (Hvyrg1–2) control characteristics of both vegetative organs and seeds as yield components. Plants 9 (12): 1–15.
- Zuo, S.M., Zhang, Y.F., Chen, Z.X. et al. (2014). Improvement of rice resistance to sheath blight by pyramiding QTLs conditioning disease resistance and tiller angle. Rice Science 21 (6): 318–326.
10.1016/S1672-6308(14)60274-2 Google Scholar
- Zwirek, M., Waugh, R., and McKim, S.M. (2019). Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. The New Phytologist 221 (4): 1950–1965.
Browse other articles of this reference work: