12 Data Processing, Metabolomic Databases and Pathway Analysis
Oliver Fiehn
UC Davis Genome Center, 451 Health Sci Dr, Davis, CA, 95616 USA
Search for more papers by this authorTobias Kind
UC Davis Genome Center, 451 Health Sci Dr, Davis, CA, 95616 USA
Search for more papers by this authorDinesh Kumar Barupal
UC Davis Genome Center, 451 Health Sci Dr, Davis, CA, 95616 USA
Search for more papers by this authorOliver Fiehn
UC Davis Genome Center, 451 Health Sci Dr, Davis, CA, 95616 USA
Search for more papers by this authorTobias Kind
UC Davis Genome Center, 451 Health Sci Dr, Davis, CA, 95616 USA
Search for more papers by this authorDinesh Kumar Barupal
UC Davis Genome Center, 451 Health Sci Dr, Davis, CA, 95616 USA
Search for more papers by this authorAbstract
Metabolomics relies on a variety of bioinformatics tools aiming to derive information from data. Data acquisition with chromatography-coupled mass spectrometry yields high volumes of raw data that need to be processed to achieve de-noised and meaningful biochemical data that subsequently can be presented for statistics and pathway analysis in a coherent manner. A variety of new tools and algorithms have recently been developed that help in this process. Nevertheless, a surprisingly low number of metabolic signals can be unambiguously identified. If cutting-edge methods are used, we can confidently interpret signals that can neither be identified by reference standards nor annotated by database matching as ‘novel metabolites’. Such methods may comprise high-resolution, high-accurate mass data in conjunction with good data alignment programs that perform peak picking and deconvolution, calculation of elemental formulas, database queries and constraining hit lists by interpreting mass spectral fragmentations and retention-based metabolomic libraries. In an effort to improve standardizations for metabolomic reports, we propose that not only metabolites must be named but also, for all reported metabolites, identifiers or structure codes (InChI keys) from public (bio)chemical databases need to be detailed. Machine-readable structures will vastly accelerate our knowledge of the magnitude and importance of the metabolome in various plant species, organs and physiological conditions. We detail how well-annotated metabolome data can then be used to visualize and interrogate biochemical pathways by matching information to the broad plant databases that currently exist.
References
- American-Chemical-Society. Chemical Abstracts Database - CAS SciFinder Academic Program [Online]. http://www.cas.org/. Accessed on 14 January 2010.
- Antonov, A.V., Dietmann, S., Wong, P. et al. (2009) TICL–a web tool for network-based interpretation of compound lists inferred by high-throughput metabolomics. FEBS Journal 276, 2084–2094.
- Arita, M. (2004) The metabolic world of Escherichia coli is not small. Proceedings of the National Academy of Science U S A 101, 1543–1547.
- Atkinson, H. J., Morris, J. H., Ferrin, T. E. et al. (2009) Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One 4, e4345.
- Babur, O., Dogrusoz, U., Demir, E. et al. (2009) ChiBE: interactive visualization and manipulation of BioPAX pathway models. Bioinformatics, btp665 (online advance publication).
- Bader, G. D., Cary, M. P. and Sander, C. (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34, D504–D506.
- Bauer-Mehren, A., Furlong, L. I. and Sanz, F. (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Molecular Systems Biology 5, 290.
- Benderoth, M., Textor, S., Windsor, A. J. et al. (2006) Positive selection driving diversification in plant secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America 103, 9118–9123.
- Boettcher, C., Von Roepenack-Lahaye, E., Schmidt, J. et al. (2008) Metabolome analysis of Biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in arabidopsis. Plant Physiology (Rockville) 147, 2107–2120.
- Bolling, C. and Fiehn, O. (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiology 139, 1995–2005.
- Bonneau, R. (2008) Learning biological networks: from modules to dynamics. Nat Chem Biol 4, 658–664.
- Brady, S. M. and Provart, N. J. (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21, 1034–1051.
- Brohee, S., Faust, K., Lima-Mendez, G. et al. (2008) Network Analysis Tools: from biological networks to clusters and pathways. Nature Protocols 3, 1616–1629.
- Buseman, C. M., Tamura, P., Sparks, A. A. et al. (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiology 142, 28–39.
- Caetano-Anolles, G., Yafremava, L. S., Gee, H. et al. (2009) The origin and evolution of modern metabolism. International Journal of Biochem Cell Biology 41, 285–297.
- Caspi, R., Foerster, H., Fulcher, C. A. et al. (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research 36, D623.
- Catchpole, G. S., Beckmann, M., Enot, D. P. et al. (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proceedings of the National Academy of Sciences of the United States of America 102, 14458–14462.
- Chapman_&_Hall/CRC. (2010) Dictionary of Natural Products [Online]. Available: http://dnp.chemnetbase.com/. Accessed on January 12 2010.
- Chou, C. H., Chang, W. C., Chiu, C. M. et al. (2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Research 37, W129–W134.
- Cui, Q., Lewis, I. A., Hegeman, A. D. et al. (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nature Biotechnology 26, 162–164.
- D'auria, J. C. and Gershenzon, J. (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Current Opinion in Plant Biology 8, 308–316.
- Dai, X., Wang, G., Yang, D. S. et al. (2010) TrichOME: a comparative omics database for plant trichomes. Plant Physiology 152, 44–54.
- De Oliveira Dal'molin, C. G., Quek, L. E., Palfreyman, R. W. et al. (2009) AraGEM - a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis thaliana. Plant Physiology 10.1104/pp. 109.148817 (online advance publication).
- Degenhardt, J., Kollner, T. G. and Gershenzon, J. (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70, 1621–1637.
- Degtyarenko, K., De Matos, P., Ennis, M. et al. (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Research 36, D344–D350.
- Degtyarenko, K., Hastings, J., De Matos, P. et al. (2009) ChEBI: an open bioinformatics and cheminformatics resource. Current Protocols in Bioinformatics Chapter 14, Unit 14 9.
- Draper, J., Enot, D. P., Parker, D. et al. (2009) Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. Bmc Bioinformatics 10, 16.
- Ejsing, C. S., Moehring, T., Bahr, U. et al. (2006) Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. Journal of Mass Spectrometry 41, 372–389.
- Elyashberg, M., Blinov, K., Molodtsov, S. et al. (2009) Computer-assisted methods for molecular structure elucidation: realizing a spectroscopist's dream. Journal of Cheminformatics 1: 3.
- Enot, D. P., Beckmann, M. and Draper, J. (2007) Detecting a difference - assessing generalisability when modelling metabolome fingerprint data in longer term studies of genetically modified plants. Metabolomics 3, 335–347.
- Enot, D. P., Lin, W., Beckmann, M. et al. (2008) Preprocessing, classification modeling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nature Protocols 3, 446–470.
- Esch, S. W., Tamura, P., Sparks, A. A. et al. (2007) Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry. Journal of Lipid Research 48, 235–241.
- Faust, K., Croes, D. and Van Helden, J. (2009) Metabolic pathfinding using RPAIR annotation. Journal of Molecular Biology 388, 390–414.
-
Fiehn, O.
(2007)
Cellular Metabolomics: The Quest for Pathway Structure.
The Handbook of Metabonomics and Metabolomics.
Elsevier.
10.1016/B978-044452841-4/50003-5 Google Scholar
- Fiehn, O. (2008) Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends in Analytical Chemistry 27, 261–269.
- Fiehn, O., Kopka, J., Dormann, P. et al. (2000) Metabolite profiling for plant functional genomics. Nature Biotechnology 18, 1157–1161.
-
Fiehn, O.,
Wohlgemuth, G. and
Scholz, M.
(2005)
Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In:
B. Ludascher and
L. Raschid (eds.)
Data Integration in the Life Sciences, Proceedings.
Berlin:
Springer-Verlag Berlin.
10.1007/11530084_18 Google Scholar
- Fiehn, O., Sumner, L., Rhee, S. et al. (2007) Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics 3, 195–201.
- Fiehn, O., Wohlgemuth, G., Scholz, M. et al. (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant Journal 53, 691–704.
- Frisvad, J. C., Filtenborg, O. and Thrane, U. (1989) Analysis and screening for mycotoxins and other secondary metabolites in fungal cultures by thin-layer chromatography and high-performance liquid chromatography. Archives of Environmental Contamination and Toxicology 18, 331–335.
- Gaquerel, E., Weinhold, A. and Baldwin, I. T. (2009) Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphigidae) and Its Natural Host Nicotiana attenuata. VIII. An Unbiased GCxGC-ToFMS Analysis of the Plant's Elicited Volatile Emissions. Plant Physiology 149, 1408–1423.
- Geer, L. Y., Marchler-Bauer, A., Geer, R. C. et al. (2010) The NCBI BioSystems database. Nucleic Acids Research 38, D492–D496.
- Gohlke, R. S. (1959) Time-of-flight mass spectrometry and gas-liquid partition chromatography. Analytical Chemistry 31, 535–541.
- Grafahrend-Belau, E., Weise, S., Koschützki, D. et al. (2008) MetaCrop: a detailed database of crop plant metabolism. Nucleic acids research 36(suppl 1): D954.
- Grennan, A. K. (2009) MoTo DB: A Metabolic Database for Tomato. Plant Physiology 151, 1701–1702.
- Hartman, A. L., Lough, D. M., Barupal, D. K. et al. (2009) Human gut microbiome adopts an alternative state following small bowel transplantation. Proceedings of the National Academy of Sciences USA 106, 17187–17192.
- Hill, D. W., Kelley, T. R., Langner, K. J. et al. (1984) Determination of mycotoxins by gradient high-performance liquid chromatography using an alkylphenone retention index system. Analytical Chemistry 56, 2576–2579.
- Hiller, K., Hangebrauk, J., Jager, C. et al. (2009) MetaboliteDetector: Comprehensive Analysis Tool for Targeted and Nontargeted GC/MS Based Metabolome Analysis. Analytical Chemistry 81, 3429–3439.
- Hong, Y. Y., Devaiah, S. P., Bahn, S. C. et al. (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant Journal 58, 376–387.
- Hummel, J., Selbig, J., Walther, D. et al. (2007) The Golm Metabolome Database: a database for GC-MS based metabolite profiling. In: J. Nielsen and M.C. Jewett (eds.) Topics in Current Genetics. Springer-Verlag, Berlin.
- Iijima, Y., Nakamura, Y., Ogata, Y. et al. (2008) Metabolite annotations based on the integration of mass spectral information. Plant Journal 54, 949–962.
- ILSI. International Life Sciences Institute - Crop Composition Database [Online] http://www.cropcomposition.org/ [Accessed].
- IUPAC. (2009) The IUPAC International Chemical Identifier (InChITM) [Online]. http://www.iupac.org/inchi/ Accessed on 12 January 2010].
- Jenkins, H., Hardy, N., Beckmann, M. et al. (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology 22, 1601–1606.
- Kanehisa, M. (2000) KEGG Database - Kyoto Encyclopedia of Genes and Genomes [Online]. http://www.genome.jp/kegg/. Accessed on 14 January 2010.
- Kanehisa, M., Araki, M., Goto, S. et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Research 36, D480–D484.
- Katajamaa, M., Miettinen, J. and Oresic, M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636.
- Kebarle, P. and Tang, L. (1993) From ions in solution to ions in the gas-phase - the mechanism of electrospray mass-spectrometry. Analytical Chemistry 65, A972–A986.
- Kelder, T., Pico, A. R., Hanspers, K. et al. (2009) Mining biological pathways using WikiPathways web services. PLoS One 4, e6447.
- Kempa, S., Hummel, J., Schwemmer, T. et al. (2009) An automated GCxGC-TOF-MS protocol for batch-wise extraction and alignment of mass isotopomer matrixes from differential C-13-labelling experiments: a case study for photoautotrophic-mixotrophic grown Chlamydomonas reinhardtii cells. Journal of Basic Microbiology 49, 82–91.
- Kimura, M., Kobori, C. N., Rodriguez-Amaya, D. B. et al. (2007) Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chemistry 100, 1734–1746.
- Kind, T. and Fiehn, O. (2006) Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7, 234.
- Kind, T. and Fiehn, O. (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8, 105.
- Kind, T., Scholz, M. and Fiehn, O. (2009a) How large is the metabolome? A critical analysis of data exchange practices in chemistry. PLoS One 4, e5440.
- Kind, T., Wohlgemuth, G., Lee, D. Y. et al. (2009b) FiehnLib: Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Analytical Chemistry 81, 10038–10048.
- Kliebenstein, D. J., Kroymann, J. and Mitchell-Olds, T. (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology 8, 264–271.
- Kono, N., Arakawa, K., Ogawa, R. et al. (2009) Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One 4, e7710.
- Kopka, J., Schauer, N., Krueger, S. et al. (2005) GMD@CSB. DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638.
- Kuhn, S., Egert, B., Neumann, S. et al. (2008) Building blocks for automated elucidation of metabolites: Machine learning methods for NMR prediction. Bmc Bioinformatics 9, 19.
- Lee D.Y. and Fiehn, O. (2008) High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 4, 7.
- Lessire, R., Cahoon, E., Chapman, K. et al. (2009) Highlights of recent progress in plant lipid research. Plant Physiology and Biochemistry 47, 443–447.
- Letunic, I., Yamada, T., Kanehisa, M. et al. (2008) iPath: interactive exploration of biochemical pathways and networks. Trends in Biochemical Science 33, 101–103.
- Lu, B. Y., Zhang, Y., Wu, X. Q. et al. (2007) Separation and determination of diversiform phytosterols in food materials using supercritical carbon dioxide extraction and ultraperformance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Analytica Chimica Acta 588, 50–63.
- Lysenko, A., Hindle, M. M., Taubert, J. et al. (2009) Data integration for plant genomics–exemplars from the integration of Arabidopsis thaliana databases. Brief Bioinformatics 10, 676–693.
- Matsuda, F., Shinbo, Y., Oikawa, A. et al. (2009) Assessment of metabolome annotation quality: a method for evaluating the false discovery rate of elemental composition searches. PLoS One 4, e7490.
- May, P., Wienkoop, S., Kempa, S. et al. (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179, 157–166.
- May, P., Christian, J. O., Kempa, S. et al. (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10, 209.
- Merico, D., Gfeller, D. and Bader, G. D. (2009) How to visually interpret biological data using networks. Nature Biotechnology 27, 921–924.
- Mihaleva, V. V., Verhoeven, H. A., De Vos, R. C. H. et al. (2009) Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index. Bioinformatics 25, 787–794.
- Mithani, A., Preston, G. M. and Hein, J. (2009) Rahnuma: hypergraph-based tool for metabolic pathway prediction and network comparison. Bioinformatics 25, 1831–1832.
- Moco, S., Bino, R. J., Vorst, O. et al. (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology 141, 1205–1218.
- Mu, F., Williams, R. F., Unkefer, C. J. et al. (2007) Carbon-fate maps for metabolic reactions. Bioinformatics 23, 3193–3199.
- Nakabayashi, R., Kusano, M., Kobayashi, M. et al. (2009) Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70, 1017–1029.
- Nakamura, Y., Asahi, H., Altaf-Ul-Amin, M. et al. (2009) KNApSAcK: A Comprehensive Species-Metabolite Relationship Database [Online]. Available: http://kanaya.aist-nara.ac.jp/KNApSAcK/. Accessed on January 08 2010.
- NCBI. NCBI taxonomy browser [Online]. http://www.ncbi.nlm.nih.gov/Taxonomy/. Accessed on 14 January 2010.
- NCBI. (2004) The PubChem project [Online]. http://pubchem.ncbi.nlm.nih.gov/. Accessed on 14 January 2010.
- Nielsen, K. F. and Smedsgaard, J. (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. Journal of Chromatography A 1002, 111–136.
- Nikolau, B. Arabidopsis metabolomics consortium [Online]. www.plantmetabolomics.org/. [Accessed].
- Okuda, S., Yamada, T., Hamajima, M. et al. (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Research 36, W423–W426.
- Ott, M. A. and Vriend, G. (2006) Correcting ligands, metabolites, and pathways. BMC Bioinformatics 7, 517.
- Pang, G. F., Fan, C. L., Liu, Y. M. et al. (2006) Determination of residues of 446 pesticides in fruits and vegetables by three-cartridge solid-phase extraction-gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Journal of Aoac International 89, 740–771.
- Parker, D., Beckmann, M., Zubair, H. et al. (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant Journal 59, 723–737.
- Pavlopoulos, G. A., O'donoghue, S. I., Satagopam, V. P. et al. (2008a) Arena3D: visualization of biological networks in 3D. BMC Systems Biology 2, 104.
- Pavlopoulos, G. A. G., Wegener, A. L. A. and Schneider, R. R. (2008b) A survey of visualization tools for biological network analysis. BioData Mining 1, 12.
- Pesek, J. J., Matyska, M. T., Loo, J. A. et al. (2009) Analysis of hydrophilic metabolites in physiological fluids by HPLC-MS using a silica hydride-based stationary phase. Journal of Separation Science 32, 2200–2208.
- Pico, A. R., Kelder, T., Van Iersel, M. P. et al. (2008) WikiPathways: pathway editing for the people. PLoS Biol 6, e184.
- Pitkanen, E., Jouhten, P. and Rousu, J. (2009) Inferring branching pathways in genome-scale metabolic networks. BMC Systems Biology 3, 103.
- Poolman, M. G., Miguet, L., Sweetlove, L. J. et al. (2009) A Genome-Scale Metabolic Model of Arabidopsis and Some of Its Properties. Plant Physiology 151, 1570–1581.
- Ridley, W., Shillito, R., Coats, I. et al. (2004) Development of the International Life Sciences Institute crop composition database. Journal of Food Composition and Analysis 17, 423–438.
- Roessner, U., Luedemann, A., Brust, D. et al. (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29.
- Rundlett, K. L. and Armstrong, D. W. (1996) Mechanism of signal suppression by an ionic surfactants in capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry 68, 3493–3497.
- Sakurai, N. (2009) Kazusa OMICS Database [Online]. http://webs2.kazusa.or.jp/komics/. Accessed on 12 January 2009.
- Sansone, S. A., Fan, T., Goodacre, R. et al. (2007) The metabolomics standards initiative. Nature Biotechnology 25, 846–848.
- Schmidt, A., Karas, M. and Dulcks, T. (2003) Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: When does ESI turn into nano-ESI? Journal of the American Society for Mass Spectrometry 14, 492–500.
- Schnoes, A. M., Brown, S. D., Dodevski, I. et al. (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biology 5, e1000605.
- Shannon, P., Markiel, A., Ozier, O. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504.
- Shinoda, K., Sugimoto, M., Tomita, M. et al. (2008) Informatics for peptide retention properties in proteomic LC-MS. Proteomics 8, 787–798.
- Song, J., Fan, L. H. and Beaudry, R. M. (1998) Application of solid phase microextraction and gas chromatography time-of-flight mass spectrometry for rapid analysis of flavor volatiles in tomato and strawberry fruits. Journal of Agricultural and Food Chemistry 46, 3721–3726.
- Stein, S. E. (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry 10, 770–781.
- Stein, S. E. and Scott, D. R. (1994) Optimization and testing of mass-spectral library search algorithms for compound identification. Journal of the American Society for Mass Spectrometry 5, 859–866.
- Steinbeck, C. and Kuhn, S. (2004) NMRShiftDB – compound identification and structure elucidation support through a free community-built web database. Phytochemistry 65, 2711–2717.
- Strege, M. A. (1998) Hydrophilic interaction chromatography electrospray mass spectrometry analysis of polar compounds for natural product drug discovery. Analytical Chemistry 70, 2439–2445.
- Strehmel, N., Hummel, J., Erban, A. et al. (2008) Retention index thresholds for compound matching in GC-MS metabolite profiling. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 871, 182–190.
- Stromback, L. and Lambrix, P. (2005) Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX. Bioinformatics 21, 4401–4407.
- Suderman, M. and Hallett, M. (2007) Tools for visually exploring biological networks. Bioinformatics 23, 2651–2659.
- Sumner, L. W., Amberg, A., Barrett, D. et al. (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221.
- Theocharidis, A., Van Dongen, S., Enright, A. J. et al. (2009) Network visualization and analysis of gene expression data using BioLayout Express(3D). Nature Protocols 4, 1535–1550.
- Thielen, B., Heinen, S. and Schomburg, D. (2009) mSpecs: a software tool for the administration and editing of mass spectral libraries in the field of metabolomics. Bmc Bioinformatics 10, 6.
- Thimm, O., Blasing, O., Gibon, Y. et al. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37, 914–939.
- Turgeon, R. (1996) Phloem loading and plasmodesmata. Trends in Plant Science 1, 418–423.
- Urbanczyk-Wochniak, E. and Sumner, L. W. (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 23, 1418–1423.
- Van Iersel, M. P., Kelder, T., Pico, A. R. et al. (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9, 399.
- Walther, D., Hummel, J., Kopka, J. et al. (2010) Golm Metabolome Database (GMD) [Online]. Available: http://gmd.mpimp-golm.mpg.de/Default.aspx [Accessed].
- Wang, Y., Xiao, J., Suzek, T. O. et al. (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Research 37, W623–W633.
- Wehrli, A. and Kovats, E. (1959) Gas-chromatographische charakterisierung organischer verbindungen .3. Berechnung der retentionsindices aliphatischer, alicyclischer und aromatischer verbindungen. Helvetica Chimica Acta 42, 2709–2736.
- Welti, R., Roth, M. R., Deng, Y. et al. (2007) Lipidomics: ESI-MS /MS-Based Profiling to Determine the Function of Genes Involved in Metabolism of Complex Lipids. Springer.
- Welti, R., Shah, J., Levine, S. et al. (2006) High-Throughput Lipid Profiling to Identify and Characterize Genes Involved in Lipid Metabolism, Signaling, and Stress Response. CRC Press-Taylor & Francis Group.
- Welti, R. and Wang, X. M. (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Current Opinion in Plant Biology 7, 337–344.
- Wheeler, D. L., Barrett, T., Benson, D. A. et al. (2007) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 35, D5–D12.
- Whitaker, J. W., Letunic, I., Mcconkey, G. A. et al. (2009) metaTIGER: a metabolic evolution resource. Nucleic Acids Research 37, D531–D538.
- Williams, A. J. (2008) Internet-based tools for communication and collaboration in chemistry. Drug Discovery Today 13, 502–506.
- Wohlgemuth, G. and Fiehn, O. (2009a) BinBase Search [Online]. http://eros.fiehnlab.ucdavis.edu:8080/binbase-compound/. Accessed on 12 January 2009.
- Wohlgemuth, G. and Fiehn, O. (2009b) Binbase Tools [Online]. http://code.google.com/p/binbase-tools/. Accessed on 12 January 2009].
- Yamanishi, Y., Hattori, M., Kotera, M. et al. (2009) E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs. Bioinformatics 25, i179–i186.
- Zhang, J. D. and Wiemann, S. (2009) KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 25, 1470–1471.
- Zhang, P. F., Foerster, H., Tissier, C. P. et al. (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiology 138, 27–37.
- Zhang, W. G., Wu, P. and Li, C. J. (2006) Study of automated mass spectral deconvolution and identification system (AMDIS) in pesticide residue analysis. Rapid Communications in Mass Spectrometry 20, 1563–1568.
- Zhang, Y. Y., Zhu, H. Y., Zhang, Q. et al. (2009) Phospholipase D alpha 1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis. Plant Cell 21, 2357–2377.
- Zhou, Y., Zhou, B., Chen, K. et al. (2007) Large-Scale Annotation of Small-Molecule Libraries Using Public Databases. Journal of Chemical Information and Modeling 47, 1386–1394.
Citing Literature
Browse other articles of this reference work: