8 Factors Influencing the Ripening and Quality of Fleshy Fruits
Cornelius S. Barry
Department of Horticulture, Michigan State University, East Lansing, MI, USA
Search for more papers by this authorCornelius S. Barry
Department of Horticulture, Michigan State University, East Lansing, MI, USA
Search for more papers by this authorAbstract
Fleshy fruits have a dual function in the reproductive strategies of plants. Initially, fleshy fruits protect the developing seeds from predation and then, once the seeds are mature, they facilitate dispersal of the enclosed seeds. Plants have evolved numerous chemical and physical barriers that discourage seed predation from fleshy fruits. Similarly, the ripening of fleshy fruits occurs through a range of coordinated biochemical processes that convert an unpalatable unripe fruit into a fruit that is nutritious and desirable to seed-dispersing fauna. The biochemical changes that occur at the onset of ripening are species specific but several general processes occur that are common to many fruits, suggesting that the mechanisms that control ripening may be evolutionarily conserved. For example, fruit ripening is often accompanied by the accumulation of brightly coloured pigments, the synthesis of aroma volatiles and the conversion of complex carbohydrates into sugars. These changes facilitate seed dispersal strategies. The genetic and biochemical pathways that lead to fruit ripening are not fully understood. However, significant progress has been made in identifying some of the components of these pathways. This review highlights recent research that has contributed to the understanding of the ripening process at the molecular level and outlines the development of genomics-based resources for fleshy fruit-bearing species.
References
- Aharoni, A., Giri, A.P., Verstappen, F.W.A., Bertea, C.M., Sevenier, R., Sun, Z.K., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16, 3110–3131.
- Aharoni, A., Keizer, L.C.P., Bouwmeester, H.J., Sun, Z., Alvarez-Huerta, M., Verhoeven, H.A., Blaas, J., van-Houwelingen, A.M.M.L., De-Vos, R.C.H., van-der-Voet, H., Jansen, R.C., Guis, M., Mol, J., Davis, R.W., Schena, M., van-Tunen, A.J. and O'Connell, A.P. (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12, 647–661.
- Aharoni, A., Keizer, L.C.P., Van Den Broeck, H.C., Blanco-Portales, R., Munoz-Blanco, J., Bois, G., Smit, P., De Vos, R.C.H. and O'Connell, A.P. (2002) Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiology 129, 1019–1031.
- Alba, R., Cordonnier-Pratt, M.M. and Pratt, L.H. (2000) Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiology 123, 363–370.
- Alba, R., Fei, Z., Payton, P., Liu, Y., Moore, S.L., Debbie, P., Cohn, J., D'Ascenzo, M., Gordon, J.S., Rose, J.K.C., Martin, G., Tanksley, S.D., Bouzayen, M., Jahn, M.M. and Giovannoni, J. (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant Journal 39, 697–714.
- Alba, R., Payton, P., Fei, Z.J., McQuinn, R., Debbie, P., Martin, G.B., Tanksley, S.D. and Giovannoni, J.J. (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17, 2954–2965.
- Ayub, R., Guis, M., BenAmor, M., Gillot, L., Roustan, J.P., Latche, A., Bouzayen, M. and Pech, J.C. (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechnology 14, 862–866.
- Bargel, H. and Neinhuis, C. (2005) Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany 56, 1049–1060.
- Barry, C.S. and Giovannoni, J.J. (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America 103, 7923–7928.
- Barry, C.S., McQuinn, R.P., Chung, M.-Y., Besuden, A. and Giovannoni, J.J. (2008) Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiology 147, 179–187.
- Barry, C.S., McQuinn, R.P., Thompson, A.J., Seymour, G.B., Grierson, D. and Giovannoni, J.J. (2005) Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiology 138, 267–275.
- Bauer, S., Schulte, E. and Thier, H.P. (2004) Composition of the surface wax from tomatoes – I. Identification of the components by GC/MS. European Food Research and Technology 219, 223–228.
- Benvenuto, G., Formiggini, F., Laflamme, P., Malakhov, M. and Bowler, C. (2002) The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Current Biology 12, 1529–1534.
- Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M.J., Benvenuto, G., Bowler, C., Genschik, P. and Hellmann, H. (2006) CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant Journal 47, 591–603.
- Bogs, J., Jaffe, F.W., Takos, A.M., Walker, A.R. and Robinson, S.P. (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiology 143, 1347–1361.
- Boylan, M.T. and Quail, P.H. (1989) Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1, 765–773.
- Brummell, D.A. (2006) Cell wall disassembly in ripening fruit. Functional Plant Biology 33, 103–119.
- Brummell, D.A. and Harpster, M.H. (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology 47, 311–340.
- Brummell, D.A., Harpster, M.H., Civello, P.M., Palys, J.M., Bennett, A.B. and Dunsmuir, P. (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11, 2203–2216.
- Buttery, R.G. and Ling, L.C. (1993) Volatile components of tomato fruit and plant- parts – relationship and biogenesis. ACS Symposium Series 525, 23–34.
- Cantu, D., Vicente, A.R., Greve, L.C., Dewey, F.M., Bennett, A.B., Labavitch, J.M. and Powell, A.L.T. (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proceedings of the National Academy of Sciences of the United States of America 105, 859–864.
- Chagne, D., Carlisle, C.M., Blond, C., Volz, R.K., Whitworth, C.J., Oraguzie, N.C., Crowhurst, R.N., Allan, A.C., Espley, R.V., Hellens, R.P. and Gardiner, S.E. (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8, 212.
- Chen, G.P., Hackett, R., Walker, D., Taylor, A., Lin, Z.F. and Grierson, D. (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology 136, 2641–2651.
- Chervin, C., El-Kereamy, A., Roustan, J.P., Latche, A., Lamon, J. and Bouzayen, M. (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Science 167, 1301–1305.
- Cipollini, M.L. and Levey, D.J. (1997) Why are some fruits toxic? Glycoalkaloids in Solanum and fruit choice by vertebrates. Ecology 78, 782–798.
- Cohen, S. (1998) A Guide to the Polyamines. Oxford University Press, New York.
- Cookson, P.J., Kiano, J.W., Shipton, C.A., Fraser, P.D., Romer, S., Schuch, W., Bramley, P.M. and Pyke, K.A. (2003) Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217, 896–903.
- da Silva, F.G., Iandolino, A., Al-Kayal, F., Bohlmann, M.C., Cushman, M.A., Lim, H., Ergul, A., Figueroa, R., Kabuloglu, E.K., Osborne, C., Rowe, J., Tattersall, E., Leslie, A., Xu, J., Baek, J., Cramer, G.R., Cushman, J.C. and Cook, D.R. (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple vitis species and development of a compendium of gene expression during berry development. Plant Physiology 139, 574–597.
- Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M.J. and Bowler, C. (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology 23, 890–895.
- De Vos, R.C.H., Moco, S., Lommen, A., Keurentjes, J.J.B., Bino, R.J. and Hall, R.D. (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols 2, 778–791.
- Deluc, L.G., Grimplet, J., Wheatley, M.D., Tillett, R.L., Quilici, D.R., Osborne, C., Schooley, D.A., Schlauch, K.A., Cushman, J.C. and Cramer, G.R. (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. Bmc Genomics 8, 429.
- Dharmasiri, N., Dharmasiri, S. and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445.
- Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14, 1935–1940.
- Egea-Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO Journal 18, 5370–5379.
- El-Kereamy, A., Chervin, C., Roustan, J.P., Cheynier, V., Souquet, J.M., Moutounet, M., Raynal, J., Ford, C., Latche, A., Pech, J.C. and Bouzayen, M. (2003) Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia Plantarum 119, 175–182.
- Eriksson, E.M., Bovy, A., Manning, K., Harrison, L., Andrews, J., De Silva, J., Tucker, G.A. and Seymour, G.B. (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiology 136, 4184–4197.
- Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S. and Allan, A.C. (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal 49, 414–427.
- Fei, Z.J., Tang, X., Alba, R.M., White, J.A., Ronning, C.M., Martin, G.B., Tanksley, S.D. and Giovannoni, J.J. (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant Journal 40, 47–59.
- Fernie, A.R., Tadmor, Y. and Zamir, D. (2006) Natural genetic variation for improving crop quality. Current Opinion in Plant Biology 9, 196–202.
- Flores, F., El Yahyaoui, F., de Billerbeck, G., Romojaro, F., Latche, A., Bouzayen, M., Pech, J.C. and Ambid, C. (2002) Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons. Journal of Experimental Botany 53, 201–206.
- Foley, W.J. and Moore, B.D. (2005) Plant secondary metabolites and vertebrate herbivores – from physiological regulation to ecosystem function. Current Opinion in Plant Biology 8, 430–435.
- Fray, R.G. and Grierson, D. (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology 22, 589–602.
- Fu, D.Q., Zhu, B.Z., Zhu, H.L., Jiang, W.B. and Luo, Y.B. (2005) Virus-induced gene silencing in tomato fruit. Plant Journal 43, 299–308.
- Fujii, H., Shimada, T., Sugiyama, A., Nishikawa, F., Endo, T., Nakano, M., Ikoma, Y., Shimizu, T. and Omura, M. (2007) Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Science 173, 340–348.
- Galpaz, N., Wang, Q., Menda, N., Zamir, D. and Hirschberg, J. (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant Journal 53, 717–730.
- Galston, A.W. and Sawhney, R.K. (1990) Polyamines in plant physiology. Plant Physiology 94, 406–410.
- Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A., Tavazza, M. and Giuliano, G. (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology 137, 199–208.
- Giovannoni, J. (2001) Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology 52, 725–749.
- Giovannoni, J.-J. (2004) Genetic regulation of fruit development and ripening. Plant Cell 16, S170–S180.
- Giovannoni, J.J., Dellapenna, D., Bennett, A.B. and Fischer, R.L. (1989) Expression of a chimeric polygalacturonase gene in transgenic rin ripening inhibitor tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1, 53–64.
- Gleave, A.P., Ampomah-Dwamena, C., Berthold, S., Dejnoprat, S., Karunairetnam, S., Nain, B., Wang, Y.Y., Crowhurst, R.N. and MacDiarmid, R.M. (2008) Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genetics & Genomes 4, 343–358.
- Goff, S.A. and Klee, H.J. (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311, 815–819.
- Goldschmidt, E.E., Huberman, M. and Goren, R. (1993) Probing the role of endogenous ethylene in the degreening of citrus-fruit with ethylene antagonists. Plant Growth Regulation 12, 325–329.
- Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509–1517.
- Guilfoyle, T. (2007) Plant biology – sticking with auxin. Nature 446, 621–622.
- Guillon, F., Philippe, S., Bouchet, B., Devaux, M.-F., Frasse, P., Jones, B., Bouzayen, M. and Lahaye, M. (2008) Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture. Journal of Experimental Botany 59, 273–288.
- Guis, M., Botondi, R., BenAmor, M., Ayub, R., Bouzayen, M., Pech, J.C. and Latche, A. (1997) Ripening-associated biochemical traits of Cantaloupe Charentais melons expressing an antisense ACC oxidase transgene. Journal of the American Society for Horticultural Science 122, 748–751.
- Hileman, L.C., Sundstrom, J.F., Litt, A., Chen, M.Q., Shumba, T. and Irish, V.F. (2006) Molecular and phylogenetic analyses of the MADS-Box gene family in tomato. Molecular Biology and Evolution 23, 2245–2258.
- Hirschberg, J. (2001) Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology 4, 210–218.
- Hobson, G.E., Nichols, R., Davies, J.N. and Atkey, P.T. (1984) The inhibition of tomato Lycopersicon-Esculentum fruit ripening by silver. Journal of Plant Physiology 116, 21–30.
- Hoffmann, T., Kalinowski, G. and Schwab, W. (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant Journal 48, 818–826.
- Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.
- Hovav, R., Chehanovsky, N., Moy, M., Jetter, R. and Schaffer, A.A. (2007) The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit. Plant Journal 52, 627–639.
- Isaacson, T., Ronen, G., Zamir, D. and Hirschberg, J. (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14, 333–342.
- Itai, A. and Fujita, N. (2008) Identification of climacteric and nonclimacteric phenotypes of Asian pear cultivars by CAPS analysis of 1-aminocyclopropane-1-carboxylate synthase genes. Hortscience 43, 119–121.
- Itai, A., Kawata, T., Tanabe, K., Tamura, F., Uchiyama, M., Tomomitsu, M. and Shiraiwa, N. (1999) Identification of 1-aminocyclopropane-1-carboxylc acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifolia Nakai). Molecular and General Genetics 261, 42–49.
- Itaya, A., Bundschuh, R., Archual, A.J., Joung, J.-G., Fei, Z., Dai, X., Zhao, P.X., Tang, Y., Nelson, R.S. and Ding, B. (2008) Small RNAs in tomato fruit and leaf development. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms 1779, 99–107.
- Jacob-Wilk, D., Holland, D., Goldschmidt, E.E., Riov, J. and Eyal, Y. (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant Journal 20, 653–661.
- Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quetier, F. and Wincker, P. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–465.
- Jarvis, M.C., Briggs, S.P.H. and Knox, J.P. (2003) Intercellular adhesion and cell separation in plants. Plant Cell and Environment 26, 977–989.
- Jenkins, J.A. and Mackinney, G. (1955) Carotenoids of the apricot tomato and its hybrids with yellow and tangerine. Genetics 40, 715–720.
- Jones, B., Frasse, P., Olmos, E., Zegzouti, H., Li, Z.G., Latche, A., Pech, J.C. and Bouzayen, M. (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant Journal 32, 603–613.
- Katz, E., Lagunes, P.-M., Riov, J., Weiss, D. and Goldschmidt, E.E. (2004) Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta 219, 243–252.
- Kepinski, S. and Leyser, O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451.
- Kevany, B.M., Tieman, D.M., Taylor, M.G., Dal Cin, V. and Klee, H.J. (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant Journal 51, 458–467.
- Klee, H.J., Hayford, M.B., Kretzmer, K.A., Barry, G.F. and Kishore, G.M. (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3, 1187–1194.
- Lanahan, M.B., Yen, H.-C., Giovannoni, J.J. and Klee, H.J. (1994) The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6, 521–530.
- Larsen, R.E. and Pollack, B.L. (1951) Green stripe (gs) – a new characteristic. Report of the Tomato Genetics Cooperative 1, 9.
- Last, R.L., Jones, A.D. and Shachar-Hill, Y. (2007) Towards the plant metabolome and beyond. Nature Reviews Molecular Cell Biology 8, 167–174.
- Lemaire-Chamley, M., Petit, J., Garcia, V., Just, D., Baldet, P., Germain, V., Fagard, M., Mouassite, M., Cheniclet, C. and Rothan, C. (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiology 139, 750–769.
- Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A., Yosef, E., Zamir, D. and Tadmor, Y. (2005) Not just colors – carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends in Food Science & Technology 16, 407–415.
- Lieberman, M., Segev, O., Gilboa, N., Lalazar, A. and Levin, I. (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theoretical and Applied Genetics 108, 1574–1581.
- Liljegren, S.J., Roeder, A.H.K., Kempin, S.A., Gremski, K., Ostergaard, L., Guimil, S., Reyes, D.K. and Yanofsky, M.F. (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853.
- Lippman, Z.B., Semel, Y. and Zamir, D. (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Current Opinion in Genetics & Development 17, 545–552.
- Lisso, J., Altmann, T. and Mussig, C. (2006) Metabolic changes in fruits of the tomato d(x) mutant. Phytochemistry 67, 2232–2238.
- Litt, A. and Irish, V.F. (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165, 821–833.
- Liu, Y.S., Roof, S., Ye, Z.B., Barry, C., van Tuinen, A., Vrebalov, J., Bowler, C. and Giovannoni, J. (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America 101, 9897–9902.
- Mack, A.L. (2000) Did fleshy fruit pulp evolve as a defence against seed loss rather than as a dispersal mechanism? Journal of Biosciences 25, 93–97.
- Malcomber, S.T. and Kellogg, E.A. (2005) SEPALLATA gene diversification: brave new whorls. Trends in Plant Science 10, 427–435.
- Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J. and Seymour, G.B. (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics 38, 948–952.
- Matsui, K., Ishii, M., Sasaki, M., Rabinowitch, H.D. and Ben-Oliel, G. (2007) Identification of an allele attributable to formation of cucumber-like flavor in wild tomato species (Solanum pennellii) that was inactivated during domestication. Journal of Agricultural and Food Chemistry 55, 4080–4086.
- McMurchie, E.J., McGlasson, W.B. and Eaks, I.L. (1972) Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237, 235–236.
- Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K. and Mattoo, A.K. (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotechnology 20, 613–618.
- Milton, K. (2004) Ferment in the family tree: does a frugivorous dietary heritage influence contemporary patterns of human ethanol use? Integrative and Comparative Biology 44, 304–314.
- Ming, R., Hou, S.B., Feng, Y., Yu, Q.Y., Dionne-Laporte, A., Saw, J.H., Senin, P., Wang, W., Ly, B.V., Lewis, K.L.T., Salzberg, S.L., Feng, L., Jones, M.R., Skelton, R.L., Murray, J.E., Chen, C.X., Qian, W.B., Shen, J.G., Du, P., Eustice, M., Tong, E., Tang, H.B., Lyons, E., Paull, R.E., Michael, T.P., Wall, K., Rice, D.W., Albert, H., Wang, M.L., Zhu, Y.J., Schatz, M., Nagarajan, N., Acob, R.A., Guan, P.Z., Blas, A., Wai, C.M., Ackerman, C.M., Ren, Y., Liu, C., Wang, J.M., Wang, J.P., Na, J.K., Shakirov, E.V., Haas, B., Thimmapuram, J., Nelson, D., Wang, X.Y., Bowers, J.E., Gschwend, A.R., Delcher, A.L., Singh, R., Suzuki, J.Y., Tripathi, S., Neupane, K., Wei, H.R., Irikura, B., Paidi, M., Jiang, N., Zhang, W.L., Presting, G., Windsor, A., Navajas-Perez, R., Torres, M.J., Feltus, F.A., Porter, B., Li, Y.J., Burroughs, A.M., Luo, M.C., Liu, L., Christopher, D.A., Mount, S.M., Moore, P.H., Sugimura, T., Jiang, J.M., Schuler, M.A., Friedman, V., Mitchell-Olds, T., Shippen, D.E., dePamphilis, C.W., Palmer, J.D., Freeling, M., Paterson, A.H., Gonsalves, D., Wang, L. and Alam, M. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–997.
- Moco, S., Bino, R.J., Vorst, O., Verhoeven, H.A., de Groot, J., van Beek, T.A., Vervoort, J. and de Vos, C.H.R. (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology 141, 1205–1218.
- Moco, S., Capanoglu, E., Tikunov, Y., Bino, R.J., Boyacioglu, D., Hall, R.D., Vervoort, J. and De Vos, R.C.H. (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany 58, 4131–4146.
- Mustilli, A.-C., Fenzi, F., Ciliento, R., Alfano, F. and Bowler, C. (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11, 145–157.
- Newcomb, R.D., Crowhurst, R.N., Gleave, A.P., Rikkerink, E.H.A., Allan, A.C., Beuning, L.L., Bowen, J.H., Gera, E., Jamieson, K.R., Janssen, B.J., Laing, W.A., McArtney, S., Nain, B., Ross, G.S., Snowden, K.C., Souleyre, E.J.F., Walton, E.F. and Yauk, Y.K. (2006) Analyses of expressed sequence tags from apple. Plant Physiology 141, 147–166.
- Ng, M. and Yanofsky, M.F. (2001) Function and evolution of the plant MADS-box gene family. Nature Reviews Genetics 2, 186–195.
- Oeller, P.W., Min Wong, L., Taylor, L.P., Pike, D.A. and Theologis, A. (1991) Reversible inhibition of tomato fruit senescence by antisense Rna. Science 254, 437–439.
- Orfila, C., Seymour, G.B., Willats, W.G.T., Huxham, I.M., Jarvis, M.C., Dover, C.J., Thompson, A.J. and Knox, J.P. (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1–5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiology 126, 210–221.
- Orzaez, D., Mirabel, S., Wieland, W.H. and Granell, A. (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiology 140, 3–11.
- Park, S., Sugimoto, N., Larson, M.D., Beaudry, R. and van Nocker, S. (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiology 141, 811–824.
- Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.
- Perin, C., Gomez-Jimenez, M., Hagen, L., Dogimont, C., Pech, J.-C., Latche, A., Pitrat, M. and Lelievre, J.-M. (2002) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiology 129, 300–309.
- Peters, J.L., Vantuinen, A., Adamse, P., Kendrick, R.E. and Koornneef, M. (1989) High pigment mutants of tomato exhibit high sensitivity for phytochrome action. Journal of Plant Physiology 134, 661–666.
- Petracek, P.D. and Bukovac, M.J. (1995) Rheological properties of enzymatically isolated tomato fruit cuticle. Plant Physiology 109, 675–679.
- Picton, S., Barton, S.L., Bouzayen, M., Hamilton, A.J. and Grierson, D. (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant Journal 3, 469–481.
- Pilcher, R.L.R., Moxon, S., Pakseresht, N., Moulton, V., Manning, K., Seymour, G. and Dalmay, T. (2007) Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta 226, 709–717.
- Powell, A.L.T., Kalamaki, M.S., Kurien, P.A., Gurrieri, S. and Bennett, A.B. (2003) Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety. Journal of Agricultural and Food Chemistry 51, 7450–7455.
- Pyysalo, T., Honkanen, E. and Hirvi, T. (1979) Volatiles of wild strawberries, Fragaria vesca L, compared to those of cultivated berries, Fragaria X ananassa cv Senga Sengana. Journal of Agricultural and Food Chemistry 27, 19–22.
- Resnick, J.S., Wen, C.-K., Shockey, J.A. and Chang, C. (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 7917–7922.
- Rick, C.M. and Butler, L. (1956) Cytogenetics of the tomato. Advances in Genetics Incorporating Molecular Genetic Medicine 8, 267–382.
- Ristic, R., Downey, M.O., Iland, P.G., Bindon, K., Francis, I.L., Herderich, M. and Robinson, S.P. (2007) Exclusion of sunlight from Shiraz grapes alters wine colour, tannin and sensory properties. Australian Journal of Grape and Wine Research 13, 53–65.
- Roberts, J.A., Elliott, K.A. and Gonzalez-Carranza, Z.H. (2002) Abscission, dehiscence, and other cell separation processes. Annual Review of Plant Biology 53, 131–158.
- Robinson, R.W. and Tomes, M.L. (1968) Ripening inhibitor: a gene with multiple effects on ripening. Report of the Tomato Genetics Cooperative 18, 36–37.
- Roeder, A.H.K., Ferrandiz, C. and Yanofsky, M.F. (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Current Biology 13, 1630–1635.
- Ronen, G., Cohen, M., Zamir, D. and Hirschberg, J. (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant Journal 17, 341–351.
- Ronen, G., Carmel-Goren, L., Zamir, D. and Hirschberg, J. (2000) An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences of the United States of America 97, 11102–11107.
- Saladie, M., Matas, A.J., Isaacson, T., Jenks, M.A., Goodwin, S.M., Niklas, K.J., Ren, X.L., Labavitch, J.M., Shackel, K.A., Fernie, A.R., Lytovchenko, A., O'Neill, M.A., Watkins, C.B. and Rose, J.K.C. (2007) A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiology 144, 1012–1028.
- Sanchez, F., Korine, C., Pinshow, B. and Dudley, R. (2004) The possible roles of ethanol in the relationship between plants and frugivores: first experiments with Egyptian fruit bats. Integrative and Comparative Biology 44, 290–294.
- Sanchez, F., Korine, C., Steeghs, M., Laarhoven, L.J., Cristescu, S.M., Harren, F.J.M., Dudley, R. and Pinshow, B. (2006) Ethanol and methanol as possible odor cues for egyptian fruit bats (Rousettus aegyptiacus). Journal of Chemical Ecology 32, 1289–1300.
- Schaffer, R.J., Friel, E.N., Souleyre, E.J.F., Bolitho, K., Thodey, K., Ledger, S., Bowen, J.H., Ma, J.H., Nain, B., Cohen, D., Gleave, A.P., Crowhurst, R.N., Janssen, B.J., Yao, J.L. and Newcomb, R.D. (2007) A Genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology 144, 1899–1912.
- Schauer, N. and Fernie, A.R. (2006) Plant metabolomics: towards biological function and mechanism. Trends in Plant Science 11, 508–516.
- Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D. and Fernie, A.R. (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology 24, 447–454.
- Schauer, N., Zamir, D. and Fernie, A.R. (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. Journal of Experimental Botany 56, 297–307.
- Schroeder, D.F., Gahrtz, M., Maxwell, B.B., Cook, R.K., Kan, J.M., Alonso, J.M., Ecker, J.R. and Chory, J. (2002) De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Current Biology 12, 1462–1472.
-
G.B. Seymour, J.E. Taylor and G.A. Tucker (eds) (1993) Biochemistry of Fruit Ripening. Chapman & Hall, London.
10.1007/978-94-011-1584-1 Google Scholar
- Simkin, A.J., Schwartz, S.H., Auldridge, M., Taylor, M.G. and Klee, H.J. (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant Journal 40, 882–892.
- Smith, D.L., Abbott, J.A. and Gross, K.C. (2002) Down-regulation of tomato beta-galactosidase 4 results in decreased fruit softening. Plant Physiology 129, 1755–1762.
- Solovchenko, A.E., Avertcheva, O.V. and Merzlyak, M.N. (2006) Elevated sunlight promotes ripening-associated pigment changes in apple fruit. Postharvest Biology and Technology 40, 183–189.
- Soressi, G.P. (1975) New spontaneous or chemically-induced fruit-ripening mutants. Report of the Tomato Genetics Cooperative 25, 21–22.
- Srivastava, A. and Handa, A.K. (2005) Hormonal regulation of tomato fruit development: a molecular perspective. Journal of Plant Growth Regulation 24, 67–82.
- Sunako, R., Sakuraba, W., Senda, M., Akada, S., Ishikawa, R., Niizeki, M. and Harada, T. (1999) An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiology 119, 1297–1303.
- Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B. and Thomas, M.R. (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology 140, 150–158.
- Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., Zamir, D. and Lewinsohn, E. (2002) Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. Journal of Agricultural and Food Chemistry 50, 2005–2009.
- Takos, A.M., Jaffe, F.W., Jacob, S.R., Bogs, J., Robinson, S.P. and Walker, A.R. (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142, 1216–1232.
- Tatsuki, M., Haji, T. and Yamaguchi, M. (2006) The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. Journal of Experimental Botany 57, 1281–1289.
- Tesniere, C., Pradal, M., El-Kereamy, A., Torregrosa, L., Chatelet, P., Roustan, J.P. and Chervin, C. (2004) Involvement of ethylene signalling in a non-climacteric fruit: new elements regarding the regulation of ADH expression in grapevine. Journal of Experimental Botany 55, 2235–2240.
- Tewksbury, J.J. (2002) Fruits, frugivores and the evolutionary arms race. New Phytologist 156, 137–139.
- Tewksbury, J.J. and Nabhan, G.P. (2001) Seed dispersal – directed deterrence by capsaicin in chillies. Nature 412, 403–404.
- Thompson, A.J., Tor, M., Barry, C.S., Vrebalov, J., Orfila, C., Jarvis, M.C., Giovannoni, J.J., Grierson, D. and Seymour, G.B. (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiology 120, 383–389.
- Tieman, D., Taylor, M., Schauer, N., Fernie, A.R., Hanson, A.D. and Klee, H.J. (2006a) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences of the United States of America 103, 8287–8292.
- Tieman, D.M., Taylor, M.G., Ciardi, J.A. and Klee, H.J. (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences of the United States of America 97, 5663–5668.
- Tieman, D.M., Zeigler, M., Schmelz, E.A., Taylor, M.G., Bliss, P., Kirst, M. and Klee, H.J. (2006b) Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany 57, 887–896.
- Tigchelaar, E.C., McGlasson, W.B. and Buescher, R.W. (1978) Genetic regulation of tomato fruit ripening. Hortscience 13, 508–513.
- Tigchelaar, E.C., Tomes, M.L., Kerr, E.A. and Barman, R.J. (1973) A new fruit ripening mutant, non-ripening (nor). Report of the Tomato Genetics Cooperative 23, 33.
- Trainotti, L., Bonghi, C., Ziliotto, F., Zanin, D., Rasori, A., Casadoro, G., Ramina, A. and Tonutti, P. (2006) The use of microarray mu PEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Science 170, 606–613.
- Trainotti, L., Pavanello, A. and Casadoro, G. (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? Journal of Experimental Botany 56, 2037–2046.
- Trainotti, L., Tadiello, A. and Casadoro, G. (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany 58, 3299–3308.
- Vardhini, B.V. and Rao, S.S.R. (2002) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61, 843–847.
- Villavicencio, L., Blankenship, S.M., Sanders, D.C. and Swallow, W.H. (1999) Ethylene and carbon dioxide production in detached fruit of selected pepper cultivars. Journal of the American Society for Horticultural Science 124, 402–406.
- Vogg, G., Fischer, S., Leide, J., Emmanuel, E., Jetter, R., Levy, A.A. and Riederer, M. (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. Journal of Experimental Botany 55, 1401–1410.
- Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W. and Giovannoni, J. (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296, 343–346.
- Wang, H., Jones, B., Li, Z., Frasse, P., Delalande, C., Regad, F., Chaabouni, S., Latche, A., Pech, J.-C. and Bouzayen, M. (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17, 2676–2692.
- Watkins, C.B. (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances 24, 389–409.
- Wilkinson, J.Q., Lanahan, M.B., Clark, D.G., Bleecker, A.B., Chang, C., Meyerowitz, E.M. and Klee, H.J. (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotechnology 15, 444–447.
- Wilkinson, J.Q., Lanahan, M.B., Yen, H.-C., Giovannoni, J.J. and Klee, H.J. (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270, 1807–1809.
- Wilson, L.A. and Sterling, C. (1976) Studies on cuticle of tomato fruit. 1. Fine structure of cuticle. Zeitschrift Fur Pflanzenphysiologie 77, 359–371.
- Yamane, M., Abe, D., Yasui, S., Yokotani, N., Kimata, W., Ushijima, K., Nakano, R., Kubo, Y. and Inaba, A. (2007) Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biology and Technology 44, 220–227.
- Yanagawa, Y., Sullivan, J.A., Komatsu, S., Gusmaroli, G., Suzuki, G., Yin, J.N., Ishibashi, T., Saijo, Y., Rubio, V., Kimura, S., Wang, J. and Deng, X.W. (2004) Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes & Development 18, 2172–2181.
- Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 35, 155–190.
- Yen, H.-C., Lee, S., Tanksley, S.D., Lanahan, M.B., Klee, H.J. and Giovannoni, J.J. (1995) The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiology 107, 1343–1353.
- Yen, H.C., Shelton, B.A., Howard, L.R., Lee, S., Vrebalov, J. and Giovannoni, J.J. (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theoretical and Applied Genetics 95, 1069–1079.
- Zabetakis, I. and Holden, M.A. (1997) Strawberry flavour: analysis and biosynthesis. Journal of the Science of Food and Agriculture 74, 421–434.
- Zuzunaga, M., Serrano, M., Martinez-Romero, D., Valero, D. and Riquelme, F. (2001) Comparative study of two plum (Prunus salicina Lindl.) cultivars during growth and ripening. Food Science and Technology International 7, 123–130.
Citing Literature
Browse other articles of this reference work: