2 Auxin Metabolism and Signaling
Annual Plant Reviews book series, Volume 24: Plant Hormone Signaling
Jerry D. Cohen,
William M. Gray,
Jerry D. Cohen
Department of Plant Biology, University of Minnesota, 250 BioScience Center, 1445 Gortner Avenue, St Paul, MN, 55108 USA
Search for more papers by this authorWilliam M. Gray
Department of Plant Biology, University of Minnesota, 250 BioScience Center, 1445 Gortner Avenue, St Paul, MN, 55108 USA
Search for more papers by this authorJerry D. Cohen,
William M. Gray,
Jerry D. Cohen
Department of Plant Biology, University of Minnesota, 250 BioScience Center, 1445 Gortner Avenue, St Paul, MN, 55108 USA
Search for more papers by this authorWilliam M. Gray
Department of Plant Biology, University of Minnesota, 250 BioScience Center, 1445 Gortner Avenue, St Paul, MN, 55108 USA
Search for more papers by this authorFirst published: 19 April 2018
This article was originally published in 2006 in Plant Hormone Signaling, Volume 24 (ISBN 9781405138871) of the Annual Plant Reviews book series, this volume edited by Peter Hedden and Stephen G Thomas. The article was republished in Annual Plant Reviews online in April 2018.
Abstract
The sections in this article are
- Introduction
- Auxin Metabolism
- Auxin Signaling
- Conclusions and Future Perspectives
- Acknowledgments
References
- Abel, S., Oeller, P.W. & Theologis, A. (1994). Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. USA, 91, 326–330.
- Abel, S., Nguyen, M.D. & Theologis, A. (1995). The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana . J. Mol. Biol., 251, 533–549.
- Bak, S. & Feyereisen, R. (2001). The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol., 127, 108–118.
- Bak, S., Tax, F., Feldmann, K., Galbraith, D. & Feyereisen, R. (2001). CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis . Plant Cell, 13, 101–111.
- Baldi, B., Maher, B., Slovin, J. & Cohen, J. (1991). Stable isotope labeling in vivo of D and L tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol., 95, 1203–1208.
- Bandurski, R. & Nonhebel, H. (1984). Auxins. In Advanced Plant Physiology (ed. M.B. Wilkins). Pitman, London.
-
Bandurski, R., Desrosiers, M., Jensen, P., Pawlak, M. & Schulze, A. (1992). Genetics, chemistry, and biochemical physiology in the study of hormonal homeostasis. In Progress in Plant Growth Regulation (eds C.M. Karssen, L.C. van Loon & D. Vreugdenhil). Kluwer, Dordrecht.
10.1007/978-94-011-2458-4_1 Google Scholar
- Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M., Sandberg, G. & Bellini, C. (2000). The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc. Natl. Acad. Sci. USA, 97, 14819–14824.
- Bartel, B. (1997). Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 51–66.
- Bartel, B. & Fink, G. (1995). ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science, 268, 1745–1748.
- Bialek, K. & Cohen, J. (1986). Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris L. Plant Physiol., 80, 99–104.
- Bialek, K. & Cohen, J. (1992). Amide-linked indoleacetic acid conjugates may control levels of indoleacetic acid in germinating seedlings of Phaseolus vulgaris . Plant Physiol., 100, 2002–2007.
- Bialek, K., Meudt, W. & Cohen, J. (1983). Indole-3-acetic acid (IAA) and IAA conjugates applied to bean stem sections. Plant Physiol., 73, 130–139.
- Bialek, K., Michalczuk, L. & Cohen, J. (1992). Auxin biosynthesis during germination in Phaseolus vulgaris . Plant Physiol., 100, 509–517.
- Celenza, J. (2001). Metabolism of tyrosine and tryptophan – new genes for old pathways. Curr. Opin. Plant Biol., 4, 234–240.
- Chen, J.G., Ullah, H., Young, J.C., Sussman, M.R. & Jones, A.M. (2001). ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Gene Dev., 15, 902–911.
- Cheng, Y., Dai, X. & Zhao, Y. (2004). AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis . Plant Physiol., 135, 1020–1026.
- Chou, J.-C. & Huang, Y.-B. (2005). Induction and characterization of an indole-3-acetyl-l-alanine hydrolase from Arthrobacter ilicis . J. Plant Growth Regul., 24, 11–18.
- Chou, J.-C., Kuleck, G., Cohen, J. & Mulbry, W. (1996). Partial purification of an inducible indole-3-acetyl-l-aspartate hydrolase from Enterobacter agglomerans . Plant Physiol., 112, 1281–1287.
- Chou, J.-C., Mulbry, W. & Cohen, J. (1998). The gene for indole-3-acetyl-l-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence and expression in Escherichia coli . Mol. Gen. Genet., 259, 172–178.
- Chou, J.-C., Welch, W. & Cohen, J. (2004). His-404 and His-405 are essential for enzyme catalytic activities of a bacterial indole-3-acetyl-l-aspartic acid hydrolase. Plant Cell Physiol., 45, 1335–1341.
- Chuang, H.W., Zhang, W. & Gray, W.M. (2004). Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCF(TIR1) ubiquitin ligase. Plant Cell, 16, 1883–1897.
- Cohen, J. (1996). In vitro tomato fruit cultures demonstrate a role for indole-3-acetic acid in regulating fruit ripening. J. Am. Soc. Hort. Sci., 121, 520–524.
- Cohen, J. & Bandurski, R. (1982). Chemistry and physiology of the bound auxins. Annu. Rev. Plant Physiol., 33, 403–430.
-
Cohen, J., Slovin, J., Bialek, K., Chen, K.-H. & Derbyshire, M. (1988). Mass spectrometry, genetics and biochemistry: understanding the metabolism of indole-3-acetic acid. In Biomechanisms Regulating Growth and Development (eds. G. Steffens & T. Rumsey). Kluwer, Dordrecht.
10.1007/978-94-009-1395-0_15 Google Scholar
- Cohen, J., Ilic, N., Taylor, R., Dunlap, J. & Slovin, J. (1995). Auxin localization and metabolism during fruit growth and ripening in cantaloupe. In Proceedings Cucurbitaceae '94 (eds. G. Lester & J. Dunlap). Edinburg, Gateway, TX.
- Cohen, J., Slovin, J. & Hendrickson, A. (2003). Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci., 8, 197–199.
- Cooke, T., Poli, D. & Cohen, J. (2004). Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian–Early Devonian radiation of land plants? In The Evolution of Plant Physiology: From Whole Plants to Ecosystems (eds. A. Emsley & I. Poole). Elsevier, Amsterdam.
- Cooney, T. & Nonhebel, H. (1991). Biosynthesis of indole-3-acetic acid in tomato shoots: measurement, mass-spectral identification and incorporation of 2H from 2H2O into indole-3-acetic acid, d- and l-tryptophan, indole-3-pyruvic acid and tryptamine. Planta, 184, 368–376.
- Davies, R., Goetz, D., Lasswell, J., Anderson, M. & Bartel, B. (1999). IAR3 encodes an auxin conjugate hydrolase from Arabidopsis . Plant Cell, 11, 365–376.
- Del Pozo, J.C. & Estelle, M. (1999). The Arabidopsis cullin AtCUL1 is modified by the ubiquitin-related protein RUB1. Proc. Natl. Acad. Sci. USA, 96, 15342–15347.
- Deshaies, R.J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol., 15, 435–467.
- Dharmasiri, N., Dharmasiri, S., Jones, A.M. & Estelle, M. (2003). Auxin action in a cell-free system. Curr Biol., 13, 1418–1422.
- Dharmasiri, N., Dharmasiri, S. & Estelle, M. (2005a). The F-box protein TIR1 is an auxin receptor. Nature, 435, 441–445.
- Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jurgens, G. & Estelle, M. (2005b). Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell, 9, 109–119.
- Dharmasiri, S., Dharmasiri, N., Hellmann, H. & Estelle, M. (2003). The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis . EMBO J., 22, 1762–1770.
- Domagalski, W., Schultze, A. & Bandurski, R. (1987). Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus sp.). Plant Physiol., 84, 1107–1113.
- Dunlap, J., Slovin, J. & Cohen, J. (1996). Indole-3-acetic acid, ethylene, and abscisic acid metabolism in developing muskmelon (Cucumis melo L.) fruit. Plant Growth Regul., 19, 45–54.
- Epstein, E., Cohen, J. & Slovin, J. (2002). The biosynthetic pathway for indole-3-acetic acid changes during tomato fruit development. Plant Growth Regul., 38, 15–20.
- Feng, S., Shen, Y., Sullivan, J.A., Rubio, V., Xiong, Y., Sun, T.P. & Deng, X.W. (2004). Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein Degradation. Plant Cell., 16, 1870–1882.
- Fukaki, H., Tameda, S., Masuda, H. & Tasaka, M. (2002). Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis . Plant J., 29, 153–168.
- Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M. & Vierstra, R.D. (2002). The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis . Proc. Natl. Acad. Sci. USA, 99, 11519–11524.
- Gierl, A. & Frey, M. (2001). Evolution of benzoxazinone biosynthesis and indole production in maize. Planta, 213, 493–498.
- Glawischnig, E., Tomas, A., Eisenreich, W., Spiteller, P., Bacher, A. & Gierl, A. (2000). Auxin biosynthesis in maize kernels. Plant Physiol., 123, 1109–1120.
- Gray, W.M., Del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H. & Estelle, M. (1999). Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana . Gene Dev., 13, 1678–1691.
- Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. (2001). Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature, 414, 271–276.
- Gray, W.M., Hellmann, H., Dharmasiri, S. & Estelle, M. (2002). Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell, 14, 2137–2144.
- Gray, W.M., Muskett, P.R., Chuang, H.W. & Parker, J.E. (2003). Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell, 15, 1310–1319.
- Hager, A. (2003). Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J. Plant Res., 116, 483–505.
- Hagen, G. & Guilfoyle, T. (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol., 49, 373–385.
- Hall, P. (1980). Indole-3-acetyl-myo-inositol from kernels of Oryza sativa . Phytochemistry, 19, 2121–2122.
- Hamann, T., Benkova, E., Baurle, I., Kientz, M. & Jurgens, G. (2002). The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Gene. Dev., 16, 1610–1615.
- Hardtke, C.S. & Berleth, T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J., 17, 1405–1411.
- Hardtke, C.S., Ckurshumova, W., Vidaurre, D.P., Singh, S.A., Stamatiou, G., Tiwari, S.B., Hagen, G., Guilfoyle, T.J. & Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development, 131, 1089–1100.
- Harper, R.M., Stowe-Evans, E.L., Luesse, D.R., Muto, H., Tatematsu, K., Watahiki, M.K., Yamamoto, K. & Liscum, E. (2000). The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 12, 757–770.
- Hellmann, H., Hobbie, L., Chapman, A., Dharmasiri, S., Dharmasiri, N., Del Pozo, C., Reinhardt, D. & Estelle, M. (2003). Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J., 22, 3314–3325.
- Hendrickson, A., Ludwig-Mueller, J. & Cohen, J. (2004). Tryptophan-dependent indole-3-acetic acid biosynthesis in the endosperm of maize. International Plant Growth Substances Association Conference. Canberra, Australia.
- Hull, A., Vij, R. & Celenza, J. (2000). Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA, 97, 2379–2384.
- Ilic, N. & Cohen, J. (2004). Synthesis of [13C]-isotopomers of indole and tryptophan for use in the analysis of indole-3-acetic acid biosynthesis. J. Label. Compd Radiopharm., 47, 635–646.
- Ilic, N., Normanly, J. & Cohen, J. (1996). Quantification of free plus conjugated indole-3-acetic acid in Arabidopsis requires correction for the non-enzymatic conversion of indolic nitriles. Plant Physiol., 111, 781–788.
- Ilic, N., Östin, A. & Cohen, J. (1999). Differential inhibition of IAA and tryptophan biosynthesis by indole analogues I. Tryptophan dependent IAA biosynthesis. Plant Growth Regul., 27, 57–62.
- Iyer, M., Slovin, J., Epstein, E. & Cohen, J. (2005). Transgenic tomato plants with a modified ability to synthesize indole-3-acetyl-beta-1-O-d-glucose. J. Plant Growth Regul., 24, 142–152.
- Jackson, R., Lim, E., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D. & Bowles, D. (2001). Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J. Biol. Chem., 276, 4350–4356.
- Jakubowska, A. & Kowalczyk, S. (2004). The auxin conjugate 1-O-indole-3-acetyl-β-d-glucose is synthesized in immature legume seeds by IAGlc synthase and may be used for modification of some high molecular weight compounds. J. Exp. Bot., 55, 791–801.
- Jakubowska, A. & Kowalczyk, S. (2005). A specific enzyme hydrolyzing 6-O(4-O)-indol-3-ylacetyl-beta-d-glucose in immature kernels of Zea mays . J. Plant Physiol., 162, 207–213.
- Jensen, P. & Bandurski, R. (1994). Metabolism and synthesis of indole-3-acetic acid (IAA) in Zea mays. Levels of IAA during kernal development and the use of in vitro endosperm systems for studying IAA biosynthesis. Plant Physiol., 106, 343–351.
- Jensen, P. & Bandurski, R. (1996). Incorporation of deuterium into indole-3-acetic acid and tryptophan in Zea mays seedlings grown on 30% deuterium oxide. J. Plant Physiol., 147, 679–702.
- Jones, A.M., Im, K.H., Savka, M.A., Wu, M.J., Dewitt, N.G., Shillito, R. & Binns, A.N. (1998). Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science, 282, 1114–1117.
- Kepinski, S. & Leyser, O. (2004). Auxin-induced SCFTIR1–Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA, 101, 12381–12386.
- Kepinski, S. & Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 435, 446–451.
- Kesy, J. & Bandurski, R. (1990). Partial purification and characterization of indol-3-ylacetylglucose: myo-inositol indol-3-ylacetyl transferase (indoleacetic acid-inositol synthase). Plant Physiol., 94, 1598–1604.
- Kim, J., Harter, K. & Theologis, A. (1997). Protein–protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. USA, 94, 11786–11791.
- Knauss, S., Rohrmeier, T. & Lehle, L. (2003). The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J. Biol. Chem., 278, 23936–23943.
- Kowalczyk, S. & Bandurski, R. (1990). Isomerization of 1-O-indol-3-ylacetyl-β-d-glucose. Enzymatic hydrolysis of 1-O, 4-O, and 6-O-indol-3-ylacetyl-β-d-glucose and the enzymatic synthesis of indole-3-acetyl glycerol by a hormone metabolizing complex. Plant Physiol., 94, 4–12.
- Kowalczyk, S. & Bandurski, R. (1991). Enzymatic synthesis of 1-O-(indol-3-ylacetyl)-β-d-glucose. Purification of the enzyme from Zea mays and preparation of antibodies to the enzyme. Biochem. J., 279, 509–514.
- Kowalczyk, S., Jakubowska, A. & Bandurski, R. (2002). 1-Naphthalene acetic acid induces indol-3-ylacetylglucse synthase in Zea mays seedlings. Plant Growth Regul., 38, 127–134.
- Kowalczyk, S., Jakubowska, A., Zielinska, E. & Bandurski, R. (2003). Bifunctional indole-3-acetyl transferase catalyses synthesis and hydrolysis of indole-3-acetyl-myo-inositol in immature endosperm of Zea mays . Physiol. Plant., 119, 165–174.
- Last, R. & Fink, G. (1988). Tryptophan-requiring mutants of the plant Arabidopsis thaliana . Science, 240, 305–310.
- Last, R., Barczak, A., Casselman, A.J.L., Pruitt, K., Radwanski, E. & Rose, A. (1992). The molecular genetics of tryptophan biosynthesis is Arabidopsis thaliana . In Biosynthesis and Molecular Regulation of Amino Acids in Plants (eds B.K. Singh, H.E. Flores & J.C. Shannon). American Society Plant Physiologists, Rockville, MD.
- Leclere, S., Tellez, R., Rampey, R., Matsuda, S. & Bartel, B. (2002). Characterization of a family of IAA–amino acid conjugate hydrolases from Arabidopsis . J. Biol. Chem., 277, 20446–20452.
- Leverone, L., Kossenjans, W., Jayasimihulu, K. & Caruso, J. (1991). Evidence of zein-bound indoleacetic acid using gas chromatography-selected ion monitoring-mass spectrometry analysis and immunogold labeling. Plant Physiol., 96, 1070–1075.
- Leyser, H.M., Lincoln, C.A., Timpte, C., Lammer, D., Turner, J. & Estelle, M. (1993). Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature, 364, 161–164.
- Leyser, H.M., Pickett, F.B., Dharmasiri, S. & Estelle, M. (1996). Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J., 10, 403–413.
- Leznicki, A. & Bandurski, R. (1988a). Enzymatic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays . Plant Physiol., 88, 1474–1480.
- Leznicki, A. & Bandurski, R. (1988b). Enzymatic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme. Plant Physiol., 88, 1481–1485.
- Li, H., Johnson, P., Stepanova, A., Alonso, J.M. & Ecker, J.R. (2004). Convergence of signaling pathways in the control of differential cell growth in Arabidopsis . Dev. Cell, 7, 193–204.
- Lincoln, C., Britton, J.H. & Estelle, M. (1990). Growth and development of the axr1 mutants of Arabidopsis . Plant Cell, 2, 1071–1080.
- Liscum, E. & Reed, J.W. (2002). Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol., 49, 387–400.
- Ljung, K., Hull, A., Kowalczyk, M., Marchant, A., Celenza, J., Cohen, J. & Sandberg, G. (2002). Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana . Plant Mol. Biol., 50, 309–332.
- Ludwig-Mueller, J., Epstein, E. & Hilgenberg, W. (1996). Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during infection with clubroot disease. Physiol. Plant., 97, 627–634.
- Ludwig-Mueller, J., Walz, A., Slovin, J., Epstein, E., Cohen, J., Dong, W. & Town, C. (2005). Overexpression of maize IAGLU in Arabidopsis thaliana alters plant growth sensitivity to IAA but not IBA and 2,4-D. J Plant Growth Regul., 24, 127–141.
- Magnus, V., Nigovic, B., Hangarter, R. & Good, N. (1992). N-(Indol-3-lyacetyl)amino acids as sources of auxin in plant tissue culture. J. Plant Growth Regul., 11, 19–28.
- Mallory, A.C., Bartel, D.P. & Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 17, 1360–1375.
- McClure, B.A. & Guilfoyle, T. (1987). Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol. Biol., 9, 611–623.
- Michalczuk, L. & Bandurski, R. (1982). Enzymatic synthesis of 1-O-indol-3-yl-acetyl-β-d-glucose and indol-3-yl-acetyl-myo-inositol. Biochem. J., 207, 273–281.
- Michalczuk, L., Ribnicky, D., Cooke, T. & Cohen, J. (1992). Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol., 100, 1346–1353.
- Mockaitis, K. & Howell, S.H. (2000). Auxin induces mitogenic-activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J., 24, 785–796.
- Monroe-Augustus, M., Zolman, B.K. & Bartel, B. (2003). IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis . Plant Cell, 15, 2979–2991.
- Mueller, A. & Weiler, E. (2000). Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana . Planta, 211, 855–863.
- Mueller, A., Hillebrand, H. & Weiler, E. (1998). Indole-3-acetic acid is synthesized from l-tryptophan in roots of Arabidopsis thaliana . Planta, 206, 362–369.
- Napier, R.M., David, K.M. & Perrot-Rechenmann, C. (2002). A short history of auxin-binding proteins. Plant Mol. Biol., 49, 339–348.
- Nemhauser, J.L., Feldman, L.J. & Zambryski, P.C. (2000). Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 127, 3877–3888.
- Newman, T.C., Ohme-Takagi, M., Taylor, C.B. & Green, P.J. (1993). DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell, 5, 701–714.
- Nonhebel, H. (1986). Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings. J. Exp. Bot., 37, 1691–1697.
- Normanly, J. & Bartel, B. (1999). Redundancy as a way of life – IAA metabolism. Curr. Opin. Plant Biol., 2, 207–213.
- Normanly, J., Cohen, J. & Fink, G. (1993). Arabidopsis thaliana auxotrophs reveal a tryptophan independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. USA, 90, 10355–10359.
- Normanly, J., Slovin, J. & Cohen, J. (1995). Rethinking auxin biosynthesis and metabolism. Plant Physiol., 107, 323–329.
- Normanly, J., Grisafi, P., Fink, G. & Bartel, B. (1997). Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell, 9, 1781–1790.
- Normanly, J., Slovin, J. & Cohen, J. (2004). Auxin Metabolism, In Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd edition. (ed. P. Davies). Kluwer, Dordrecht.
- Okushima, Y., Mitina, I., Quach, H.L. & Theologis, A. (2005a). AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J., 43, 29–46.
- Okushima, Y., Overvoorde, P.J., Arima, K., Alonso, J.M., Chan, A., Chang, C., Ecker, J.R., Hughes, B., Lui, A., Nguyen, D., Onodera, C., Quach, H., Smith, A., Yu, G. & Theologis, A. (2005b). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 17, 444–463.
- Östin, A., Ilic, N. & Cohen, J. (1999). An in vitro system for tryptophan-independent indole-3-acetic acid biosynthesis from Zea mays seedlings. Plant Physiol., 119, 173–178.
- Ouyang, J., Shao, X. & Li, J. (2000). Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana . Plant J., 24, 327–333.
- Park, W., Kriechbaumer, V., Mueller, A., Piotrowski, M., Meeley, R., Gierl, A. & Glawischnig, E. (2003). The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol., 133, 794–802.
- Pengelly, W. & Bandurski, R. (1983). Analysis of indole-3-acetic acid metabolism using deuterium oxide as a tracer. Plant Physiol., 73, 445–449.
- Petroski, M.D. & Deshaies, R.J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol., 6, 9–20.
- Plüss, R., Titus, J. & Meier, H. (1989). IAA-induced adventitious root formation in greenwood cuttings of Populus tremula and formation of 2-indolone-3-acetylaspartic acid, a new metabolite of exogenously applied indole-3-acetic acid. Physiol. Plant., 75, 89–96.
- Pollmann, S., Mueller, A., Piotrowski, M. & Weiler, E. (2002). Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana . Planta, 216, 155–161.
- Pollmann, S., Neu, D. & Weiler, E. (2003). Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry, 62, 293–300.
- Quint, M., Ito, H., Zhang, W. & Gray, W.M. (2005). Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin–ligases. Plant J., 43, 371–383.
- Quirino, B., Normanly, J. & Amasino, R. (1999). Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol. Biol., 40, 267–278.
- Ramos, J.A., Zenser, N., Leyser, O. & Callis, J. (2001). Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and Is proteasome dependent. Plant Cell, 13, 2349–2360.
- Rampey, R., Leclere, S., Kowalczyk, M., Ljung, K., Sandberg, G. & Bartel, B. (2004). A family of auxin-conjugate hydrolases that contribute to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol., 135, 978–988.
- Rapparini, F., Cohen, J. & Slovin, J. (1999). Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul., 27, 139–144.
- Rapparini, F., Tam, Y., Cohen, J. & Slovin, J. (2002). IAA metabolism in Lemna gibba undergoes dynamic changes in response to growth temperature. Plant Physiol., 128, 1410–1416.
- Reinecke, D. & Bandurski, R. (1983). Oxindole-3-acetic acid, an indole-3-acetic acid catabolite in Zea mays . Plant Physiol., 71, 211–213.
- Rekoslavskaya, N. (1995). Pathways of indoleacetic acid and tryptophan synthesis in developing maize endosperm: studies in vitro . Russian J. Plant Physiol., 42, 143–151.
- Rekoslavskaya, N. & Bandurski, R. (1994). Indole as a precursor of indole-3-acetic acid in Zea mays . Phytochemistry, 35, 905–909.
- Ribnicky, D., Cohen, J., Hu, W.-S. & Cooke, T. (2002). An extraordinary auxin surge following fertilization in carrot: its significance for plant totipotency. Planta, 214, 505–509.
- Rogg, L.E., Lasswell, J. & Bartel, B. (2001). A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell, 13, 465–480.
- Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J. & Estelle, M. (1998). The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Gene Dev., 12, 198–207.
- Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M. & Deng, X.W. (2001). Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science, 292, 1379–1382.
- Sitbon, F., Edlund, A., Gardeström, P., Olsson, O. & Sandberg, G. (1993). Compartmentation of indole-3-acetic acid metabolism in protoplasts isolated from leaves of wild-type and IAA-overproducing transgenic tobacco plants. Planta, 191, 274–279.
-
Slovin, J., Bandurski, R. & Cohen, J. (1999). Auxin. In Biochemistry and Molecular Biology of Plant Hormones, (eds. P. Hooykaas, M. Hall & K. Libbenga). Elsevier, Amsterdam.
10.1016/S0167-7306(08)60485-8 Google Scholar
- Staswick, P., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M., Maldonado, M. & Suza, W. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17, 616–627.
- Staswick, P.E. & Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis . Plant Cell, 16, 2117–2127.
- Szerszen, J., Szczyglowski, K. & Bandurski, R. (1994). iaaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science, 265, 1699–1701.
- Sztein, A., Cohen, J. & Cooke, T. (2000). Evolutionary patterns in the auxin metabolism of green plants. Int. J. Plant Sci., 161, 849–859.
- Sztein, A., Ilic, N., Cohen, J. & Cooke, T. (2002). Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: The effect of wounding on the biosynthetic pathway. Plant Growth Regul., 136, 201–207.
- Tam, Y., Slovin, J. & Cohen, J. (1995). Selection and characterization of alpha-methyltryptophan resistant lines of Lemna gibba showing a rapid rate of indole-3-acetic acid turnover. Plant Physiol., 107, 77–85.
- Tam, Y. & Normanly, J. (1998). Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography selected ion monitoring mass spectrometry. J. Chromatogr., 800, 101–108.
- Tam, Y., Epstein, E. & Normanly, J. (2000). Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol., 123, 589–595.
- Tao, L.Z., Cheung, A.Y. & Wu, H.M. (2002). Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell, 14, 2745–2760.
- Tatematsu, K., Kumagai, S., Muto, H., Sato, A., Watahiki, M.K., Harper, R.M., Liscum, E. & Yamamoto, K.T. (2004). MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana . Plant Cell, 16, 379–393.
- Tian, C.E., Muto, H., Higuchi, K., Matamura, T., Tatematsu, K., Koshiba, T. & Yamamoto, K.T. (2004). Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J., 40, 333–343.
- Tian, Q. & Reed, J.W. (1999). Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development, 126, 711–721.
- Tiwari, S.B., Hagen, G. & Guilfoyle, T. (2003). The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell, 15, 533–543.
- Tiwari, S.B., Hagen, G. & Guilfoyle, T.J. (2004). Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 16, 533–543.
- Tobena-Santamaria, R., Bliek, M., Ljung, K., Sandberg, G., Mol, J., Souer, E. & Koes, R. (2002). FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Gene Dev., 16, 753–763.
- Tuominen, H., Östin, A., Sundberg, B. & Sandberg, G. (1994). A novel metabolic pathway for indole-3-acetic acid in apical shoots of Populus tremula (L.) × Populus tremuloides (Michx.). Plant Physiol., 106, 1511–1520.
- Ulmasov, T., Liu, Z.B., Hagen, G. & Guilfoyle, T.J. (1995). Composite structure of auxin response elements. Plant Cell, 7, 1611–1623.
- Ulmasov, T., Hagen, G. & Guilfoyle, T.J. (1997a). ARF1, a transcription factor that binds to auxin response elements. Science, 276, 1865–1868.
- Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T.J. (1997b). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 9, 1963–1971.
- Ulmasov, T., Hagen, G. & Guilfoyle, T.J. (1999). Dimerization and DNA binding of auxin response factors. Plant J., 19, 309–319.
- Venis, M. (1972). Auxin-induced conjugation system in peas. Plant Physiol., 49, 24–27.
- Walz, A., Park, S., Slovin, J., Ludwig-Mueller, J., Momonoki, Y. & Cohen, J. (2002). A gene encoding a protein modified by the phytohormone indoleacetic acid. Proc. Natl. Acad. Sci. USA, 99, 1718–1723.
- Wang, J.W., Wang, L.J., Mao, Y.B., Cai, W.J., Xue, H.W. & Chen, X.Y. (2005). Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis . Plant Cell, 17, 2204–2216.
- Weijers, D., Benkova, E., Jager, K.E., Schlereth, A., Hamann, T., Kientz, M., Wilmoth, J.C., Reed, J.W. & Jurgens, G. (2005). Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J., 24, 1874–1885.
- Wildman, S., Ferr, I.M. & Bonner, J. (1946). Enzymatic conversion of tryptophan to auxin by spinach leaves. Arch. Biochem., 13, 131–144.
- Williams, L., Carles, C.C., Osmont, K.S. & Fletcher, J.C. (2005). A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc. Natl. Acad. Sci. USA, 102, 9703–9708.
- Wilmoth, J.C., Wang, S., Tiwari, S.B., Joshi, A.D., Hagen, G., Guilfoyle, T.J., Alonso, J.M., Ecker, J.R. & Reed, J.W. (2005). NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J., 43, 118–130.
- Wilson, A.K., Pickett, F.B., Turner, J.C. & Estelle, M. (1990). A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol. Gen. Genet., 222, 377–383.
- Woodward, A. & Bartel, B. (2005). Auxin: regulation, action, and interaction. Ann. Bot., 95, 707–735.
- Wright, A., Sampson, M., Neuffer, M., Michalczuk, L., Slovin, J. & Cohen, J. (1991). Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science, 254, 998–1000.
- Wright, A., Moehlenkamp, C., Perrot, G., Neuffer, M. & Cone, K. (1992). The maize auxotropic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta. Plant Cell, 4, 711–719.
- Yang, T. & Poovaiah, B.W. (2000). Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem., 275, 3137–3143.
- Yang, X., Lee, S., So, J.H., Dharmasiri, S., Dharmasiri, N., Ge, L., Jensen, C., Hangarter, R., Hobbie, L. & Estelle, M. (2004). The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1). Plant J., 40, 772–782.
- Zenser, N., Ellsmore, A., Leasure, C. & Callis, J. (2001). Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl. Acad. Sci. USA, 98, 11795–11800.
- Zhao, Y., Christensen, S., Fankhauser, C., Cashman, J., Cohen, J., Weigel, D. & Chory, J. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 291, 306–309.
- Zhao, Y., Hull, A., Gupta, N., Goss, K., Alonso, J., Ecker, J., Normanly, J., Chory, J. & Celenza, J. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Gene Dev., 16, 3100–3112.
Browse other articles of this reference work: