5 Biosynthesis and Transport of Plant Cuticular Waxes
Ljerka Kunst
Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorReinhard Jetter
Departments of Botany and Chemistry, University of British Columbia, 3510-6270 University Blvd, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorA. Lacey Samuels
Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorLjerka Kunst
Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorReinhard Jetter
Departments of Botany and Chemistry, University of British Columbia, 3510-6270 University Blvd, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorA. Lacey Samuels
Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4 Canada
Search for more papers by this authorAbstract
The sections in this article are
- Introduction
- Synthesis of Very Long-Chain Fatty Acid Wax Precursors
- Biosynthetic Pathways to Monofunctional Aliphatics
- Triterpenoid Biosynthesis
- Regulation of Wax Biosynthesis
- Wax Biosynthesis and Transport in the Context of the Epidermal Cell
- Concluding Remarks
References
- Aarts, M.G., Keijzer, C.J., Stiekema, W.J. and Pereira, A. (1995) Molecular characterisation of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility, The Plant Cell, 7, 2115–2127.
- Abe, I., Rohmer, M. and Prestwich, G.D. (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes, Chemical Reviews, 93, 2189–2206.
- Aharoni., A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G. and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis , The Plant Cell, 16, 2463–2480.
- The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , Nature, 408, 796–815.
- Ariizumi, T., Hatakeyama, K., Hinata, K. et al. (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine, Plant Molecular Biology, 53, 107–116.
- Arondel, V., Vergnolle, C., Cantrel, C. and Kader, J.-C. (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana , Plant Science, 157, 1–12.
- Baker, E.A. (1974) The influence of environment on leaf wax development in Brassica oleracea var. gemmifera , New Phytologist, 73, 955–966.
- Baud, S., Bellec, Y., Miquel, M. et al. (2004) Gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase, EMBO Reports, 5, 1–6.
- Baud, S., Guyon, V., Kronenberger, J. et al. (2003) Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis , The Plant Journal, 33, 75–86.
- Beaudoin, F., Gable, K., Sayanova, O., Dunn, T. and Napier, J.A. (2002) A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase, Journal of Biological Chemistry, 277, 11481–11488.
- Bessoule, J.J., Lessire, R. and Cassagne, C. (1989) Partial purification of the acyl coenzyme A elongase of Allium porrum leaves, Archives of Biochemistry and Biophysics, 268, 475–484.
- Bianchi, G., Salamini, F. and Avato, P. (1978) Glossy mutants of maize. 8. Accumulation of fatty aldehydes in surface waxes of gl5 maize seedlings, Biochemical Genetics, 16, 1015–1021.
- Blein, J.-P., Coutos-Thevenot, P., Marion, D. and Ponchet, M. (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms, Trends in Plant Sciences, 7, 293–296.
- Bognar, A.L., Paliyath, G., Rogers, L. and Kolattukudy, P.E. (1984) Biosynthesis of alkanes by particulate and solubilized enzyme preparations from pea leaves (Pisum sativum), Archives of Biochemistry and Biophysics, 235, 8–17.
- Bonaventure, G., Salas, J.J., Pollard, M.R. and Ohlrogge, J.B. (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth, The Plant Cell, 15, 1020–1033.
- Borner, G.H.H., Sherrier, D.J., Weimar, T. et al. (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts, Plant Physiology, 137, 104–116.
- Broun, P. (2004) Transcription factors as tools for metabolic engineering in plants, Current Opinion in Plant Biology, 7, 202–209.
- Broun, P., Poindexter, P., Osborne, E., Jiang, C.-Z. and Riechmann, J.L. (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis , Proceedings of the National Academy of Sciences of the USA, 101, 4706–4711.
- Brown, D.A. and London, E. (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts, Journal of Biological Chemistry, 275, 17221–17224.
- Cassagne, C. and Lessire, R. (1974) Studies on alkane biosynthesis in epidermis of Allium porrum L. leaves: direct synthesis of tricosane from lignoceric acid, Archives of Biochemistry and Biophysics, 165, 274–280.
- Chang, G. and Roth, C.B. (2001) Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters, Science, 293, 1793–1800.
- Channon, H.J. and Chibnall, A.C. (1929) The ether-soluble substances of cabbage leaf cytoplasm V. The isolation of n-nonacosane and di-n-tetradecyl ketone, Biochemical Journal, 23, 168–175.
- Cheesbrough, T.M. and Kolattukudy, P.E. (1984) Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum , Proceedings of the National Academy of Sciences of the USA, 81, 6613–6617.
- Chen, X., Goodwin, M., Boroff, V.L., Liu, X. and Jenks, M.A. (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production, The Plant Cell, 15, 1170–1185.
- Cheng, C.-S., Samuels, D., Liu, Y.-J. et al. (2004) Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense, Biochemistry, 43, 13628–13636.
- Chye, M.-L., Li, H.-Y. and Yung, M.-H. (2000) Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14(C)palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats, Plant Molecular Biology, 44, 711–721.
- Clenshaw, E. and Smedly-Maclean, I. (1929) XV. The nature of the unsaponifiable fraction of the lipoid matter extracted from green leaves, Biochemical Journal, 23, 107–109.
- Clough, R.C., Matthis, A.L., Barnum, S.R. and Jaworski, J.G. (1992) Purification and characterization of 3-ketoacyl-acyl carrier protein synthase from spinach: a condensing enzyme utilizing acetyl-CoA to initiate fatty acid synthesis, Journal of Biological Chemistry, 267, 20992–209928.
- Dietrich, C.R., Perera, M.A.D.N., Yandeau-Nelson, M.D., Meeley, R.B., Nikolau, B. and Schnable, P.S. (2005) Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development, The Plant Journal, 138, 478–489.
-
Domazetis, G., Tarpey, B., Dolphin, D. and James, B.R. (1981) Catalytic decarbonylation of aldehydes using ruthenium (II) porphyrin systems, in Catalytic Activation of Carbon Monoxide (ed. P.C. Ford), American Chemical Society, Washington DC, pp. 243–252.
10.1021/bk-1981-0152.ch016 Google Scholar
- Douliez, J.-P., Jegou, S., Pato, C., Molle, D., Tran, V. and Marion, D. (2001) Binding of two monacylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modeling, European Journal of Biochemistry, 268, 384–388.
- Douliez, J.-P., Michon, T., Elmorjani, K. and Marion, D. (2000a) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels, Journal of Cereal Science, 32, 1–20.
- Douliez, J.-P., Michon, T. and Marion, D. (2000b) Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1), Biochimica et Biophysica Acta (BBA) – Biomembranes, 1467, 65–72.
- Dunn, T.M., Lynch, D.V., Michaelson, L.V. and Napier, J.A. (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana , Annals of Botany, 93, 483–497.
- Eigenbrode, S.D. and Espelie, K.E. (1995) Effects of plant epicuticular lipids on insect herbivores, Annual Review of Entomology, 40, 171–194.
- Engeseth, N.J., Pacovsky, R.S., Newman, T. and Ohlrogge, J. (1996) Characterization of an acyl-CoA-binding protein from Arabidopsis thaliana , Archives of Biochemistry and Biophysics, 331, 55–62.
- Eschenmoser, A., Ruzicka, L., Jeger, O. and Arigoni, D. (1955) Zur Kenntnis der Triterpene. 190. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen, Helvetica Chimica Acta, 38, 1890–1904.
- Ewart, G.D., Cannell, D., Cox, G.B. and Howells, A.J. (1994) Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment precursors in Drosophila melanogaster , Journal of Biological Chemistry, 289, 10370–10377.
- Fehling, E. and Mukherjee, K.D. (1991) Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity, Biochimica et Biophysica Acta, 1082, 239–246.
- Fiebig, A., Mayfield, J.A., Miley, N.L., Chau, S., Fischer, R.L. and Preuss, D. (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems, The Plant Cell, 12, 2001–2008.
- Fox, B.G., Shanklin, J., Ai, J., Loehr, T.M. and Sanders-Loehr, J. (1994) Resonance raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins, Biochemistry, 33, 12776–12786.
- Gable, K., Garton, S, Napier, J.A. and Dunn, T.M. (2004) Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system, Journal of Experimental Botany, 55, 543–545.
- Gaigg, B., Neergaard, T.B.F., Schneiter, R. et al. (2001) Depletion of acyl-CoA-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae , Molecular Biology of the Cell, 12, 1147–1160.
- Hamilton, J.A. (1998) Fatty acid transport: difficult or easy? Journal of Lipid Research, 39, 467–481.
- Hannoufa, A., McNevin, J. and Lemieux, B. (1993) Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana , Phytochemistry, 33, 851–855.
- Hannoufa, A., Negruk, V., Eisner, G. and Lemieux, B. (1996) The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems, The Plant Journal, 10, 459–467.
- Hansen, J.D., Pyee, J., Xia, Y. et al. (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes, Plant Physiology, 113, 1091–1100.
- Hayashi, H., Huang, P., Inoue, K. et al. (2001) Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic acid, European Journal of Biochemistry, 268, 6311–6317.
- Herrera, J.B.R., Bartel, B., Wilson, W.K. and Matsuda, S.P.T. (1998) Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene, Phytochemistry, 49, 1905–1911.
- Higgins, C.F. and Linton, K.J. (2004) The ATP switch model for ABC transporters, Nature Structural and Molecular Biology, 11, 918–926.
- Ho, J.K., Moser, H., Kishimoto, Y. and Hamilton, J.A. (1995) Interactions of a very long chain fatty acid with model membranes and serum albumin: implications for the pathogenesis of adrenoleukodystrophy, Journal of Clinical Investigation, 96, 1455–1463.
- Hoffmann-Benning, S. and Kende, H. (1994) Cuticle biosynthesis in rapidly growing internodes of deepwater rice, Plant Physiology, 104, 719–723.
- Hoffmann-Benning, S., Klomparens, K.L. and Kende, H. (1994) Characterization of growth-related osmiophilic particles in corn coleoptiles and deepwater rice internodes, Annals of Botany, 74, 563–572.
- Hooker, T.S., Millar, A.A. and Kunst, L. (2002) Significance of the expression of the CER6 (=CUT1) condensing enzyme for epicuticular wax production in Arabidopsis , Plant Physiology, 129, 1568–1580.
- Husselstein-Muller, T., Schaller, H. and Benveniste, P. (2001) Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana , Plant Molecular Biology, 45, 75–92.
- Jasinski, M., Ducos, E., Martinoia, E. and Boutry, M. (2003) The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis , Plant Physiology, 131, 1169–1177.
- Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand-Brynaert, J. and Boutry, M. (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion, The Plant Cell, 13, 1095–1107.
- Jenks, M.A., Rich, P.J. and Ashworth, E.N. (1994) Involvement of cork cells in the secretion of epicuticular wax filaments on Sorghum bicolor (L.) Moench, International Journal of Plant Sciences, 155, 506–518.
- Jenks, M.A., Tuttle, H.A., Eigenbrode, S.D. and Feldmann, K.A. (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis , Plant Physiology, 108, 369–377.
- Johnson, P.E., Rawsthorne, S. and Hills, M.J. (2002) Export of acyl chains from plastids isolated from embryos of Brassica napus (L), Planta, 215, 515–517.
- Jolivet, P., Roux, E., D'Andrea, S. et al. (2004) Protein composition of oil bodies in Arabidopsis thaliana ecotype WS, Plant Physiology and Biochemistry, 42, 501–509.
- Kader, J.-C. (1996) Lipid-transfer proteins in plants, Annual Review of Plant Physiology and Molecular Biology, 47, 627–654.
- Khan, A.A. and Kolattukudy, P.E. (1974) Decarboxylation of long chain fatty acids to alkanes by cell free preparations of pea leaves (Pisum sativum) , Biochemical and Biophysical Research Communications, 61, 1379–1386.
- Kim, H.U., Hsieh, K., Ratnayake, C. and Huang, A.H.C. (2002) A novel group of oleosins is present inside the pollen of Arabidopsis , Journal of Biological Chemistry, 277, 22677–22684.
- Kohlwein, S.D., Eder, S., Oh, C.S. et al. (2001) Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear–vacuolar interface in Saccharomyces cerevisiae , Molecular and Cellular Biology, 21, 109–125.
- Kolattukudy, P.E. (1966) Biosynthesis of wax in Brassica oleracea. Relation of fatty acid to wax, Biochemistry, 5, 2265–2275.
- Kolattukudy, P.E. (1967a) Mechanisms of synthesis of waxy esters in broccoli (Brassica oleracea), Biochemistry, 6, 2705–2717.
- Kolattukudy, P.E. (1967b) Biosynthesis of paraffins in Brassica oleracea: fatty acid elongation–decarboxylation as a plausible pathway, Phytochemistry, 6, 963–975.
- Kolattukudy, P.E. (1968) Tests whether a head to head condensation mechanism occurs in the biosynthesis on n-hentriacontane, the paraffin of spinach and pea leaves, Plant Physiology, 43, 1466–1470.
- Kolattukudy, P.E. (1970a) Biosynthesis of cuticular lipids, Annuual Review of Plant Physiology, 21, 163–192.
- Kolattukudy, P.E. (1970b) Reduction of fatty acids to alcohols by cell-free preparation of Euglena gracilis , Biochemistry, 9, 1095–1102.
- Kolattukudy, P.E. (1971) Enzymatic synthesis of fatty alcohols in Brassica oleracea , Archives of Biochemistry and Biophysics, 142, 701–709.
- Kolattukudy, P.E. and Liu, T.-Y.J. (1970) Direct evidence for biosynthetic relationships among hydrocarbons, secondary alcohols and ketones in Brassica oleracea , Biochemical and Biophysical Research Communications, 41, 1369–1374.
- Kolattukudy, P.E., Buckner, J.S. and Brown, L. (1972) Direct evidence for a decarboxylation mechanism in the biosynthesis of alkanes in B. oleracea , Biochemical and Biophysical Research Communications, 47, 1306–1313.
- Kolattukudy, P.E., Buckner, J.S. and Liu, T.-Y.J. (1973) Biosynthesis of secondary alcohols and ketones from alkanes, Archives of Biochemistry and Biophysics, 156, 613–620.
- Koornneef, M., Hanhart, C.J. and Thiel, F. (1989) A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana , Journal of Heredity, 80, 118–122.
- Kunst, L. and Samuels, A.L. (2003) Biosynthesis and secretion of plant cuticular wax, Progress in Lipid Research, 42, 51–80.
- Kurata, T., Kawabata-Awai, C., Sakuradani, E., Shimizu, S., Okada, K. and Wada, T. (2003) The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis , The Plant Journal, 36, 55–66.
- Kushiro, T., Shibuya, M. and Ebizuka, Y. (1998) β-Amyrin synthase. Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants, European Journal of Biochemistry, 256, 238–244.
- Kushiro, T., Shibuya, M., Masuda, K. and Ebizuka, Y. (2000) Mutational studies on triterpene synthases: engineering lupeol synthase into β-amyrin synthase, Journal of the American Chemical Society, 122, 6816–6824.
- Lardizabal, K.D., Metz, J.G., Sakamoto, T., Hutton, W.C., Pollard, M.R. and Lassner, M.W. (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis , Plant Physiology, 122, 645–655.
- Lassner, M.W., Lardizabal, K. and Metz, J.G. (1996) A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants, The Plant Cell, 8, 281–292.
- Lemieux, B., Koornneef, M. and Feldmann, K.A. (1994) Epicuticular wax and eceriferum mutants, in Arabidopsis (eds E.M. Meyerowitz and C.R. Somerville), Cold Spring Harbor Press, New York, pp. 1031–1047.
- Lessire, R., Juguelin, H., Moreau, P. and Cassagne, C. (1985) Elongation of acyl coenzyme a species by microsomes from etiolated leek Allium porrum seedlings, Phytochemistry, 24, 1187–1192.
- Leung, K.-C., Li, H.Y. and Chye, M.-L. (2005) ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA, Plant Molecular Biology, 55, 297.
- Li, H.-Y. and Chye, M.-L. (2003) Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2, Plant Molecular Biology, 51, 483–492.
- Lorkowski, S. and Cullen, A.P. (2002) ABCG subfamily of human ATP-binding cassette proteins, Pure and Applied Chemistry, 74, 2057–2081.
- Mayor, S. and Rao, M. (2004) Rafts: scale-dependent, active lipid organization at the cell surface, Traffic, 5, 231–240.
- McNevin, J.P., Woodward, W., Hannoufa, A., Feldmann, K.A. and Lemieux, B. (1993) Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana , Genome, 36, 610–618.
- Metz, J.G., Pollard, M.R., Anderson, L., Hayes, T.R. and Lassner, M.W. (2000) Purification of a jojoba embryo fatty acyl-Coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed, Plant Physiology, 122, 635–644.
- Mikkelsen, J.D. (1979) Structure and biosynthesis of β-diketones in barley spike epicuticular wax, Carlsberg Research Communications, 44, 133–147.
- Mikkelsen, J.D. (1984) Biosynthesis of esterified alkan-2-ols and β-diketones in barley spike epicuticular wax: synthesis of radioactive intermediates, Carlsberg Research Communications, 49, 391–416.
- Mikkelsen, J.D. and von Wettstein-Knowles, P. (1978) Biosynthesis of β-diketones and hydrocarbons in barley spike epicuticular wax, Archives of Biochemistry and Biophysics, 188, 172–181.
- Millar, A.A. and Kunst, L. (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme, The Plant Journal, 12, 121–131.
- Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C. and Kunst, L. (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme, The Plant Cell, 11, 825–838.
- Millar, A.A., Wrischer, M. and Kunst, L. (1998) Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology, The Plant Cell, 11, 1889–1902.
- Mongrand, S., Morel, J., Laroche J. et al. (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane, Journal of Biological Chemistry, 279, 36277–36286.
- Moose, S.P. and Sisco, P.H. (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity, Genes and Development, 10, 3018–3027.
- Moreau, P., Bertho, P., Juguelin, H. and Lessire, R. (1988) Intracellular transport of very long chain fatty acids in etiolated leek seedlings, Plant Physiology and Biochemistry, 26, 173–178.
- Moreau, P., Bessoule, J.J., Mongrand, S., Testet, E., Vincent, P. and Cassagne, C. (1998) Lipid trafficking in plant cells, Progress in Lipid Research, 37, 371.
- Negruk, V., Yang, P., Subramanian, M., McNevin, J.P. and Lemieux, B. (1996) Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana , The Plant Journal, 9, 137–145.
- Ohlrogge, J. and Browse, J. (1995) Lipid biosynthesis, The Plant Cell, 7, 957–970.
- Ohlrogge, J.B., Jaworski, J.G. and Post-Beittenmiller, D. (1993) De novo fatty acid biosynthesis, in Lipid Metabolism in Plants (ed. T.S. Moore), CRC Press, Boca Raton, pp. 3–32.
- Perera, M.A.D.N., Dietrich, C.R., Meeley, R., Schnable, P.S. and Nikolau, B.J. (2003) Dissecting the maize epicuticular wax biosynthetic pathway via the characterization of an extensive collection of glossy mutants, in Advanced Research on Plant Lipids (eds N. Murata, M. Yamada, I. Nishida, H. Okuyama, J. Sekiya and W. Hajime), Kluwer, Dordrecht, Boston, London, pp. 225–228.
- Pighin, J.A., Zheng, H., Balakshin, L.J. et al. (2004) Plant cuticular lipid export requires an ABC transporter, Science, 306, 702–704.
- Pohl, A., Devaux, P.F. and Hermann, A. (2005) Prokaryotic and eukaryotic ABC proteins in lipid transport, Biochimica et Biophysica Acta, 1733, 29–52.
- Pollard, M.R., McKeon, T., Gupta, L.M. and Stumpf, P.K. (1979) Studies on biosynthesis of waxes by developing jojoba seed. II. The demonstration of wax biosynthesis by cell-free homogenates, Lipids, 14, 651–662.
- Post-Beittenmiller, D. (1996) Biochemistry and molecular biology of wax production in plants, Annual Review of Plant Physiology and Plant Molecular Biology, 47, 405–430.
- Pyee, J., Yu, H. and Kolattukudy, P.E. (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves, Archives of Biochemistry and Biophysics, 311, 460–468.
- Rashotte, A.M., Jenks, M.A., Ross, A.S. and Feldmann, K.A. (2004) Novel eceriferum mutants in Arabidopsis thaliana , Planta, 219, 5–13.
- Rea, P.A., Li, Z.-S., Lu, Y.-P. and Drozdowicz, Y.M. (1998) From vacuolar GS-X pumps to multispecific ABC transporters, Annual Review of Plant Physiology and Plant Molecular Biology, 49, 727–760.
- Reed, D.W. (1982) Wax alteration and extraction during electron microscopy preparation of leaf cuticles, in The Plant Cuticle (eds D.F. Cutler, K.L. Alvin and C.E. Price), Academic Press, London, pp. 181–195.
- Rogers, D.P. and Bankaitis, V.A. (2000) Phospholipid transfer proteins and physiological functions, International Review of Cytology, 197, 35–81.
- Ruzicka, L. (1959) History of the isoprene rule: Faraday lecture, Proceedings of the Chemical Society, 2589–2590.
- Sanchez-Fernandez, R., Davies, T.G.E., Coleman, J.O.D. and Rea, P.A. (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory, Journal of Biological Chemistry, 276, 30231–30244.
- Schneider-Belhaddad, F. and Kolattukudy, P.E. (2000) Solubilization, partial purification and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum, Archives of Biochemistry and Biophysics, 377, 341–349.
- Schnurr, J.A., Shockey, J.M., de Boer, G.J. and Browse, J.A. (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis , Plant Physiology, 129, 1700–1709.
- Schnurr, J.A., Shockey, J.M. and Browse, J.A. (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis , The Plant Cell, 16, 629–642.
- Schulz, B. and Frommer, W.B. (2004) A plant ABC transporter takes the lotus seat, Science, 306, 622–625.
- Shanklin, J., Whittle, E. and Fox, B.G. (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase, Biochemistry, 3, 12787–12794.
- Shimakata, T. and Stumpf, P.K. (1982) Isolation and function of spinach leaf β-ketoacyl-[acyl-carrier-protein] synthases, Proceedings of the National Academy of Sciences of the USA, 79, 5808–5812.
- Shockey, J.M., Fulda, M.S. and Browse, J. (2002) Arabidopsis contains nine long-chain acyl-coenzyme A synthetase genes that participate in fatty acid, and glycerolipid metabolism, Plant Physiology, 129, 1710–1722.
- Staehelin, L.A. (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains, The Plant Journal, 11, 1151–1165.
- Sterk, P., Booij, H., Schellekens, G.A., Van Kamman, A. and De Vries, S. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene, The Plant Cell, 3, 907–921.
-
Stumpf, P.K. (1984) Fatty acid biosynthesis in higher plants, in Fatty Acid Metabolism and its Regulation (ed. S. Numa), Elsevier, Amsterdam, pp. 155–179.
10.1016/S0167-7306(08)60124-6 Google Scholar
- Sturaro, M., Hartings, H., Schmelzer, E., Velasco, R., Salamini, F. and Motto, M. (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production, Plant Physiology, 137, 478–489.
- Tacke, E., Korfhage, C., Michel, D. et al. (1995) Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm , The Plant Journal, 8, 907–917.
- Tanaka, R., Tsujimoto, K., In, Y. et al. (2002) Jezananals A and B: two novel skeletal triterpene aldehydes from the stem bark of Picea jezoensis var. jezoensis , Tetrahedron, 58, 2505–2512.
- Thoma, S., Kaneko, Y. and Somerville, C. (1993) A non-specific lipid transfer protein from Arabidopsis is a cell wall protein, The Plant Journal, 3, 427–436.
- Todd, J., Post-Beittenmiller, D. and Jaworski, J.G. (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana , The Plant Journal, 17, 119–130.
- Tulloch, A.P. (1976) Chemistry of waxes of higher plants, in Chemistry and Biochemistry of Natural Waxes (ed. P.E. Kolattukudy), Elsevier, Amsterdam, Oxford, New York, pp. 235–287.
- Vioque, J. and Kolattukudy, P.E. (1997) Resolution and purification of an aldehyde-generating and an alcohol generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.), Archives of Biochemistry and Biophysics, 340, 64–72.
-
Voelker, T.A. (1996) Plant acyl-ACP thioesterases: chain-length determining enzymes in plant fatty acid biosynthesis, in Genetic Engineering, Vol. 18 (ed. J.K. Setlow), Plenum Press, New York, pp. 111–131.
10.1007/978-1-4899-1766-9_8 Google Scholar
- von Wettstein-Knowles, P. (1972) Genetic control of β-diketone and hydroxy-β-diketone synthesis in epicuticular waxes of barley, Planta, 106, 113–130.
-
von Wettstein-Knowles, P. (1976) Biosynthetic relationships between β-diketones and esterified alkan-2-ols deduced from epicuticular wax of barley mutants, Molecular and General Genetics, 144, 43–48.
10.1007/BF00277302 Google Scholar
- von Wettstein-Knowles, P. (1992) Molecular genetics of lipid synthesis in barley, in Barley Genetics VI, Vol. 2 (ed. L. Munck), Munksgaard International Publishers, Copenhagen, pp. 753–771.
- von Wettstein-Knowles, P. (1993) Waxes, cutin, and suberin, in Lipid Metabolism in Plants (ed. T.S. Moore), CRC Press, Boca Raton, pp. 127–166.
- von Wettstein-Knowles, P. (1995) Biosynthesis and genetics of waxes, in Waxes: Chemistry, Molecular Biology and Functions (ed. R.J. Hamilton), Oily Press, Dundee, pp. 91–129.
-
von Wettstein-Knowles, P. and Søgaard, B. (1980) The cer-cqu region in barley: gene cluster or multifunctional gene, Carlsberg Research Communications, 45, 125–141.
10.1007/BF02906514 Google Scholar
- von Wettstein-Knowles, P. and Søgaard, B. (1981) Genetic evidence that cer-cqu is a cluster-gene, in Barley Genetics IV: Proc. 4th Int. Barley Genet. Symposium, Edinburgh University Press, Edinburgh, pp. 625–630.
- von Wettstein-Knowles, P.M. (1982) Elongase and epicuticular wax biosynthesis, Physiologie Végétale, 20, 797–809.
- Walton, T.J. (1990) Waxes, cutin and suberin, in Methods in Plant Biochemistry, Vol. 4 (eds J.L. Harwood and J.R. Bowyer), Academic Press, San Diego, pp. 105–158.
- Wu, W.-Y., Moreau, R.A. and Stumpf, P.K. (1981) Studies of biosynthesis of waxes by developing jojoba seed. III. Biosynthesis of wax esters from acyl-CoA and long chain alcohols, Lipids, 6, 897–902.
- Xia, Y., Nikolau, B.J. and Schnable, P.S. (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation, The Plant Cell, 8, 1291–1304.
- Xia, Y., Nikolau, B.J. and Schnable, P.S. (1997) Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes, Plant Physiology, 115, 925–937.
- Xu, X., Dietrich, C.R., Delledonne, M. et al. (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a β-ketoacyl reductase required for the biosynthesis of cuticular waxes, Plant Physiology, 115, 501–510.
- Xu, X., Dietrich, C.R., Lessire, R., Nikolau, B.J. and Schnable, P.S. (2002) The endoplasmic reticulum-associated maize gl8 protein is a component of the acyl-CoA elongase involved in the production of cuticular waxes, Plant Physiology, 128, 924–934.
- Xu, R., Fazio, G.C. and Matsuda, S.P.T. (2004) On the origins of triterpenoid skeletal diversity, Phytochemistry, 65, 261–291.
- Zhang, J.-Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W. and Wang, Z.-Y. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa), The Plant Journal, 42, 689–707.
- Zheng, H., Rowland, O. and Kunst, L. (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis, The Plant Cell, 17, 1467–1481.
Citing Literature
Browse other articles of this reference work: