1 A Developmental Genetic Model for the Origin of the Flower
Annual Plant Reviews book series, Volume 20: Flowering and its Manipulation
I. Core Development and Genetics
David A. Baum,
Lena C. Hileman,
David A. Baum
Department of Botany, University of Wisconsin, Madison, Wisconsin, USA
Search for more papers by this authorLena C. Hileman
Dexpartment of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
Search for more papers by this authorDavid A. Baum,
Lena C. Hileman,
David A. Baum
Department of Botany, University of Wisconsin, Madison, Wisconsin, USA
Search for more papers by this authorLena C. Hileman
Dexpartment of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
Search for more papers by this authorThis article was originally published in 2006 in Flowering and its Manipulation, Volume 20 (ISBN 9781405128087) of the Annual Plant Reviews book series, this volume edited by Charles Ainsworth. The article was republished in Annual Plant Reviews online in April 2018.
Abstract
The sections in this article are
- Introduction
- What is a Flower?
- Phylogenetic and Paleontological Context
- Evolutionary Novelties of the Flower
- Ordering the Key Steps in Floral Evolution
- Developmental Genetic Background
- Models for the Origin of Bisexuality
- Apical Megasporophyll Production on a Microsporangiate Axis?
- The Compression of the Floral Axis
- The Evolution of the Perianth
- The Origin of a Dimorphic Perianth
- Conclusion
- Acknowledgements
References
-
Albert, V. A., Gustafsson, M. H. G. and Di Laurenzio, L. (1998) Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal, in Molecular Systematics of Plants (eds D. E. Soltis, P. S. Soltis and J. J. Doyle), Kluwer Academic Publishers, Boston, pp. 349–374.
10.1007/978-1-4615-5419-6_12 Google Scholar
- Albert, V. A., Oppenheimer, D. G. and Lindqvist, C. (2002) Pleiotropy, redundancy and the evolution of flowers, Trends in Plant Science, 7, 297–301.
- Angenent, G. C., Busscher, M., Franken, J., Colombo, L. and Vantunen, A. J. (1993) The homeotic gene Fbp2 regulates floral organogenesis in Petunia and encodes a new class of Mads box proteins, Journal of Cellular Biochemistry, Suppl. 17B, 13–13.
-
Arber, E. A. N. and Parkin, J. (1907) On the origin of angiosperms, Botanical Journal of the Linnean Society, 38, 29–80.
10.1111/j.1095-8339.1907.tb01074.x Google Scholar
- Baum, D. A. (1998) The evolution of plant development, Current Opinion in Plant Biology, 1, 79–86.
- Blazquez, M. A., Green, R., Nilsson, O., Sussman, M. R. and Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter, Plant Cell, 10, 791–800.
- Blazquez, M. A., Soowal, L. N., Lee, I. and Weigel, D. (1997) LEAFY expression and flower initiation in Arabidopsis, Development, 124, 3835–3844.
- Bowe, L. M., Coat, G. and dePamphilis, C. W. (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers, Proceedings of the National Academy of Sciences of the United States of America, 97, 4092–4097.
- Busch, M. A., Bomblies, K. and Weigel, D. (1999) Activation of a floral homeotic gene in Arabidopsis Science, 285, 585–587.
- Chaw, S. M., Parkinson, C. L., Cheng, Y. C., Vincent, T. M. and Palmer, J. D. (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers, Proceedings of the National Academy of Sciences of the United States of America, 97, 4086–4091.
- Coen, E. S. and Meyerowitz, E. M. (1991) The war of the whorls – genetic interactions controlling flower development, Nature, 353, 31–37.
- Coen, E. S., Romero, J. M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. (1990) Floricaula – a homeotic gene required for flower development in Antirrhinum Majus , Cell, 63, 1311–1322.
- F. Darwin and A. C. Seward, eds (1903) More Letters of Charles Darwin, John Murray, London.
- De Craene, L. P. R. (2003). The evolutionary significance of homeosis in flowers: a morphological perspective, International Journal of Plant Sciences, 164, S225–S235.
- De Craene, L. P. R., Smets, E. F. and Vanvinckenroye, P. (1998) Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae, Journal of Plant Research, 111, 25–43.
- Doyle, J. A. (1994) Origin of the Angiosperm flower – a phylogenetic perspective, Plant Systematics and Evolution, Suppl. 8, 7–29.
- Doyle, J. A. (2000) Paleobotany, relationships, and geographic history of Winteraceae, Annals of the Missouri Botanical Garden, 87, 303–316.
- Doyle, J. A. and Endress, P. K. (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data, International Journal of Plant Sciences, 161, S121–S153.
- Doyle, J. A., Hotton, C. L. and Ward, J. V. (1990). Early Cretaceous tetrads, zonasulculate pollen, and Winteraceae. 2. Cladistic – analysis and implications, American Journal of Botany, 77, 1558–1568.
- Drews, G. N., Bowman, J. L. and Meyerowitz, E. M. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by APETALA2 product, Cell, 65, 991–1002.
- Egea-Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus , EMBO Journal, 18, 5370–5379.
- Endress, P. K. (1996) Structure and function of female and bisexual organ complexes in gnetales, International Journal of Plant Sciences, 157, S113–S125.
- Endress, P. K. (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers, International Journal of Plant Sciences, 162, 1111–1140.
- Fan, H. Y., Hu, Y., Tudor, M. and Ma, H. (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins, Plant Journal, 12, 999–1010.
- Feild, T. S., Arens, N. C., Doyle, J. A., Dawson, T. E. and Donoghue, M. J. (2004) Dark and disturbed: a new image of early angiosperm ecology, Paleobiology, 30, 82–107.
- Feild, T. S., Brodribb, T. and Holbrook, M. (2002) Hardly a relict: freezing and the evolution of vesselless wood in winteraceae, Evolution, 56, 464–478.
- Ferrario, S., Immink, R. G. H., Shchennikova, A., Busscher-Lange, J. and Angenent, G. C. (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia, Plant Cell, 15, 914–925.
- Flanagan, C. A. and Ma, H. (1994) Spatially and temporally regulated expression of the Mads-box gene Agl2 in wild-type and mutant Arabidopsis flowers, Plant Molecular Biology, 26, 581–595.
- Floyd, S. K. and Friedman, W. E. (2000) Evolution of endosperm developmental patterns among basal flowering plants, International Journal of Plant Sciences, 161, S57–S81.
- Fornara, F., Parenicova, L., Falasca, G. et al. (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes, Plant Physiology, 135, 2207–2219.
- Friis, E. M., Crane, P. R. and Pedersen, K. R. (1986) Floral evidence for Cretaceous chloranthoid Angiosperms, Nature, 320, 163–164.
- Friis, E. M., Doyle, J. A., Endress, P. K. and Leng, Q. (2003) Archaefructus – angiosperm precursor or specialized early angiosperm? Trends in Plant Science, 8, 369–373.
-
Frohlich, M. W. (2002) The mostly male theory of flower origins: summary and update regarding the Jurassic pteridosperm Pteroma
, in Developmental Genetics and Plant Evolution (eds Q. C. B. Cronk, R. M. Bateman and J. A. Hawkins), Taylor and Francis Inc., London, pp. 85–108.
10.1201/9781420024982.ch6 Google Scholar
- Frohlich, M. W., and Meyerowitz, E. M. (1997) The search for flower homeotic gene homologs in basal angiosperms and gnetales: a potential new source of data on the evolutionary origin of flowers, International Journal of Plant Sciences, 158, S131–S142.
- Frohlich, M. W. and Parker, D. S. (2000) The mostly male theory of flower evolutionary origins: from genes to fossils, Systematic Botany, 25, 155–170.
- Givnish, T. (1979) On the adaptive significance of leaf form, in Topics in Plant Population Biology (eds O. T. Solbrig, S. Jain, G. B. Johnson and P. H. Raven), Columbia University Press, New York, pp. 375–407.
- Goremykin, V. V., Hansmann, S. and Martin, W. F. (1997) Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times, Plant Systematics and Evolution, 206, 337–351.
- Goto, K. and Meyerowitz, E. M. (1994) Function and regulation of the Arabidopsis floral homeotic gene Pistillata, Genes & Development, 8, 1548–1560.
- Goto, K., Kyozuka, J. and Bowman, J. L. (2001) Turning floral organs into leaves, leaves into floral organs, Current Opinion in Genetics & Development, 11, 449–456.
- Graham, S. W. and Olmstead, R. G. (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms, American Journal of Botany, 87, 1712–1730.
- Grant, V. (1971) Plant Speciation, 2nd edn, Columbia University Press, New York.
- Grant, V. (1994) Modes and origins of mechanical and ethological isolation in angiosperms, Proceedings of the National Academy of Sciences of the United States of America, 91, 3–10.
- Hill, T. A., Day, C. D., Zondlo, S. C., Thackeray, A. G. and Irish, V. F. (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3, Development, 125, 1711–1721.
- Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs, Nature, 409, 525–529.
- Hufford, L. (1996) The morphology and evolution of male reproductive structures of gnetales, International Journal of Plant Sciences, 157, S95–S112.
- Huijser, P., Klein, J., Lonnig, W. E., Meijer, H., Saedler, H. and Sommer, H. (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the Mads-box gene Squamosa in Antirrhinum Majus , EMBO Journal, 11, 1239–1249.
- Ingram, G. C., Doyle, S., Carpenter, R., Schultz, E. A., Simon, R. and Coen, E. (1997) Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum , EMBO Journal, 16, 6521–6534.
- Ingram, G. C., Goodrich, J., Wilkinson, M. D., Simon, R., Haughn, G. W. and Coen, E. S. (1995) Parallels between unusual floral organs and Fimbriata, genes controlling flower development in Arabidopsis and Antirrhinum, The Plant Cell, 7, 1501–1510.
- Irish, V.F. and Sussex, I. M. (1990) Function of the Apetala-1 gene during Arabidopsis floral development, The Plant Cell, 2, 741–753.
- Jack, T. (2004) Molecular and genetic mechanisms of floral control, The Plant Cell, 16, S1–S17.
- Jack, T., Brockman, L. L. and Meyerowitz, E. M. (1992) The homeotic gene Apetala3 of Arabidopsis Thaliana encodes a Mads box and is expressed in petals and stamens, Cell, 68, 683–697.
- Kramer, E. M. and Irish, V. F. (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms, International Journal of Plant Sciences, 161, S29–S40.
- Kuzoff, R. K. and Gasser, C. S. (2000) Recent progress in reconstructing angiosperm phylogeny, Trends in Plant Science, 5, 330–336.
- Laux, T., Mayer, K. F. X., Berger, J. and Jurgens, G. (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development, 122, 87–96.
- Lee, I., Wolfe, D. S., Nilsson, O. and Weigel, D. (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS, Current Biology, 7, 95–104.
- Lenhard, M., Bohnert, A., Jurgens, G. and Laux, T. (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS, Cell, 105, 805–814.
- Levin, J. Z. and Meyerowitz, E. M. (1995) Ufo – an Arabidopsis gene involved in both floral meristem and floral organ development, The Plant Cell, 7, 529–548.
- Litt, A. and Irish, V. F. (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development, Genetics, 165, 821–833.
- Lohmann, J. U. and Weigel, D. (2002) Building beauty: the genetic control of floral patterning, Developmental Cell, 2, 135–142.
- Lohmann, J. U., Hong, R. L., Hobe, M. et al. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis, Cell, 105, 793–803.
- Long, J. A. and Barton, M. K. (1998) The development of apical embryonic pattern in Arabidopsis, Development, 125, 3027–3035.
- Mandel, M. A. and Yanofsky, M. F. (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia, Sexual Plant Reproduction, 11, 22–28.
- Mathews, S. and Donoghue, M. J. (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes, Science, 286, 947–950.
- Mayer, K. F. X., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T. (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell, 95, 805–815.
- McGonigle, B., Bouhidel, K. and Irish, V. F. (1996) Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression, Genes & Development, 10, 1812–1821.
- Ng, M. and Yanofsky, M. F. (2001) Activation of the arabidopsis B class homeotic genes by APETALA1, Plant Cell, 13, 739–753.
- Parcy, F., Bomblies, K. and Weigel, D. (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis, Development, 129, 2519–2527.
- Parcy, F., Nilsson, O., Busch, M. A., Lee, I. and Weigel, D. (1998) A genetic framework for floral patterning, Nature, 395, 561–566.
- Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. and Yanofsky, M. F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature, 405, 200–203.
- Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E. R. and Yanofsky, M. F. (2001) Conversion of leaves into petals in Arabidopsis, Current Biology, 11, 182–184.
- Qiu, Y. L., Lee, J., Bernasconi-Quadroni, F. et al. (2000) Phylogeny of basal angiosperms: analyses of five genes from three genomes, International Journal of Plant Sciences, 161, S3–S27.
- Qiu, Y. L., Lee, J. H., Bernasconi-Quadroni, F. et al. (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes, Nature 402, 404–407.
- Regal, P. J. (1977) Ecology and evolution of flowering plant dominance, Science, 196, 622–629.
- Riechmann, J. L., Krizek, B. A. and Meyerowitz, E. M. (1996a) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS, Proceedings of the National Academy of Sciences of the United States of America, 93, 4793–4798.
- Riechmann, J. L., Wang, M. Q. and Meyerowitz, E. M. (1996b) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS, Nucleic Acids Research, 24, 3134–3141.
- Samach, A., Klenz, J. E., Kohalmi, S. E., Risseeuw, E., Haughn, G. W. and Crosby, W. L. (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem, The Plant Journal, 20, 433–445.
- Savard, L., Li, P., Strauss, S. H., Chase, M. W., Michaud, M. and Bousquet, J. (1994) Chloroplast and nuclear gene-sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants, Proceedings of the National Academy of Sciences of the United States of America, 91, 5163–5167.
- Savidge, B., Rounsley, S. D. and Yanofsky, M. F. (1995) Temporal Relationship between the Transcription of 2 Arabidopsis Mads Box Genes and the Floral Organ Identity Genes, The Plant Cell, 7, 721–733.
- Schmid, M., Uhlenhaut, N. H., Godard, F. et al. (2003) Dissection of floral induction pathways using global expression analysis, Development, 130, 6001–6012.
- Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus , Science, 250, 931–936.
- Simon, R., Carpenter, R., Doyle, S. and Coen, E. (1994) Fimbriata controls flower development by mediating between meristem and organ identity genes, Cell, 78, 99–107.
- Soltis, P. S., Soltis, D. E. and Chase, M. W. (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology, Nature, 402, 402–404.
- Soltis, P. S., Soltis, D. E., Zanis, M. J. and Kim, S. (2000) Basal lineages of angiosperms: relationships and implications for floral evolution, International Journal of Plant Sciences, 161, S97–S107.
- Sun, G., Dilcher, D. L., Zheng, S. L. and Zhou, Z. K. (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China, Science, 282, 1692–1695.
- Sun, G., Ji, Q., Dilcher, D. L., Zheng, S. L., Nixon, K. C. and Wang, X. F. (2002) Archaefructaceae, a new basal angiosperm family, Science, 296, 899–904.
- Takhtajan, A. (1991) Evolutionary Trends in Flowering Plants, Columbia University Press, New York.
- Taylor, S. A., Hofer, J. M. I., Murfet, I. C. et al. (2002) PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea, Plant Physiology, 129, 1150–1159.
- Theissen, G. (2001) Development of floral organ identity: stories from the MADS house, Current Opinion in Plant Biology, 4, 75–85.
- Theissen, G. and Becker, A. (2004) Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin, Critical Reviews in Plant Sciences, 23, 129–148.
- Theissen, G. and Saedler, H. (2001) Plant biology – floral quartets, Nature, 409, 469–471.
- Theissen, G., Becker, A., Winter, K. U., Munster, T., Kirchner, C. and Saedler, H. (2002) How the land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers, in Developmental Genetics and Plant Evolution (eds Q. C. B. Cronk, R. M. Bateman and J. A. Hawkins), Taylor and Francis Inc., London, PP. 173–205.
- Tooke, F. and Battey, N. (2003) Models of shoot apical meristem function, New Phytologist, 159, 37–52.
- Trobner, W., Ramirez, L., Motte, P. et al. (1992) Globosa – a homeotic gene which interacts with deficiens in the control of Antirrhinum floral organogenesis, EMBO Journal, 11, 4693–4704.
- Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K. and Gerats, T. (2004) The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development, The Plant Cell, 16, 741–754.
- Walker, J. W., Brenner, G. J. and Walker, A. G. (1983) Winteraceous pollen in the lower Cretaceous of Israel – early evidence of a Magnolialean Angiosperm family, Science, 220, 1273–1275.
- Wang, X. P., Feng, S. H., Nakayama, N. et al. (2003) The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development, The Plant Cell, 15, 1071–1082.
- Weigel, D. and Meyerowitz, E. M. (1993) Activation of floral homeotic genes in Arabidopsis, Science, 261, 1723–1726.
- Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. and Meyerowitz, E. M. (1992) Leafy controls floral meristem identity in Arabidopsis, Cell, 69, 843–859.
- Wilkinson, M. D. and Haughn, G. W. (1995) Unusual floral organs controls meristem identity and organ primordia fate in Arabidopsis, The Plant Cell, 7, 1485–1499.
- Winter, K. U., Becker, A., Munster, T., Kim, J. T., Saedler, H. and Theissen, G. (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants, Proceedings of the National Academy of Sciences of the United States of America, 96, 7342–7347.
- Winter, K. U., Weiser, C., Kaufmann, K. et al. (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization, Molecular Biology and Evolution, 19, 587–596.
- Yang, Y. Z., Fanning, L. and Jack, T. (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA, The Plant Journal, 33, 47–59.
- Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A. and Meyerowitz, E. M. (1990) The protein encoded by the Arabidopsis homeotic gene Agamous resembles transcription factors, Nature, 346, 35–39.
- Zanis, M. J., Soltis, D. E., Soltis, P. S., Mathews, S. and Donoghue, M. J. (2002). The root of the angiosperms revisited, Proceedings of the National Academy of Sciences of the United States of America, 99, 6848–6853.
- Zanis, M. J., Soltis, P. S., Qiu, Y. L., Zimmer, E. and Soltis, D. E. (2003) Phylogenetic analyses and perianth evolution in basal angiosperms, Annals of the Missouri Botanical Garden, 90, 129–150.
- Zhao, D. Z., Yu, Q. L., Chen, M. and Ma, H. (2001) The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis, Development, 128, 2735–2746.
Citing Literature
Browse other articles of this reference work: