9 Cytoskeletal Requirements during Arabidopsis Trichome Development
Annual Plant Reviews book series, Volume 10: The Plant Cytoskeleton in Cell Differentiation and Development
3. The Cytoskeleton and Plant Cell Morphogenesis
Mark Beilstein,
Dan Szymanski,
Mark Beilstein
Department of Biology, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO, 63121
Search for more papers by this authorDan Szymanski
Department of Agronomy, Purdue University, 1150 Lilly Hall of Life Sciences, W. Lafayette, IN, 47907-1150 USA
Search for more papers by this authorMark Beilstein,
Dan Szymanski,
Mark Beilstein
Department of Biology, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO, 63121
Search for more papers by this authorDan Szymanski
Department of Agronomy, Purdue University, 1150 Lilly Hall of Life Sciences, W. Lafayette, IN, 47907-1150 USA
Search for more papers by this authorThis article was originally published in 2004 in The Plant Cytoskeleton in Cell Differentiation and Development, Volume 10 (ISBN 9781841274218) of the Annual Plant Reviews book series, this volume edited by Patrick J. Hussey. The article was republished in Annual Plant Reviews online in April 2018.
Abstract
The sections in this article are
- Introduction
- Trichome Morphogenesis
- Arabidopsis Trichome Development
- Arabidopsis Trichome Morphogenesis
- Genetics of Trichome Morphogenesis
- Concluding Remarks
- Acknowledgements
References
- Al-Shehbaz, I. (1984) The tribes of the Cruciferae (Brassicaceae) in the southeastern United States. J . Arnold Arboretum, 65, 343–373.
-
Al-Shehbaz, I. (1989)
Dactylocardamum (Brassicaceae), a remarkable new genus from Peru. J
. Arnold Arboretum, 70, 515–521.
10.5962/bhl.part.19793 Google Scholar
-
Al-Shehbaz, I. (1994a)
Petroravenia (Brassicaceae), a new genus from Argentina. Novon, 4, 191–196.
10.2307/3391638 Google Scholar
-
Al-Shehbaz, I. (1994b) Three new South American species of Draba (Brassicaceae). Novon, 4, 197–202.
10.2307/3391639 Google Scholar
- Archer, J.E., Vega, L.R. & Solomon, F. (1995) Rbl2p, a yeast protein that binds to β-tubulin and participates in microtubule function in vivo . Cell, 82, 425–434.
- Baluska, F., Salaj, J., Mathur, J., et al. (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansion-enriched bulges. Dev. Biol., 227, 618–632.
- Bhamidipati, A., Lewis, S.A. & Cowan, N.J. (2000) ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J. Cell Biol., 149, 1087–1096.
- Bibikova, T.N., Blancaflor, E.B. & Gilroy, S. (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana . Plant J., 17, 657–665.
- Bichet, A., Desnos, T., Turner, S., Grandjean, O. & Hofte, H. (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis . Plant J., 25, 137–148.
- Brugnera, E., Haney, L., Grimsley, C., et al. (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat. Cell Biol., 4, 574–582.
- Burk, D.H., Liu, B., Zhong, R., Morrison, W.H. & Ye, Z.H. (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell, 13, 807–827.
- Burk, D.H. & Ye, Z. (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell, 14, 2145–2160.
- Chinnadurai, G. (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell, 9, 213–224.
- Cote, J.-F. & Vuori, K. (2002) Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci., 115, 4901–4913.
- Cutler, S.R., Ehrhardt, D.W., Griffitts, J.S. & Somerville, C.R. (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA, 97, 3718–3723.
- de Vetten, N., Quattrocchio, F., Mol, J. & Koes, R. (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev., 11, 1422–1434.
- Erickson, M.R.S., Galletta, B.S. & Abmayr, S.M. (1997) Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol., 138, 589–603.
- Feenstra, W.J. (1978) Contiguity of linkage groups I and IV as revealed by linkage relationship of two newly isolated markers dis-1 and dis-2 . Arab. Inf. Serv., 15, 35–38.
- Folkers, U., Kirik, V., Schöbinger, U., et al. (2002) The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. EMBO J., 21, 1280–1288.
- Fu, Y., Li, H. & Yang, Z. (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell, 14, 777–794.
- Hall, J.C., Systsma, K.J. & Ilstis, H.H. (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am. J. Bot., 89, 1826.
- Hartman, J.J., Mahr, J., McNally, K., et al. (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell, 93, 277–287.
- Hasegawa, H., Kiyokawa, E., Tanaka, S., et al. (1996) DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell Biol., 16, 1770–1776.
- Hirata, D., Masuda, H., Eddison, M. & Toda, T. (1998) Essential role of tubulin-folding cofactor D in microtubule assembly and its association with microtubules in fission yeast. EMBO J., 17, 658–666.
- Hoyt, M.A., Macke, J.P., Roberts, B.T. & Geiser, J.R. (1997) Saccharomyces cerevisiae PAC2 functions with CIN1, 2 and 4 in a pathway leading to normal microtubule stability. Genetics, 146, 849–857.
- Hülskamp, M., Misra, S. & Jürgens, G. (1994) Genetic dissection of trichome cell development in Arabidopsis . Cell, 76, 555–566.
- Jackson, S.L. & Heath, I.B. (1993) The dynamic behavior of cytoplasmic F-actin in growing hyphae. Protoplasma, 173, 23–34.
- Johnson, H.B. (1975) Plant pubescence: an ecological perspective. Bot. Rev., 41, 233–258.
- Johnson, C.S., Kolevski, B. & Smyth, D.R. (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 14, 1359–1375.
- Kao, Y.-L., Deavours, B.E., Phelps, K.K., Walker, R.A. & Reddy, A.S.N. (2000) Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/Calmodulin. Biochem. Biophys. Res. Commun., 267, 201–207.
- Kim, G., Shoda, K., Tsuge, T., et al. (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J., 21, 1267–1279.
- Kirik, V., Grini, P.E., Mathur, J., et al. (2002a) The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the α-/β-tubulin monomer balance. Plant Cell, 14, 2265–2276.
- Kirik, V., Mathur, J., Grini, P.E., et al. (2002b) Functional analysis of the tubulin folding cofactor C in Arabidopsis thaliana . Curr. Biol., 12, 1519–1523.
- Kiyokawa, E., et al. (1998) Evidence that DOCK180 up-regulates signals from the crkII-p130(cas) complex. J. Biol. Chem., 273, 24479–24484.
- Koch, M., Haubold, B. & Mitchell-Olds, T. (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am. J. Bot., 88, 534–544.
- Kopczak, S., et al. (1992) The small genome of Arabidopsis contains at least six expressed α-tubulin genes. Plant Cell, 4, 539–547.
- Krishnakumar, S. & Oppenheimer, D.G. (1999) Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in trichome branch formation and pollen tube growth. Development, 126, 3079–3088.
- Larkin, J.C., Young, N., Prigge, M. & Marks, M.D. (1996) The control of trichome spacing and number in Arabidopsis . Development, 122, 997–1005.
- Larkin, J.C., Marks, M.D., Nadeau, J. & Sack, F. (1997) Epidermal cell fate and patterning in leaves. Plant Cell, 9, 1109–1120.
- Larkin, J.C., Walker, J.D., Bolognesi-Winfield, A.C., Gray, J.C. & Walker, A.R. (1999) Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana . Genetics, 151, 1591–1604.
- Lee, M.M. & Schiefelbein, J. (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell, 99, 473–483.
- Lewis, S.A., Tian, G. & Cowan, N.J. (1997) The α- and β-tubulin folding pathways. Trends Cell Biol., 7, 479–484.
-
Li, H. & Yang, Z. (2000) Rho GTPases and the actin cytoskeleton. Actin: a dynamic framework for multiple plant cell functions, 301–322.
10.1007/978-94-015-9460-8_17 Google Scholar
- Lloyd, A.M., Schena, M., Walbot, V. & Davis, R.W. (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science, 266, 436–439.
- Luo, D. & Oppenheimer, D.G. (1999) Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci. Development, 126, 5547–5557.
- Marc, J., Granger, C.L., Brincat, J., et al. (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell, 10, 1927–1940.
- Marks, M.D. (1997) Molecular genetic analysis of trichome development in Arabidopsis . Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 137–163.
- Mathur, J., Spielhofer, P., Kost, B. & Chua, N. (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana . Development, 126, 5559–5568.
- Mathur, J. & Chua, N.-H. (2000) Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell, 12, 465–477.
- Mauricio, R. & Rausher, M.D. (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution, 51, 1435–1444.
- Mauricio, R., Rausher, M.D. & Burdick, D.S. (1997) Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecology, 78, 1301–1311.
- Mauricio, R. (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana . Am. Nat., 151, 20–28.
- McClinton, R.S., Chandler, J.S. & Callis, J. (2001) cDNA isolation, characterization, and protein intracellular localization of a katanin-like p60 subunit from Arabidopsis thaliana . Protoplasma, 216, 181–190.
- McElver, J., Tzafrir, I., Aux, G., et al. (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana . Genetics, 159, 1751–1763.
- McNally, F.J. & Vale, R.D. (1993) Identification of Katanin, an ATPase that severs and disassembles stable microtubules. Cell, 75, 419–429.
- McNally, F.J., Okawa, K., Iwamatsu, A. & Vale, R. (1996) Katanin, the microtubule-severing ATPase, is concentrated at centrosomes. J. Cell Sci., 109, 561–567.
- Melaragno, J.E., Mehrota, B. & Coleman, A.W. (1993) Relationship between endoploidy and cell size in epidermal tissue of Arabidopsis . Plant Cell, 5, 1661–1668.
- Meller, N., Irani-Tehrani, M., Kiosses, W.B., Del Pozo, M.A. & Schwartz, M.A. (2002) Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nat. Cell Biol., 4, 639–647.
- Miller, D.D., de Ruijter, N.C.A., Bisseling, T. & Emons, A.M.C. (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J., 17, 141–154.
- Molendijk, A.J., Bischoff, F., Rajendrakumar, C.S., et al. (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J., 20, 2779–2788.
- Moore, R., Zhang, M., Cassimeris, L. & Cyr, R. (1997) In vitro assembled plant microtubules exhibit a high state of dynamic instability. Cell Motil. Cytoskel., 38, 278–286.
- Mulligan, G.A. (1995) Synopsis of the genus Arabis (Brassicaceae) in Canada, Alaska and Greenland. Rhodora, 97, 109–163.
- Narasimhulu, S.B. & Reddy, A.S.N. (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell, 10, 957–965.
- Nolan, K.M., et al. (1998) Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a rac signaling pathway utilized for multiple developmental processes. Genes Dev., 12, 3337–3342.
- O'Kane, S.L.J., Schaal, B.A. & Al-Shehbaz, I.A. (1996) The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Syst. Bot., 21(4), 559–566.
- Olson, K.R., McIntosh, J.R. & Olmstead, J.B. (1995) Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol., 130, 639–650.
- Oppenheimer, D.G., Pollock, M.A., Vacik, J., et al. (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc. Natl. Acad. Sci. USA, 94, 6261–6266.
- Otegui, M. & Staehelin, L. (2000a) Cytokinesis in flowering plants: more than one way to divide a cell. Cell Biol., 3, 493–502.
- Otegui, M. & Staehelin, L.A. (2000b) Synctial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis . Plant Cell, 12, 933–947.
- Payne, C.T., Zhang, F. & Lloyd, A.M. (2000) GL3 is a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 156, 1349–1362.
- Picton, J.M. & Steer, M.W. (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J. Cell Sci., 49, 261–272.
- Qiu, J.L., Jilk, R., Marks, M.D. & Szymanski, D.B. (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell, 14, 101–118.
- Quarmby, L. (2000) Cellular samurai: katanin and the severing of microtubules. J. Cell Sci., 113, 2821–2827.
- Radcliffe, P.A., Hirata, D., Vardy, L. & Toda, T. (1999) Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast. Mol. Biol. Bell, 10, 2987–3001.
- Reddien, P.W. & Horvitz, H.R. (2000) CED-2/crkll and CED-10/rac control phagocytosis and cell migration in Caenorhabditis elegans . Nat. Cell Biol., 2, 131–136.
- Reddy, A., Narasimhulu, S., Safadi, F. & Golovkin, M. (1996a) A plant kinesin heavy chain-like protein is a calmodulin-binding protein. Plant J., 10, 9–21.
- Reddy, A., Safadi, F., Narasimhulu, S., Golovkin, M. & Hu, X. (1996b) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J. Biol. Chem., 271, 7052–7060.
- Rerie, W.G., Feldmann, K.A. & Marks, M.D. (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis . Genes Dev., 8, 1388–1399.
- Rollins, R.C. & Banerjee, U.C. (1975) Atlas of the Trichomes of Lesquerella (Cruciferae), Bussey Institute, Harvard University.
- Rollins, R.C. & Banerjee, U.C. (1976) Trichomes in Studies of the Cruciferae, Academic Press Inc., London.
- Schaeper, U., Boyd, J.M., Verma, S., Uhlmann, E., Subramanian, T. & Chinnadurai, G. (1995) Molecular cloning and characterization of a cellular phoshoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc. Natl. Acad. Sci. USA, 92, 10467–10471.
- Schellmann, S., Schnittger, A., Kirik, V., et al. (2002) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis . EMBO J., 21, 5036–5046.
- Schiefelbein, J.W. (2000) Constructing a plant cell. The genetic control of root hair development. Plant Physiol., 124, 1525–1531.
- Sharp, D.J., Rogers, G.C. & Scholey, J.M. (2000) Microtubule motors in mitosis. Nature, 407, 41–47.
- Smirnova, E., Reddy, A., Bowser, J. & Bajer, A. (1998) Minus end-directed kinesin-like motor protein, Kcbp, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil. Cytoskel., 41, 271–280.
- Snustad, D., Haas, N., Kopczak, S. & Silflow, C. (1992) The small genome of Arabidopsis contains at least nine expressed β-tubulin genes. Plant Cell, 4, 549–556.
- Song, H., Golovkin, M., Reddy, A.S. & Endow, S.A. (1997) In vitro motility of ATKCBP, a calmodulin-binding kinesin protein of Arabidopsis . Proc. Natl. Acad. Sci. USA, 94, 322–327.
- Spanfò, S., Silletta, M.G., Colanzi, A., et al. (1999) Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. J. Biol. Chem., 274, 17705–17710.
- Srayko, M., Buster, D.W., Bazirgan, O.A., McNally, F.J. & Mains, P.E. (2000) MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Gene Dev., 14, 1072–1084.
- Steinborn, K., Maulbetsch, C., Priester, B., et al. (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Gene Dev., 16, 959–971.
- Stoppin-Mellet, V., Gaillard, J. & Vantard, M. (2002) Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem. J., 365, 337–342.
- Szymanski, D.B. & Marks, M.D. (1998) GLABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis . Plant Cell, 10, 2047–2062.
- Szymanski, D.B., Jilk, R.A., Pollock, S.M. & Marks, M.D. (1998a) Control of GL2 expression in Arabidopsis leaves and trichomes. Development, 125, 1161–1171.
- Szymanski, D.B., Klis, D.A., Larkin, J.C. & Marks, M.D. (1998b) cot1: A regulator of Arabidopsis trichome initiation. Genetics, 149, 565–577.
- Szymanski, D.B., Marks, M.D. & Wick, S.M. (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis . Plant Cell, 11, 2331–2347.
- Szymanski, D.B., Lloyd, A.M. & Marks, M.D. (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis . Trends Plant Sci., 5, 214–219.
- Szymanski, D.B. (2001) Arabidopsis trichome morphogenesis: a genetic approach to studying cytoskeletal function. J. Plant Growth Regul., 20, 131–140.
- Tian, G., Huang, Y., Rommelaere, H., Vandekerckhove, J., Ampe, C. & Cowan, N.J. (1996) Pathway leading to correctly folded β-tubulin. Cell, 86, 287–296.
- Tian, G., Lewis, S.A., Feierbach, B., et al. (1997) Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors. J. Cell Biol., 138, 821–832.
- Tiwari, S.C. & Wilkins, T.A. (1995) Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can. J. Bot., 73, 746–757.
- Tsuge, T., Tsukaya, H. & Uchimiya, H. (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development, 122, 1589–1600.
- Tzafrir, I., McElver, J.A., Liu, C.M., et al. (2002) Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol., 128, 38–51.
- Ueda, K., Matsuyama, T. & Hashimoto, T. (1999) Visualization of microtubules in living cells of transgeneic Arabidopsis thaliana . Protoplasma, 206, 201–206.
- Vos, J., Safadi, F., Reddy, A. & Hepler, P. (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell, 12, 979–990.
- Wada, T., Tachibana, T., Shimura, Y. & Okada, K. (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC . Science, 277, 1113–1116.
- Wasteneys, G.O., Willingale-Theune, J. & Menzel, D. (1997) Freeze shattering: A simple and effective method for permeabilizing higher plant cell walls. J. Microsc., 188, 51–61.
- Webb, M., Jouannic, S., Foreman, J., Linstead, P. & Dolan, L. (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3 a katanin-p60 protein. Development, 129, 123–131.
- Weigert, R., Silletta, M.G., Spano, S., et al. (1999) CtBP/BARS induces fusion of Golgi membranes by acylating lysophatidic acid. Nature, 402, 429–433.
- Weinstein, B. & Solomon, F. (1990) Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between α-tubulin and β-tubulin. Mol. Cell Biol., 10, 5295–5304.
- Wu, Y.C. & Horvitz, H.R. (1998) C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature, 392, 501–504.
- Wu, G., Li, H. & Yang, Z. (2000) Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation. Plant Physiol., 124, 1625–1636.
Citing Literature
Browse other articles of this reference work: