Hollow Fiber Nanofiltration Membranes for Water Treatment
Reyhan Sengur-Tasdemir
Istanbul Technical University, Istanbul, Turkey
Search for more papers by this authorGulsum Melike Urper-Bayram
Istanbul Technical University, Istanbul, Turkey
Search for more papers by this authorEsra Ates-Genceli
Istanbul Technical University, Istanbul, Turkey
Search for more papers by this authorVolodymyr V. Tarabara
Michigan State University, East Lansing, MI, USA
Search for more papers by this authorReyhan Sengur-Tasdemir
Istanbul Technical University, Istanbul, Turkey
Search for more papers by this authorGulsum Melike Urper-Bayram
Istanbul Technical University, Istanbul, Turkey
Search for more papers by this authorEsra Ates-Genceli
Istanbul Technical University, Istanbul, Turkey
Search for more papers by this authorVolodymyr V. Tarabara
Michigan State University, East Lansing, MI, USA
Search for more papers by this authorAbstract
Global drinking water crisis is a major driver behind the continued progress in the field of water treatment and water quality control. Separation by synthetic membranes is now well established as one of staple water treatment technologies capable of delivering high quality water. Nanofiltration (NF), in particular, occupies an important niche in the family of membrane separations as a key drinking water treatment method. Owing to its lower energy consumption, NF replaces reverse osmosis in applications such as water softening and removal of natural organic matter. This article describes hollow fiber nanofiltration (HF NF) membranes as applied to drinking water treatment. A brief introduction to the hollow fiber technology is followed by an overview of HF NF fabrication methods and examples of HF NF applications in water treatment. We conclude by discussing future prospects of this increasingly important type of membranes.
References
- 1Suthar, R.G. and Gao, B. (2017). Nanotechnology in the Agri-Food Industry : Water Purification (ed. A.M. Grumezescu), 75–118. Romania: Academic Press.
- 2 EPA (2009). Drinking Water Contaminants – Standards and Regulations. New York: EPA. https://www.epa.gov/dwstandardsregulations.
- 3Koyuncu, I., Sengur, R., Turken, T. et al. (2015). Advances in Membrane Technologies for Water Treatment (ed. A. Basile, A. Cassano and N.K. Rastogi), 83–128. Oxford, UK: Woodhead Publishing.
10.1016/B978-1-78242-121-4.00003-4 Google Scholar
- 4Cakmakci, M., Baspinar, A.B., Balaban, U. et al. (2009). Desalin. Water Treat. 9: 149–154. doi: 10.5004/dwt.2009.765.
- 5Koyuncu, I., Arikan, O., Wiesner, M.R., and Rice, C. (2008). J. Membr. Sci. 309: 94–101. doi: 10.1016/j.memsci.2007.10.010.
- 6Uyak, V., Koyuncu, I., Oktem, I. et al. (2008). J. Hazard. Mater. 152: 789–794. doi: 10.1016/j.jhazmat.2007.07.082.
- 7Hilal, N., Al-Zoubi, H., Darwish, N.A. et al. (2004). Desalination 170: 281–308. doi: 10.1016/j.desal.2004.01.007.
- 8Gao, Y., de Jubera, A.M.S., Mariñas, B.J., and Moore, J.S. (2013). Adv. Funct. Mater. 23: 509–607. doi: 10.1002/adfm.201201004.
- 9Lee, K.P., Bargeman, G., de Rooij, R. et al. (2017). J. Membr. Sci. 523: 487–496. doi: 10.1016/j.memsci.2016.10.012.
- 10Qiu, W.Z., Zhong, Q.Z., Du, Y. et al. (2016). Green Chem. 18: 6205–6208. doi: 10.1039/c6gc02039a.
- 11Baker, W.R. (2004). Membrane Technology and Applications, 2e. West Sussex, England: John Wiley and Sons.
10.1002/0470020393 Google Scholar
- 12Futselaar, H., Schonewille, H., and van der Meer, W. (2003). Desalination 157: 135–136. doi: 10.1016/S0011-9164(03)00392-8.
- 13Frank, M., Bargeman, G., Zwijnenburg, A., and Wessling, M. (2001). Sep. Purif. Technol. 22–23: 499–506. doi: 10.1016/S1383-5866(00)00171-4.
- 14Futselaar, H., Schonewille, H., and van der Meer, W. (2002). Desalination 145: 75–80. doi: 10.1016/S0011-9164(02)00389-2.
- 15Howe, K.J., Hand, D.W., Crittenden, J.C. et al. (2012). Principles of Water Treatment (ed. K.J. Howe, D.W. Hand, J.C. Crittenden, et al.). Hoboken, NJ, USA: Wiley.
- 16Urper, G.M., Sengur-Tasdemir, R., Turken, T. et al. (2017). Sep. Sci. Technol. doi: 10.1080/01496395.2017.1321668.
- 17van der Meer, W.G.J. and van Dijk, J.C. (1997). Desalination 113: 129–146. doi: 10.1016/S0011-9164(97)00121-5.
- 18Paul, M. and Jons, S.D. (2016). Polymer 103: 417–456. doi: 10.1016/j.polymer.2016.07.085.
- 19Sun, S.P., Wang, K.Y., Peng, N. et al. (2010). J. Membr. Sci. 363: 232–242. doi: 10.1016/j.memsci.2010.07.038.
- 20Zhu, W.P., Sun, S.P., Gao, J. et al. (2014). J. Membr. Sci. 456: 117–127. doi: 10.1016/j.memsci.2014.01.001.
- 21Bilongo, T.G., Remigy, J.-C., and Clifton, M.J. (2010). J. Membr. Sci. 364: 304–308. doi: 10.1016/j.memsci.2010.08.024.
- 22Xu, H.-M., Wei, J.-F., and Wang, X.-L. (2014). Desalination 346: 122–130. doi: 10.1016/j.desal.2014.05.017.
- 23Junfu, W., Kongyin, Z., Lei, W. et al. (2010). Macromol. Symp. 297: 231–239. doi: 10.1002/masy.200900099.
- 24Wang, X.-L., Wei, J.F., Dai, Z. et al. (2012). Desalination 286: 138–144. doi: 10.1016/j.desal.2011.11.014.
- 25Kroll, S., Meyer, L., Graf, A.M. et al. (2007). J. Membr. Sci. 299: 9. doi: 10.1016/j.memsci.2007.04.039.
- 26Zhao, C., Xue, J., Ran, F., and Sun, S. (2013). Prog. Mater. Sci. 58: 76–150. doi: 10.1016/j.pmatsci.2012.07.002.
- 27Ilyas, S., Abtahi, S.M., Akkilic, N. et al. (2017). J. Membr. Sci. 537: 220–228. doi: 10.1016/j.memsci.2017.05.027.
- 28Ismail, A.F., Padaki, M., Hilal, N. et al. (2015). Desalination 356: 140–148. doi: 10.1016/j.desal.2014.10.042.
- 29Lau, W.J., Ismail, A.F., Goh, P.S. et al. (2015). Sep. Purif. Rev. 44: 135–156. doi: 10.1080/15422119.2014.882355.
- 30Lau, W.J., Ismail, A.F., Misdan, N., and Kassim, M.A. (2012). Desalination 287: 190–199. doi: 10.1016/j.desal.2011.04.004.
- 31Mohammad, A.W., Teow, Y.H., Ang, W.L. et al. (2015). Desalination 356: 226–254. doi: 10.1016/j.desal.2014.10.043.
- 32Chen, Q., Yu, P., Huang, W. et al. (2015). J. Membr. Sci. 492: 312–321. doi: 10.1016/j.memsci.2015.05.068.
- 33Guo, Y., Wang, X., Hu, P., and Peng, X. (2016). Appl. Mater. Today 5: 103–110. doi: 10.1016/j.apmt.2016.07.007.
- 34Zheng, Y., Yao, G., Cheng, Q. et al. (2013). Desalination 328: 42–50. doi: 10.1016/j.desal.2013.08.009.
- 35Li, H., Shi, W., Wang, W., and Zhu, H. (2015). Sep. Purif. Technol. 146: 342–350. doi: 10.1016/j.seppur.2015.04.004.
- 36Mondal, M. and De, S. (2016). Chem. Eng. J. 285: 304–318. doi: 10.1016/j.cej.2015.10.005.
- 37Labban, O., Liu, C., Chong, T.H., and Lienhard, J.H. (2017). J. Membr. Sci. 521: 18–32. doi: 10.1016/j.memsci.2016.08.062.
- 38Rajabzadeh, S., Liu, C., Shi, L., and Wang, R. (2014). Desalination 344: 64–70. doi: 10.1016/j.desal.2014.03.013.
- 39Wei, X., Shi, Y., Fei, Y. et al. (2016). Chem. Eng. J. 292: 382–388. doi: 10.1016/j.cej.2016.02.037.
- 40Wang, T., Zhao, C., Li, P. et al. (2015). J. Membr. Sci. 477: 74–85. doi: 10.1016/j.memsci.2014.12.038.
- 41Gao, J., Sun, S.-P., Zhu, W.-P., and Chung, T.S. (2016). J. Membr. Sci. 499: 361–369. doi: 10.1016/j.memsci.2015.10.051.
- 42Fang, W., Shi, L., and Wang, R. (2013). J. Membr. Sci. 430: 129–139. doi: 10.1016/j.memsci.2012.12.011.
- 43Liu, C., Shi, L., and Wang, R. (2015). J. Membr. Sci. 486: 169–176. doi: 10.1016/j.memsci.2015.03.050.
- 44Fang, W., Shi, L., and Wang, R. (2014). J. Membr. Sci. 468: 52–61. doi: 10.1016/j.memsci.2014.05.047.
- 45Wu, C., Liu, S., Wang, Z. et al. (2016). J. Membr. Sci. 517: 64–72. doi: 10.1016/j.memsci.2016.05.033.
- 46Rahimpour, A., Jahanshahi, M., Mortazavian, N. et al. (2010). Appl. Surf. Sci. 256: 1657–1663. doi: 10.1016/j.apsusc.2009.09.089.
- 47Li, X., Zhao, C., Yang, M. et al. (2017). Appl. Surf. Sci. 419, 418–428. doi: 10.1016/j.apsusc.2017.04.080.
- 48Goh, K., Setiawan, L., Wei, L. et al. (2015). J. Membr. Sci. 474: 244–253. doi: 10.1016/j.memsci.2014.09.057.
- 49Liu, C., Shi, L., and Wang, R. (2015). React. Funct. Polym. 86: 154–160. doi: 10.1016/j.reactfunctpolym.2014.07.018.
- 50Li, X., Zhang, C., Zhang, S. et al. (2015). Desalination 369: 26–36. doi: 10.1016/j.desal.2015.04.027.
- 51Setiawan, L., Shi, L., and Wang, R. (2014). Polymer 55: 1367–1374. doi: 10.1016/j.polymer.2013.12.032.
- 52Davydova, S.L. (1998). Crit. Rev. Anal. Chem. 28: 377–381. doi: 10.1080/10408349891199239.
- 53 Flint water crisis facts. http://edition.cnn.com/2016/03/04/us/flint-water-crisis-fast-facts/index.html, (accessed 13 July 2017).
- 54Zhu, W.P., Gao, J., Sun, S.P. et al. (2015). J. Membr. Sci. 487: 117–126. doi: 10.1016/j.memsci.2015.03.033.
- 55Zhang, Y., Zhang, S., Gao, J., and Chung, T.S. (2016). J. Membr. Sci. 515: 230–237. doi: 10.1016/j.memsci.2016.05.035.
- 56Song, J., Zhang, M., Figoli, A. et al. (2015). Environ. Sci. Water Res. Technol. 1: 839. doi: 10.1039/C5EW00109A.
- 57Kolpin, D.W., Furlong, E.T., Meyer, M.T. et al. (2002). Environ. Sci. Technol. 36: 1202–1211. doi: 10.1021/es011055j.
- 58Komesli, O.T., Muz, M., Ak, M.S. et al. (2015). Chem. Eng. J. 277: 202–208. doi: 10.1016/j.cej.2015.04.115.
- 59Westerhoff, P., Yoon, Y., Snyder, S., and Wert, E. (2005). Environ. Sci. Technol. 39: 6649–6663. doi: 10.1021/es0484799.
- 60Balabanic, D., Rupnik, M., and Klemencic, A.K. (2011). Reprod. Fertil. Dev. 23: 403–416. doi: 10.1071/RD09300.
- 61de Grooth, J., Reurink, D.M., Ploegmakers, J. et al. (2014). ACS Appl. Mater. Interfaces 6: 17009–17017. doi: 10.1021/am504630a.
- 62Howe, K.J., Ishida, K.P., and Clark, M.M. (2002). Desalination 147: 251–255. doi: 10.1016/S0011-9164(02)00545-3.
- 63Zularisam, A.W., Ismail, A.F., and Salim, R. (2006). Desalination 194: 211–231. doi: 10.1016/j.desal.2005.10.030.
- 64Sun, S.P., Hatton, T.A., Chan, S.Y., and Chung, T.-S. (2012). J. Membr. Sci. 401–402: 152–162. doi: 10.1016/j.memsci.2012.01.046.
- 65Cadotte, J., Forester, R., Kim, M. et al. (1988). Desalination 70: 77–88. doi: 10.1016/0011-9164(88)85045-8.
- 66Van der Bruggen, B., Manttari, M., and Nyström, M. (2008). Sep. Purif. Technol. 63: 251–263. doi: 10.1016/j.seppur.2008.05.010.
- 67An, Q.F., Sun, W.D., Zhao, Q. et al. (2013). J. Membr. Sci. 431: 171–179. doi: 10.1016/j.memsci.2012.12.043.
- 68Cheng, C., Li, S., Zhao, W. et al. (2012). J. Membr. Sci. 417–418: 228–236. doi: 10.1016/j.memsci.2012.06.045.
- 69Lee, H., Dellatore, S.M., Miller, W.M., and Messersmit, P.M. (2007). Science 318: 426. doi: 10.1126/science.1147241.
- 70Yang, H.C., Luo, J., Lv, Y. et al. (2015). J. Membr. Sci. 483: 42–59. doi: 10.1016/j.memsci.2015.02.027.
- 71Kumar, M., Grzelakowski, M., Zilles, J. et al. (2007). Proc. Natl. Acad. Sci. 104: 20719–20724. doi: 10.1073/pnas.0708762104.
- 72Sengur-Tasdemir, R., Aydin, S., Turken, T. et al. (2016). Sep. Purif. Rev. 45: 122–140. doi: 10.1080/15422119.2015.1035443.
- 73Li, X., Chou, S., Wang, R. et al. (2015). J. Membr. Sci. 494: 68–77. doi: 10.1016/j.memsci.2015.07.040.
- 74Li, X., Loh, C.H., Wang, R. et al. (2017). J. Membr. Sci. 525: 257–268. doi: 10.1016/j.memsci.2016.10.051.
- 75Fan, Z., Xiao, C., Liu, H., and Huang, Q. (2015). Cellulose 22: 695–707. doi: 10.1007/s10570-014-0466-1.
- 76Mahendran, M., Fabbricino, L., Rodrigues, C.F.F., and Donelly, A.R. (1995) Hollow fiber semipermeable membrane of tubular braid and method for producing it. Patent WO-1995017242-A1, Publication date 29 June 1995. Zenon Environmental.
- 77Lv, J., Wang, K.Y., and Chung, T.-S. (2008). J. Membr. Sci. 310: 557–566. doi: 10.1016/j.memsci.2007.11.050.
- 78Zhang, H.-Z., Xu, Z.-L., Tang, Y.-J., and Ding, H. (2017). J. Membr. Sci. 527: 111–120. doi: 10.1016/j.memsci.2016.12.059.
- 79Song, J., Li, X.-M., Li, Z. et al. (2015). Desalination 355: 83–90. doi: 10.1016/j.desal.2014.10.011.
- 80Kong, X., Zhou, M., Lin, C. et al. (2016). J. Membr. Sci. 505: 231–240. doi: 10.1016/j.memsci.2016.01.028.
- 81Wang, T., Zhao, C., Li, P. et al. (2015). Desalination 365: 293–307. doi: 10.1016/j.desal.2015.03.016.
- 82Gherasim, C.V., Luelf, T., Roth, H., and Wessling, M. (2016). ACS Appl. Mater. Interfaces 8: 19145–19157. doi: 10.1021/acsami.6b05706.
- 83Jung, J.Y., Kiso, Y., Othman, R.A.A.B. et al. (2005). Desalination 180: 63–71. doi: 10.1016/j.desal.2004.11.087.
- 84Sun, S.P., Hatton, T.A., and Chung, T.-S. (2011). Environ. Sci. Technol. 45: 4003–4009. doi: 10.1021/es200345q.
- 85Wang, K.Y. and Chung, T.S. (2006). J. Membr. Sci. 281: 307–315. doi: 10.1016/j.memsci.2006.03.045.
- 86Gao, J., Sun, S.-P., Zhu, W.-P., and Chung, T.S. (2014). Water Res. 63: 252–261. doi: 10.1016/j.watres.2014.06.006.
Encyclopedia of Water: Science, Technology, and Society
Browse other articles of this reference work: