Ectodermal Dysplasias
Cathal O'Connor
Paediatric Dermatology, Trinity College Dublin and Our Lady's Children's Hospital, Dublin, Ireland
Search for more papers by this authorYuka Asai
Division of Dermatology, Queen's University, Kingston, Ontario, Canada
Search for more papers by this authorAlan D. Irvine
Paediatric Dermatology, Trinity College Dublin and Our Lady's Children's Hospital, Dublin, Ireland
Search for more papers by this authorCathal O'Connor
Paediatric Dermatology, Trinity College Dublin and Our Lady's Children's Hospital, Dublin, Ireland
Search for more papers by this authorYuka Asai
Division of Dermatology, Queen's University, Kingston, Ontario, Canada
Search for more papers by this authorAlan D. Irvine
Paediatric Dermatology, Trinity College Dublin and Our Lady's Children's Hospital, Dublin, Ireland
Search for more papers by this authorPeter Hoeger
Search for more papers by this authorVeronica Kinsler
Search for more papers by this authorAlbert Yan
Search for more papers by this authorJohn Harper
Search for more papers by this authorArnold Oranje
Search for more papers by this authorChristine Bodemer
Search for more papers by this authorMargarita Larralde
Search for more papers by this authorVibhu Mendiratta
Search for more papers by this authorDiana Purvis
Search for more papers by this authorSummary
The ectodermal dysplasias (EDs) encompass a complex and highly diverse group of heritable disorders that have developmental abnormalities of ectodermal appendages in common. Recent advances in molecular genetic testing have changed the paradigm of classification to correlate with underlying genotypes. EDs can be divided into defects in developmental regulation and epithelial–mesenchymal interaction, and defects in proteins of cytoskeleton or adhesion, which are involved in cell–cell communication as well as structural integrity. Management of EDs is multidisciplinary and specific to the ED involved.
References
- Online Mendelian Inheritance in Man, OMIM™. McKusick–Nathans Institute for Genetic Medicine, Johns Hopkins University and National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD. www.ncbi.nlm.gov/omim/
- Danz DFG. Sechste Bemerkung. Von Menschen ohne Haare und Zahne. Stark Arch Geburtch Frauenz Neugeb Kinderkr 1792; 4: 684.
- Weech A. Hereditary ectodermal dysplasia (congenital ectodermal defect). A report of two cases. Am J Dis Child 1929; 37: 766–90.
- Touraine A. L'anidrose hereditaires avec hypotrichose et anodontie (polydysplasie ectodermique héréditaire). Presse Méd 1936; 44: 145–9.
- Freire-Maia N, Pinheiro M. Ectodermal Dysplasias: A Clinical and Genetic Study. New York: Alan R. Liss, 1984.
- Pinheiro M, Freire-Maia N. Ectodermal dysplasias: a clinical classification and a causal review. Am J Med Genet 1994; 53: 153–62.
- Fuchs E, Merrill BJ, Jamora C et al. At the roots of a never-ending cycle. Dev Cell 2001; 1: 13–25.
- Priolo, M, Laganà C. Ectodermal dysplasias: a new clinical-genetic classification. J Med Genet 2001; 38: 579–85.
- Priolo M. Ectodermal dysplasias: an overview and update of clinical and molecular-functional mechanisms. Am J Med Genet A 2009; 149A: 2003–13.
-
Lerner AB. Three unusual pigmentary syndromes. Arch Dermatol 1961; 83: 151–9.
10.1001/archderm.1961.01580070103011 Google Scholar
-
Baisch A. Anonychia congenita, Kombiniert mit Polydaktykie and verzogertem abnormen Zahndurchbruch. Dtsch Z Chir 1931; 232: 450–7.
10.1007/BF02793695 Google Scholar
- Petfor G, Nanda A, Howden J et al. Mutations in GRHL2 result in an autosomal-recessive ectodermal dysplasia syndrome. Am J Hum Genet. 2014; 95: 308–14.
- Wallace HJ. Ectodermal defect with skeletal abnormalities. Proc C Soc Med Edinb 1958; 51: 707–8.
-
Wesser DW, Vistnes LM. Congenital ectodermal dysplasia, anhidrotic, with palatal paralysis and associated chromosome abnormality. Plast Reconstr Surg 1969; 8: 396–8.
10.1097/00006534-196944040-00018 Google Scholar
- Kirman BH. Idiocy and ectodermal dysplasia. Br J Dermatol 1955; 67: 303–7.
- Wiedemann HR, Grosse FR, Dibbern H. Caracteristicas das Sindromes em Pediatria. Atlas de Diagnostico Diferencial. São Paulo: Editoria Manole, 1978.
-
Fischer H. Familiar hereditares Vorkommen von Keratoma palamare et plantare, Nagelverandergungen, Haaranomalien und Verdickung der Endglieder der Finger und Zehen in 5 Generationen (die Beziehungen dieser Veranderungen zur inneren Sekretion). Dermatol Zeitschr 1921; 32: 114–42.
10.1159/000248241 Google Scholar
- Fried K. Autosomal recessive hydrotic ectodermal dysplasia. J Med Genet 1977; 14: 137–9.
- Jorgenson RJ. Gingival fibromatosis. Birth Defects 1971; VII: 278–80.
- McCarl C-A, Picard C, Khalil S, et al. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy and ectodermal dysplasia. J Allergy Clin Immunol 2009; 124: 1311–18.
- Brunoni D, Lederman H, Ferrari S et al. Uma sindrome malformativa com nanismo mesomelico, malformacoes esqueleticas, displasia ectodermica e facies tipica. Cienc Cult 1982; 34: 694.
- Marvin ML et al. AXIN2-associated autosomal dominant ectodermal dysplasia and neoplastic syndrome. Am J Med Genet A. 2011; 155A: 898–902.
- Beare JM. Congenital pilar defect showing features of pili torti. Br J Dermatol 1952; 64: 366–72.
- Calzavara-Pinton P, Carlino A, Benetti A et al. Pili torti and onychodysplasia. Report of a previously undescribed hidrotic ectodermal dysplasia. Dermatologica 1991; 182: 184–7.
- Schinzel A. A case of multiple skeletal anomalies, ectodermal dysplasia, and severe growth and mental retardation. Helv Paediatr Acta 1980; 35: 243–51.
- Pinheiro M, Pereira LC, Freire-Maia N. A previously undescribed condition: tricho-odonto-onycho-dermal syndrome. A review of the tricho-odonto-onychial subgroup of ectodermal dysplasias. Br J Dermatol 1981; 105: 371–82.
- Koshiba H, Kimura O, Nakata M et al. Clinical, genetic, and histologic features of the trichoonychodental (TOD) syndrome. Oral Surg Oral Med Oral Pathol 1978; 46: 376–85.
- Walbaum R, Dehaene P, Schlemmer H. Dysplasie ectodermique: une forme autosomique recessive? Arch Fr Pediatr 1971; 28: 435–42.
- Moynahan EJ. XTE syndrome (xeroderma, talipes and enamel defect): a new heredo-familial syndrome. Proc Roy Soc Med Lond 1970; 63: 1–2.
- Zanier JM, Roubicek MM. Hypohidrotic ectodermal dysplasia with autosomal dominant transmission. Fifth International Congress on Human Genetics, Mexico, 1976: Communication 273.
References
- Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225–60.
- Kaufman CK, Fuchs E. It's got you covered. NF-kappaB in the epidermis. J Cell Biol 2000; 149: 999–1004.
- Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination. The control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18: 621–63.
- Smahi A, Courtois G, Rabia SH et al. The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 2002; 11: 2371–5.
- Gerondakis S, Grossmann M, Nakamura Y et al. Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene 1999; 18: 6888–95.
- Descargues P, Sil AK, Karin M. IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. EMBO J 2008; 27: 2639–47.
- Trzeciak WH, Koczorowski R. Molecular basis of hypohidrotic ectodermal dysplasia: an update. J Appl Genet 2016; 57: 51–61.
- Ferguson BM, Brockdorff N, Formstone E et al. Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membraneassociated protein with a short collagenous domain. Hum Mol Genet 1997; 6: 1589–94.
- Kere J, Srivastava AK, Montonen O et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 1996; 13: 409–16.
- Drogemuller C, Distl O, Leeb T. Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle. Genome Res 2001; 11: 1699–705.
- Drogemuller C, Peters M, Pohlenz J et al. A single point mutation within the ED1 gene disrupts correct splicing at two different splice sites and leads to anhidrotic ectodermal dysplasia in cattle. J Mol Med 2002; 80: 319–23.
- Casal ML, Scheidt JL, Rhodes JL et al. Mutation identification in a canine model of X-linked ectodermal dysplasia. Mamm Genome 2005; 16: 524–31.
- Yan M, Wang LC, Hymowitz SG et al. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000; 290: 523–7.
- Chen Y, Molloy SS, Thomas L et al. Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 2001; 98: 7218–23.
- Han D, Gong Y, Wu H et al. Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis. Eur J Med Genet 2008; 51: 536–46.
- Barsh G. Of ancient tales and hairless tails. Nat Genet 1999; 22: 315–16.
- Headon DJ, Overbeek PA. Involvement of a novel TNF receptor homologue in hair follicle induction. Nat Genet 1999; 22: 370–4.
- Headon DJ, Emmal SA, Ferguson BM et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 2001; 414: 913–16.
- Bal E, Baala L, Cluzeau C et al. Autosomal dominant anhidrotic ectodermal dysplasias at the EDARADD locus. Hum Mutat 2007; 28: 703–9.
- Monreal AW, Ferguson BM, Headon DJ et al. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet 1999; 22: 366–9.
- Doffinger R, Smahi A, Bessia C et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 2001; 27: 277–85.
- Smahi A, Courtois G, Vabres P et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 2000; 405: 466–72.
- Zonana J, Elder ME, Schneider LC et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000; 67: 1555–62.
- Fusco F, Pescatore A, Conte AI et al. EDA-ID and IP, two faces of the same coin: how the same IKBKG/NEMO mutation affecting the NF-κB pathway can cause immunodeficiency and/or inflammation. Int Rev Immunol. 2015; 34: 445–59.
- Zilberman-Rudenko J. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proc Natl Acad Sci U S A. 2016; 113: 1612–7.
- Mizukami T, Obara M, Nishikomori R et al. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J Clin Immunol 2012; 32: 39–49.
- Kojima T, Morikawa Y, Copeland NG et al. TROY, a newly identified member of the tumor necrosis factor receptor superfamily, exhibits a homology with Edar and is expressed in embryonic skin and hair follicles. J Biol Chem 2000; 275: 20742–7.
- Eby MT, Jasmin A, Kumar A et al. TAJ, a novel member of the tumor necrosis factor receptor family, activates the c-Jun N-terminal kinase pathway and mediates caspase-independent cell death. J Biol Chem 2000; 275: 15336–42.
- Naito A, Yoshida H, Nishioka E et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci U S A 2002; 99: 8766–71.
- Blake PW, Toro JR. Update of cylindromatosis gene (CYLD) mutations in Brooke–Spiegler syndrome: novel insights into the role of deubiquitination in cell signaling. Hum Mutat 2009; 30: 1025–36.
- Trompouki E, Hatzivassiliou E, Tsichritzis T et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424(6950): 793–6.
- Kovalenko A, Chable-Bessia C, Cantarella G et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424(6950): 801–5.
- Brummelkamp TR, Nijman SM, Dirac AM et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424(6950): 797–801.
- Hutti JE, Shen RR, Abbott DW et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKK-epsilon promotes cell transformation. Molec Cell 2009; 34: 461–72.
- Zenker M, Mayerle J, Lerch MM et al. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson–Blizzard syndrome). Nat Genet 2005; 37: 1345–50.
- Thurnam J. Two cases in which the skin, hair and teeth were very imperfectly developed. Med Chir Trans 1848; 31: 71–82.
- Thadani KI. A toothless type of man. J Hered 1921; 12: 87–8.
- Clouston H. The major forms of hereditary ectodermal dysplasia (with an autopsy and biopsies on the anhydrotic type). Can Med Assoc J 1939; 40: 1–7.
- Arnold ML, Rauskolb R, Anton-Lamprecht I et al. Prenatal diagnosis of anhidrotic ectodermal dysplasia. Prenat Diagn 1984; 4: 85–98.
- Weech A. Hereditary ectodermal dysplasia (congenital ectodermal defect). A report of two cases. Am J Dis Child 1929; 37: 766–90.
- Baer ST, Coulson IH, Elliman D. Anhidrotic ectodermal dysplasia: an ENT presentation in infancy. J Laryngol Otol 1988; 102: 458–9.
- Micali G, Cook B, Blekys I et al. Structural hair abnormalities in ectodermal dysplasia. Pediatr Dermatol 1990; 7: 27–32.
- Vierucci S, Baccetti T, Tollaro I. Dental and craniofacial findings in hypohidrotic ectodermal dysplasia during the primary dentition phase. J Clin Pediatr Dent 1994; 18: 291–7.
- Clarke A, Phillips DI, Brown R et al. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child 1987; 62: 989–96.
- Reed WB, Lopez DA, Landing B. Clinical spectrum of anhidrotic ectodermal dysplasia. Arch Dermatol 1970; 102: 134–43.
- Crawford PJ, Aldred MJ, Clarke A. Clinical and radiographic dental findings in X linked hypohidrotic ectodermal dysplasia. J Med Genet 1991; 28: 181–5.
- Clauss F, Manière MC, Obry F et al. Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review. J Dent Res 2008; 87: 1089–99.
- Levin LS. Dental and oral abnormalities in selected ectodermal dysplasia syndromes. Birth Defects Orig Artic Series 1988; 24: 205–27.
- Hammersen J, Wohlfart S, Goecke TW et al. Reliability of prenatal detection of X-linked hypohidrotic ectodermal dysplasia by tooth germ sonography. Prenat Diagn 2018: doi: 10.1002/pd.5384.
- Happle R, Frosch PJ. Manifestation of the lines of Blaschko in women heterozygous for X-linked hypohidrotic ectodermal dysplasia. Clin Genet 1985; 27: 468–71.
- Executive and Scientific Advisory Boards of the National Foundation for Ectodermal Dysplasias, Mascoutah, Illinois. Scaling skin in the neonate: a clue to the early diagnosis of X-linked hypohidrotic ectodermal dysplasia (Christ–Siemens–Touraine syndrome). J Pediatr 1989; 114: 600–2.
- Clarke A. Hypohidrotic ectodermal dysplasia. J Med Genet 1987; 24: 659–63.
- Butterworth T, Ladda R. Clinical Genodermatology. Westpoint, CT: Praeger, 1981: 208–17.
- Coston GN, Salinas CF. Speech characteristics in patients with hypohidrotic ectodermal dysplasia. Birth Defects Orig Artic Series 1988; 24: 229–34.
- Wright JT, Finley WH. X-linked recessive hypohidrotic ectodermal dysplasia. Manifestations and management. Ala J Med Sci 1986; 23: 84–7.
- Soderholm AL, Kaitila I. Expression of X-linked hypohidrotic ectodermal dysplasia in six males and in their mothers. Clin Genet 1985; 28: 136–44.
- Wohlfart S, Soder S, Smahi A, Schneider H. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia. Am J Med Genet A 2016; 170: 249–53.
- Freire-Maia N, Pinheiro M. Ectodermal Dysplasias: A Clinical and Genetic Study. New York: Alan R. Liss, 1984.
- Valentin MN, Solomon BD, Richard G et al. Basan gets a new fingerprint: mutations in the skin-specific isoform of SMARCAD1 cause ectodermal dysplasia syndromes with adermatoglyphia. Am J Med Genet A 2018; 176: 2451–5.
- Marks KC, Banks WR, 3rd, Cunningham D et al. Analysis of two candidate genes for Basan syndrome. Am J Med Genet A 2014; 164A: 1188–91.
- Li M, Wang J, Li Z et al. Genome-wide linkage analysis and whole-genome sequencing identify a recurrent SMARCAD1 variant in a unique Chinese family with Basan syndrome. Eur J Hum Genet 2016; 24: 1367–70.
- Nousbeck J, Burger B, Fuchs-Telem D et al. A mutation in a skin-specific isoform of SMARCAD1 causes autosomal-dominant adermatoglyphia. AmJ Human Genet 2011; 89: 302–7.
- Sybert VP. Early diagnosis in the ectodermal dysplasias. Birth Defects Orig Artic Series 1988; 24: 277–8.
- Nowak AJ. Dental treatment for patients with ectodermal dysplasias. Birth Defects Orig Artic Series 1988; 24: 243–52.
- Guckes AD, Brahim JS, McCarthy GR et al. Using endosseous dental implants for patients with ectodermal dysplasia. J Am Dent Assoc 1991; 122: 59–62.
- Myer CM 3rd. The role of an otolaryngologist in the care of ectodermal dysplasia. Pediatr Dermatol 1987; 4: 34–5.
- Myer CM 3rd. Otolaryngologic manifestations of the ectodermal dysplasias – clinical note. Int J Pediatr Otorhinolaryngol 1986; 11: 307–10.
- Lee HE, Chang IK, Im M et al. Topical minoxidil treatment for congenital alopecia in hypohidrotic ectodermal dysplasia. J Am Acad Dermatol 2013; 68: e139–40.
- Gaide O, Schneider P. Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nat Med 2003; 9: 614–18.
- Casal ML, Lewis JR, Mauldin EA et al. Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia. Am J Hum Genet 2007; 81: 1050–6.
- Mauldin EA, Gaide O, Schneider P et al Neonatal treatment with recombinant ectodysplasin prevents respiratory disease in dogs with X-linked ectodermal dysplasia. Am J Med Genet A 2009; 149A: 2045–9.
- Huttner K. Future developments in XLHED treatment approaches. Am J Med Genet A 2014; 164A: 2433–6.
- Schneider H, Faschingbauer F, Schuepbach-Mallepell S et al. Prenatal correction of X-linked hypohidrotic ectodermal dysplasia. New Engl J Med 2018; 378: 1604–10.
- Frix CD 3rd, Bronson DM. Acute miliary tuberculosis in a child with anhidrotic ectodermal dysplasia. Pediatr Dermatol 1986; 3: 464–7.
- Sitton JE, Reimund EL. Extramedullary hematopoiesis of the cranial dura and anhidrotic ectodermal dysplasia. Neuropediatrics 1992; 23: 108–10.
- Abinun M, Spickett G, Appleton AL et al. Anhidrotic ectodermal dysplasia associated with specific antibody deficiency. Eur J Pediatr 1996; 155: 146–7.
- Schweizer P, Kalhoff H, Horneff G et al. Polysaccharide specific humoral immunodeficiency in ectodermal dysplasia. Case report of a boy with two affected brothers. Klin Padiatr 1999; 211: 459–61.
- Imamura M, Kawai T, Okada S et al. Disseminated BCG infection mimicking metastatic nasopharyngeal carcinoma in an immunodeficient child with a novel hypomorphic NEMO mutation. J Clin Immunol 2011; 31: 802–10.
- Karaca NE, Aksu G, Ulusoy E et al. Disseminated BCG, infectious disease, and hyperferritinemia in a patient with a novel nemo mutation. J Investig Allergol Clin Immunol 2016; 26: 268–71.
- Jain A, Ma CA, Liu S et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001; 2: 223–8.
- Orange JS, Brodeur SR, Jain A et al. Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest 2002; 109: 1501–9.
- Dupuis-Girod S, Corradini N, Hadj-Rabia S et al. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 2002; 109: e97.
- Minakawa S, Takeda H, Nakano H et al. Successful umbilical cord blood transplantation for intractable eczematous eruption in hypohidrotic ectodermal dysplasia with immunodeficiency. Clin Exp Dermatol 2009; 34: e441–2.
- Ramirez-Alejo N, Alcantara-Montiel JC, Yamazaki-Nakashimada M et al. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura. Clin Immunol 2015; 160: 163–71.
- Van Asbeck E, Ramalingam A, Dvorak C et al. Duplication at Xq28 involving IKBKG is associated with progressive macrocephaly, recurrent infections, ectodermal dysplasia, benign tumors, and neuropathy. Clin Dysmorphol 2014; 23: 77–82.
- Courtois G, Smahi A, Reichenbach J et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and t-cell immunodeficiency. J Clin Invest 2003; 112: 1108–15.
- Dupuis-Girod S, Cancrini C, Le Deist F et al. Successful allogeneic hemopoietic stem cell transplantation in a child who had anhidrotic ectodermal dysplasia with immunodeficiency. Pediatrics 2006; 118: 205–11.
- Janssen R, van Wengen A, Hoeve MA et al. The same I-kappa-B-alpha mutation in two related individuals leads to completely different clinical symptoms. J Exp Med 2004; 200: 559–68.
- Lopez-Granados E, Keenan JE, Kinney MC et al. A novel mutation in NFKBIA/IKBA results in a degradation-resistant N-truncated protein and is associated with ectodermal dysplasia with immunodeficiency. Hum Mutat 2008; 29: 861–8.
- McDonald DR, Mooster JL, Reddy M et al. Heterozygous N-terminal deletion of I-kappa-B-alpha results in functional nuclear factor kappa-B haploinsufficiency, ectodermal dysplasia, and immune deficiency. J Allergy Clin Immunol 2007; 120: 900–7.
- Yoshioka T, Nishikomori R, Hara J et al. Autosomal dominant anhidrotic ectodermal dysplasia with immunodeficiency caused by a novel NFKBIA mutation, p.Ser36Tyr, presents with mild ectodermal dysplasia and non-infectious systemic inflammation. J Clin Immunol 2013; 33: 1165–74.
- Mooster JL, Le Bras S, Massaad MJ et al. Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in IκBα. J Exp Med 2015; 212: 185–202.
References
- Jost CA, Marin MC, Kaelin WG Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 1997; 389: 191–4.
- Kaghad M, Bonnet H, Yang A et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–19.
- Osada M, Ohba M, Kawahara C et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998; 4: 839–43.
- Senoo M, Seki N, Ohira M et al. A second p53-related protein, p73L, with high homology to p73. Biochem Biophys Res Commun 1998; 248: 603–7.
- Yang A, Kaghad M, Wang Y et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2: 305–16.
- Brunner HG, Hamel BC, van Bokhoven H. P63 Gene mutations and human developmental syndromes. Am J Med Genet 2002; 112: 284–90.
- Mills AA, Zheng B, Wang X-J et al. p63 is a p53 homolog required for limb and epidermal morphogenesis. Nature 1999; 398: 708–13.
- Yang A, Schweizer R, Sun D et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 7147–8.
- Van Bokhoven H, Hamel BC, Bamshad M et al. p63 Gene mutations in EEC syndrome, limb–mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet 2001; 69: 481–92.
- Amiel J, Bougeard G, Francannet C et al. TP63 gene mutation in ADULT syndrome. Eur J Hum Genet 2001; 9: 642–5.
- Elliott AM, Evans JA. Genotype-phenotype correlations in mapped split hand foot malformation (SHFM) patients. Am J Med Genet A 2006; 140: 1419–27.
- Rinne T, Bolat E, Meijer R et al. Spectrum of p63 mutations in a selected patient cohort affected with ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). Am J Med Genet A 2009; 149A: 1948–51.
- Rinne T, Clements SE, Lamme E et al. A novel translation re-initiation mechanism for the p63 gene revealed by amino-terminal truncating mutations in Rapp–Hodgkin/Hay–Wells-like syndromes. Hum Mol Genet 2008; 17: 1968–77.
- Chiu YE, Drolet BA, Duffy KJ et al. A case of ankyloblepharon, ectodermal dysplasia, and cleft lip/palate syndrome with ectrodactyly: are the p63 syndromes distinct after all? Pediatr Dermatol 2011; 28; 15–19.
- Slavotinek AM, Tanaka J, Winder A et al. Acro-dermato-ungual lacrimal-tooth (ADULT) syndrome: report of a child with phenotypic overlap with ulnar-mammary syndrome and a new mutation in TP63. Am J Med Genet A 2005; 138A: 146–9.
- Hildebrandt T, Preiherr J, Tarbe N et al. Identification of THW, a putative new tumor suppressor gene. Anticancer Res 2000; 20: 2801–10.
- Ihrie RA, Marques MR, Nguyen BT et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell 2005; 120: 843–56.
- Beaudry VG, Pathak N, Koster MI et al. PERP regulation by TP63 mutants provides insight into AEC pathogenesis. Am J Med Genet A 2009; 149A: 1952–7.
- Ferone G, Thomason HA, Antonini D et al. Mutant p63 causes defective expansion of ectodermal progenitor cells and impaired FGF signalling in AEC syndrome. EMBO Mol Med 2012; 4: 192–205.
- Koster MI, Dai D, Marinari B et al. p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA 2007; 104: 3255–60.
- Marinari B, Ballaro C, Koster MI et al. IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. J Invest Dermatol 2009; 129: 60–9.
- Koster MI, Marinari B, Payne AS et al. DeltaNp63 knockdown mice: a mouse model for AEC syndrome. Am J Med Genet A 2009; 149A: 1942–7.
- Chan I, McGrath JA, Kivirikko S. Rapp–Hodgkin syndrome and the tail of p63. Clin Exp Dermatol 2005; 30: 183–6.
- Eiesenkraft A, Pode-Shakked B, Goldstein N et al. Clinical variability in a family with an ectodermal dysplasia syndrome and a nonsense mutation in the TP63 gene. Fetal Pediatr Pathol 2015; 34: 400–6.
- Hay RJ, Wells RS. The syndrome of ankyloblepharon, ectodermal defects and cleft lip and palate: an autosomal dominant condition. Br J Dermatol 1976; 94: 277–89.
- Greene SL, Michels VV, Doyle JA. Variable expression in ankyloblepharon-ectodermal defects-cleft lip and palate syndrome. Am J Med Genet 1987; 27: 207–12.
- Dishop MK, Bree AF, Hicks MJ. Pathologic changes of skin and hair in ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome. Am J Med Genet A 2009; 149A: 1935–41.
- Fosko SW, Stenn KS, Bolognia JL. Ectodermal dysplasias associated with clefting: significance of scalp dermatitis. J Am Acad Dermatol 1992; 27: 249–56.
- Vanderhooft SL, Stephan MJ, Sybert VP. Severe skin erosions and scalp infections in AEC syndrome. Pediatr Dermatol 1993; 10: 334–40.
- Julapalli MR, Scher RK, Sybert VP et al. Dermatologic findings of ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome. Am J Med Genet A 2009; 149A: 1900–6.
- Rule DC, Shaw MJ. The dental management of patients with ankyloblepharon (AEC) syndrome. Br Dent J 1988; 164: 215–18.
- Farrington F, Lausten L. Oral findings in ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) syndrome. Am J Med Genet A 2009; 149A: 1907–9.
- Ferstl P, Wohlfart S, Schneider H. Sweating ability of patients with p63-associated syndromes. Eur J Pediatr 2018; 177: 1727–31.
- Yoo J, Beck DR, Fabre E et al. Ankyloblepharon-ectodermal dysplasia clefting (AEC) syndrome with neonatal erythroderma: report of two cases. Int J Dermatol 2007; 46: 1196–7.
- Motil KJ, Fete TJ. Growth, nutritional, and gastrointestinal aspects of ankyloblepharon-ectodermal defect-cleft lip and/or palate (AEC) syndrome. Am J Med Genet A 2009; 149A: 1922–5.
- Bronshtein M, Gershoni-Baruch R. Prenatal transvaginal diagnosis of the ectrodactyly, ectodermal dysplasia, cleft palate (EEC) syndrome. Prenat Diagn 1993; 13: 519–22.
- Baughman FA Jr. CHANDS: the curly hair–ankyloblepharon–nail dysplasia syndrome. Birth Defects Orig Artic Series 1971; 7: 100–2.
- Toriello HV, Lindstrom JA, Waterman DF et al. Re-evaluation of CHANDS. J Med Genet 1979; 16: 316–17.
- Taieb A, Legrain V, Surleve-Bazeille JE et al. Generalized epidermolysis bullosa with congenital synechiae, associated malformations and unusual ultrastructure: a new entity? Dermatologica 1988; 176: 76–82.
- Hicks C, Pitts J, Rose GE. Lacrimal surgery in patients with congenital cranial or facial anomalies. Eye 1994; 8: 583–91.
- Satoh K, Tosa Y, Ohtsuka S et al. Ankyloblepharon, ectodermal dysplasia, cleft lip and palate (AEC) syndrome: surgical corrections with an 18-year follow-up including maxillary osteotomy. Plast Reconstr Surg 1994; 93: 590–4.
- Theiler M, Frieden IJ. High-potency topical steroids: an effective therapy for chronic scalp inflammation in rapp-hodgkin ectodermal dysplasia. Pediatr Dermatol 2016; 33: 84–7.
- Rüdiger RA, Haase W, Passarge E. Association of ectrodactyly, ectodermal dysplasia, and cleft lip–palate. Am J Dis Child 1970; 120: 160–3.
- Bixler D, Spivack J, Bennett J et al. The ectrodactyly–ectodermal dysplasia–clefting (EEC) syndrome. Report of 2 cases and review of the literature. Clin Genet 1972; 3: 43–51.
- Trueb RM, Bruckner-Tuderman L, Wyss M et al. Scalp dermatitis, distinctive hair abnormalities and atopic disease in the ectrodactyly–ectodermal dysplasia–clefting syndrome. Br J Dermatol 1995; 132: 621–5.
- Micali G, Cook B, Blekys I et al. Structural hair abnormalities in ectodermal dysplasia. Pediatr Dermatol 1990; 7: 27–32.
- Kuster W, Majewski F, Meinecke P. EEC syndrome without ectrodactyly? Report of 8 cases. Clin Genet 1985; 28: 130–5.
- Rosenmann A, Shapira T, Cohen MM. Ectrodactyly, ectodermal dysplasia and cleft palate (EEC syndrome). Report of a family and review of the literature. Clin Genet 1976; 9: 347–53.
- Richieri-Costa A, de Vilhena-Moraes SA, Ferrareto I et al. Ectodermal dysplasia/ectrodactyly in monozygotic female twins. Report of a case-review and comments on the ectodermal dysplasia/ectrodactyly (cleft lip/palate) syndromes. Rev Brasil Genet 1986; 9: 349–74.
- Rodini ES, Richieri-Costa A. EEC syndrome. Report on 20 new patients: clinical and genetic considerations. Am J Med Genet 1990; 37: 42–53.
- Trueb RM, Bruckner-Tuderman L, Burg G. Ectrodactyly-ectodermal dysplasia–clefting syndrome with scalp dermatitis. J Am Acad Dermatol 1993; 29: 505–6.
- Pratsou P, Defty CL, Ozoemena L et al. Limited ectrodactyly, ectodermal dysplasia and cleft lip-palate syndrome with a p63 mutation, associated with linear and whorled naevoid hypermelanosis. Clin Exp Dermatol 2014; 39: 266–8.
- McNab AA, Potts MJ, Welham RA. The EEC syndrome and its ocular manifestations. Br J Ophthalmol 1989; 73: 261–4.
- Christodoulou J, McDougall PN, Sheffield LJ. Choanal atresia as a feature of ectrodactyly–ectodermal dysplasia–clefting (EEC) syndrome. J Med Genet 1989; 26: 586–9.
-
Metwalley Kalli KA, Fargalley HS. Holoprosencephaly in an Egyptian baby with ectrodactyly-ectodermal dysplasia-cleft syndrome: a case report. J Med Case Rep 2012; 24: 35.
10.1186/1752-1947-6-35 Google Scholar
- Nardi AC, Ferreira U, Netto NR Jr et al. Urinary tract involvement in EEC syndrome: a clinical study in 25 Brazilian patients. Am J Med Genet 1992; 44: 803–6.
- Rollnick BR, Hoo JJ. Genitourinary anomalies are a component manifestation in the ectodermal dysplasia, ectrodactyly, cleft lip/palate (EEC) syndrome. Am J Med Genet 1988; 29: 131–6.
- Maclean K, Holme SA, Gilmour E et al. EEC syndrome, Arg227Gln TP63 mutation and micturition difficulties: is there a genotypephenotype correlation? Am J Med Genet A 2007; 143A: 1114–19.
- Hyder Z, Beale V, O'Connor R et al. Genitourinary malformations: an under-recognized feature of ectrodactyly, ectodermal dysplasia and cleft lip/palate syndrome. Clin Dysmorphol 2017; 26: 78–82.
- Giampietro PF et al. Novel mutation in TP63 associated with ectrodactyly ectodermal dysplasia and clefting syndrome and T cell lymphopenia. Am J Med Genet A 2013; 161A: 1432–5.
- Knudtzon J, Aarskog D. Growth hormone deficiency associated with the ectrodactyly–ectodermal dysplasia–clefting syndrome and isolated absent septum pellucidum. Pediatrics 1987; 79: 410–12.
-
Gershoni-Baruch R, Goldscher D, Hochberg Z. Ectrodactyly ectodermal dysplasia-clefting syndrome and hypothalamo-pituitary insufficiency. Am J Med Genet 1997; 68: 168–72.
10.1002/(SICI)1096-8628(19970120)68:2<168::AID-AJMG9>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- Sharma D, Kumar C, Bhalerao S et al. Ectrodactyly, ectodermal dysplasia, cleft lip, and palate (EEC syndrome) with tetralogy of Fallot: a very rare combination. Front Pediatr 2015; 16: 51.
- Balci S, Engiz O, Okten G et al. A 19-year follow-up of a patient with type 3 ectrodactyly-ectodermal dysplasia-clefting syndrome who developed non-Hodgkin lymphoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e91–5.
- Akahoshi K, Sakazume S, Kosaki K et al. EEC syndrome type 3 with a heterozygous germline mutation in the P63 gene and B cell lymphoma. Am J Med Genet A 2003; 120A: 370–3.
- Rosenberg JB, Butrus S, Bazemore MG et al. Ectrodactyly-ectodermal dysplasia-clefting syndrome causing blindness in a child. J AAPOS 2011; 15: 80–2.
- Barbaro V, Nasti AA, Del Vecchio C et al. Correction of mutant p63 in EEC syndrome using siRNA mediated allele specific silencing restores defective stem cell function. Stem Cells 2016; 34: 1588–600.
- Propping P, Zerres K. ADULT syndrome: an autosomal-dominant disorder with pigment anomalies, ectrodactyly, nail dysplasia, and hypodontia. Am J Med Genet 1993; 45: 642–8.
- Reisler TT, Patton MA, Meagher PPJ. Further phenotypic and genetic variation in ADULT syndrome. Am J Med Genet A 2006; 140A: 2495–500.
- Ellis RWB, van Creveld S. A syndrome characterized by ectodermal dysplasia, polydactyly, chondrodysplasia and congenital morbus cordis: report of three cases. Arch Dis Child 1940; 15: 65–84.
- Ruiz-Perez VL, Ide SE, Strom TM et al. Mutations in a new gene in Ellis–van Creveld syndrome and Weyer's acrodental dysostosis. Nat Genet 2000; 24: 283–6.
- Galdzicka M, Patnala S, Hirshman MG et al. A new gene, EVC2, is mutated in Ellis–van Creveld syndrome. Mol Genet Metab 2002; 77: 291–5.
- Sund KL, Roelker S, Ramachandran V et al. Analysis of Ellis van Creveld syndrome gene products: implications for cardiovascular development and disease. Hum Mol Genet 2009; 18: 1813–24.
- Jumlongras D, Bei M, Stimson JM et al. A nonsense mutation in MSX1 causes Witkop syndrome. Am J Hum Genet 2001; 69: 67–74.
- Price JA, Bowden DW, Wright JT et al. Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Mol Genet 1998; 7: 563–9.
- Robinson GW, Mahon KA. Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech Dev 1994; 48: 199–215.
- Dong J, Amor D, Aldred MJ et al. DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet 2005; 133A: 138–41.
- Wright JT, Hong SP, Simmons D et al. DLX3 c.561_562delCT mutation causes attenuated phenotype of tricho-dento-osseous syndrome. Am J Med Genet 2008; 146A: 343–9.
- Momeni P, Glockner G, Schmidt O et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho–rhino–phalangeal syndrome type I. Nat Genet 2000; 24: 71–4.
- Ludecke HJ, Schaper J, Meinecke P et al. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet 2001; 68: 81–91.
- Ludecke HJ, Wagner MJ, Nardmann J et al. Molecular dissection of a contiguous gene syndrome: localization of the genes involved in the Langer–Giedion syndrome. Hum Mol Genet 1995; 4: 31–6.
- Hou J, Parrish J, Ludecke HJ et al. A 4-megabase YAC contig that spans the Langer–Giedion syndrome region on human chromosome 8q24.1: use in refining the location of the trichorhinophalangeal syndrome and multiple exostoses genes (TRPS1 and EXT1). Genomics 1995; 29: 87–97.
- Dai KS, Liew CC. Characterization of a novel gene encoding zinc finger domains identified from expressed sequence tags (ESTs) of a human heart cDNA database. J Mol Cell Cardiol 1998; 30: 2365–75.
- Lichtenstein J, Warson R, Jorgenson R et al. The tricho-dento-osseous (TDO) syndrome. Am J Hum Genet 1972; 24: 569–82.
- Robinson GC, Miller JR. Hereditary enamel hypoplasia: its association with characteristic hair structure. Pediatrics 1966; 37: 498–502.
- Freire-Maia N, Pinheiro M. Ectodermal Dysplasias: A Clinical and Genetic Study. New York: Alan R. Liss, 1984.
- Shapiro SD, Quattromani FL, Jorgenson RJ et al. Tricho-dento-osseous syndrome: heterogeneity or clinical variability. Am J Med Genet 1983; 16: 225–36.
- Quattromani F, Shapiro SD, Young RS et al. Clinical heterogeneity in the tricho-dento-osseous syndrome. Hum Genet 1983; 64: 116–21.
- Levin LS. Dental and oral abnormalities in selected ectodermal dysplasia syndromes. Birth Defects Orig Artic Series 1988; 24: 205–27.
- Melnick M, Shields ED, El-Kafrawy AH. Tricho-dento-osseous syndrome: a scanning electron microscopic analysis. Clin Genet 1977; 12: 17–27.
- Sclar AG, Kannikal J, Ferreira CF et al. Treatment planning and surgical considerations in implant therapy for patients with agenesis, oligodontia, and ectodermal dysplasia: review and case presentation. J Oral Maxillofac Surg 2009; 67(11 Suppl): 2–12.
- Giedion A, Burdea M, Fruchter Z et al. Autosomal dominant transmission of the tricho-rhino-phalangeal syndrome. Report of 4 unrelated families, review of 60 cases. Helv Paediatr Acta 1973; 28: 249–59.
- Beals RK. Tricho-rhino-phalangeal dysplasia. Report of a kindred. J Bone Joint Surg Am 1973; 55: 821–6.
- Sugiura Y. Tricho-rhino-phalangeal syndrome associated with Perthes disease-like bone change and spondylolisthesis. Jinrui Idengaku Zasshi 1978; 23: 23–30.
- Sugio Y, Kajii T. Ruvalacaba syndrome: autosomal dominant inheritance. Am J Med Genet 1984; 19: 741–53.
- Niikawa N, Kamei T. The Sugio–Kajii syndrome, proposed tricho rhino-phalangeal syndrome type III. Am J Med Genet 1986; 24: 759–60.
- Campbell P, Morton PE, Takeichi T et al. Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR. J Invest Dermatol 2014; 134: 2570–8.
- Ganetzky R, Finn E, Bagchi A et al. EGFR mutations cause a lethal syndrome of epithelial dysfunction with progeroid features. Mol Genet Genomic Med 2015; 3: 452–8.
- Hayashi S, Yokoi T, Hatano C et al. Biallelic mutations of EGFR in a compound heterozygous state cause ectodermal dysplasia with severe skin defects and gastrointestinal dysfunction. Hum Genome Var 2018; 5: 11.
References
- Staal FJ, Tiago CL. Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem 2010; 109: 844–9.
- Wang J, Shackleford GM. Murine Wnt10a and Wnt10b: cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 1996; 13: 1537–44.
- Dassule HR, McMahon AP. Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol 1998; 202: 215–27.
- Millar SE, Willert K, Salinas PC et al. WNT signaling in the control of hair growth and structure. Dev Biol 1999; 207: 133–49.
- Andl T, Reddy ST, Gaddapara T et al. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002; 2: 643–53.
- Nawaz S, Klar J, Wajid M et al. WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome. Eur J Hum Genet 2009; 17(12): 1600–5.
- Adaimy L, Chouery E, Mégarbané H et al. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. Am J Hum Genet 2007; 81: 821–8.
- Bohring A, Stamm T, Spaich C et al. WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sexbiased manifestation pattern in heterozygotes. Am J Hum Genet 2009; 85: 97–105.
- Grzeschik KH, Bornholdt D, Oeffner F et al. Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet 2007; 39: 833–5.
- Wang X, Sutton VR, Peraza-Llanes JO et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet 2007; 39: 836–8.
- Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2009; 1: a002881.
- Ahmad W, Irvine AD, Lam H et al. A missense mutation in the zinc finger domain of the human hairless gene underlies congenital atrichia in a family of Irish travelers. Am J Hum Genet 1998; 63: 984–91.
- Ahmad W, Haque MF, Brancolini V et al. Alopecia universalis associated with a mutation in the human hairless gene. Science 1998; 279: 720–4.
- Thompson CC, Sisk JM, Beaudoin GM. Hairless and wnt signaling: allies in epithelial stem cell differentiation. Cell Cycle 2006; 5: 1913–17.
- Clements SE. Importance of PORCN and Wnt signaling pathways in embryogenesis. Am J Med Genet A 2009; 149A: 2050–1.
- Miller J, Djabali K, Chen T et al. Atrichia caused by mutations in the vitamin D receptor gene is a phenocopy of generalized atrichia caused by mutations in the hairless gene. J Invest Dermatol 2001; 117: 612–17.
- Okuyama R, Tagami H, Aiba S. Notch signaling: its role in epidermal homeostasis and in the pathogenesis of skin diseases. J Dermatol Sci 2008; 49: 187–94.
- Fried K. Autosomal recessive hydrotic ectodermal dysplasia. J Med Genet 1977; 14: 137–9.
- Fadhil M, Ghabra TA, Deeb M et al. Odontoonychodermal dysplasia: a previously apparently undescribed ectodermal dysplasia. Am J Med Genet 1983; 14: 335–46.
-
Mégarbané A, Noujeim Z, Fabre M et al. New form of hidrotic ectodermal dysplasia in a Lebanese family. Am J Med Genet 1998; 75: 196–9.
10.1002/(SICI)1096-8628(19980113)75:2<196::AID-AJMG15>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- Mégarbané H, Haddad M, Delague V et al. Further delineation of the odonto-onycho-dermal dysplasia syndrome. Am J Med Genet 2004; 129A: 193–7.
- Arnold WP, Merkx MA, Steijlen PM. Variant of odontoonychodermal dysplasia? Am J Med Genet 1995; 59: 242–4.
- Zirbel GM, Ruttum MS, Post AC et al. Odonto-onycho-dermal dysplasia. Br J Dermatol 1995; 133: 797–800.
- Adams BB. Odonto-onycho-dermal dysplasia syndrome. J Am Acad Dermatol 2007; 57: 732–3.
- Schöpf E, Schulz HJ, Passarge E. Syndrome of cystic eyelids, palmo-plantar keratosis, hypodontia and hypotrichosis as a possible autosomal recessive trait. Birth Defects Orig Artic Ser 1971; VII: 219–21.
- Küster W, Hammerstein W. Das Schöpf-Syndrom. Hautarzt 1992; 43: 763–6.
-
Craigen WJ, Levy ML, Lewis RA. Schöpf-Schulz-Passarge syndrome with an unusual pattern of inheritance. Am J Med Genet 1997; 71: 186–8.
10.1002/(SICI)1096-8628(19970808)71:2<186::AID-AJMG12>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- Starink TM. Eccrine syringofibroadenoma: multiple lesions representing a new cutaneous marker of the Schöpf syndrome, and solitary nonhereditary tumors. J Am Acad Dermatol 1997; 36: 569–76.
- Font RL, Stone MS, Schanzer MC et al. Apocrine hidrocystomas of the lids, hypodontia, palmarplantar hyperkeratosis, and onychodystrophy: a new variant of ectodermal dysplasia. Arch Ophthalmol 1986; 104: 1811–13.
- Szepetiuk G, Vanhooteghem O, Muller G et al. Schöpf-Schulz-Passarge syndrome with pili torti: a new association? Eur J Dermatol 2009; 19: 517–18.
- Castori M, Ruggieri S, Giannetti L et al. Schöpf-Schulz-Passarge syndrome: further delineation of the phenotype and genetic considerations. Acta Derm Venereol 2008; 88: 607–12.
- Maillaiah U, Dickinson J. Photo essay: bilateral multiple eyelid apocrine hidrocystomas and ectodermal dysplasia. Arch Ophthalmol 2001; 119: 1866–7.
- Monk BE, Pieris S, Soni V. Schöpf-Schulz-Passarge syndrome. Br J Dermatol 1992; 127: 33–5.
- Nordin H, Mansson T, Svensson A. Familial occurrence of eccrine tumours in a family with ectodermal dysplasia. Acta Dermatol Venereol 1988; 68: 523–30.
- Hampton PJ, Angus B, Carmichael AJ. A case of Schöpf-Schulz-Passarge syndrome. Clin Exp Dermatol 2005; 30: 528–30.
- Verplancke P, Driessen L, Wynants P et al. The Schöpf-Schulz-Passarge syndrome. Dermatology 1998; 196: 463–6.
- Perret C. Schöpf syndrome. Br J Dermatol 1989; 120: 131–2.
- Alessi E, Gianotti R, Coggi A. Multiple apocrine hidrocystomas of the eyelids. Br J Dermatol 1997; 137: 642–5.
- Leoyklang P, Suphapeetiporn K, Wananukul S et al. Three novel mutations in the PORCN gene underlying focal dermal hypoplasia. Clin Genet 2008; 73: 373–9.
- Maas SM, Lombardi MP, van Essen AJ et al. Phenotype and genotype in 17 patients with Goltz-Gorlin syndrome. J Med Genet 2009; 46: 716–20.
- Harmsen MB, Azzarello-Burri S, García González MM et al. Goltz Gorlin (focal dermal hypoplasia) and the microphthalmia with linear skin defects (MLS) syndrome: no evidence of genetic overlap. Eur J Hum Genet 2009; 17: 1207–15.
- Tillman WG. Alopecia congenita: report of two families. BMJ 1952; 2: 428.
- Ahmad M, Abbas H, Haque S. Alopecia universalis as a single abnormality in an inbred Pakistani kindred. Am J Med Genet 1993; 46: 369–71.
- Nöthen MM, Cichon S, Vogt IR et al. A gene for universal congenital alopecia maps to chromosome 8p21–22. Am J Hum Genet 1998; 62: 386–90.
-
Sprecher E, Bergman R, Szargel R et al. Atrichia with papular lesions maps to 8p in the region containing the human hairless gene. Am J Med Genet 1998; 80: 546–50.
10.1002/(SICI)1096-8628(19981228)80:5<546::AID-AJMG28>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
References
-
Pitts JD. The discovery of metabolic co-operation. Bioessays 1998; 20: 1047–51.
10.1002/(SICI)1521-1878(199812)20:12<1047::AID-BIES11>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
-
Choudhry R, Pitts JD, Hodgins MB. Changing patterns of gap junctional intercellular communication and connexin distribution in mouse epidermis and hair follicles during embryonic development. Dev Dyn 1997; 210: 417–30.
10.1002/(SICI)1097-0177(199712)210:4<417::AID-AJA6>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- Richard G, Smith LE, Bailey RA et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 1998; 20: 366–9.
- Kelsell DPWL, Houseman MJ. Connexin mutations in skin disease and hearing loss. Am J Hum Genet 2001; 68: 559–68.
- Richard G. Connexins: a connection with the skin. Exp Dermatol 2000; 9: 77–96.
- Kibar Z, Der Kaloustian VM, Brais B et al. The gene responsible for Clouston hidrotic ectodermal dysplasia maps to the pericentromeric region of chromosome 13q. Hum Mol Genet 1996; 5: 543–7.
-
Radhakrishna U, Blouin JL, Mehenni H et al. The gene for autosomal dominant hidrotic ectodermal dysplasia (Clouston syndrome) in a large Indian family maps to the 13q11–q12.1 pericentromeric region. Am J Med Genet 1997; 71: 80–6.
10.1002/(SICI)1096-8628(19970711)71:1<80::AID-AJMG15>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- Taylor TD, Hayflick SJ, McKinnon W et al. Confirmation of linkage of Clouston syndrome (hidrotic ectodermal dysplasia) to 13q11–q12.1 with evidence for multiple independent mutations. J Invest Dermatol 1998; 111: 83–5.
- Kibar Z, Dube MP, Powell J et al. Clouston hidrotic ectodermal dysplasia (HED): genetic homogeneity, presence of a founder effect in the French Canadian population and fine genetic mapping. Eur J Hum Genet 2000; 8: 372–80.
- Lamartine J, Munhoz Essenfelder G, Kibar Z et al. Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet 2000; 26: 142–4.
- Grifa A, Wagner CA, d'Ambrosio L et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 1999; 23: 16–18.
- Terrinoni A, Codispoti A, Serra V et al. Connexin 26 (GJB2) mutations as a cause of the KID syndrome with hearing loss, Biochem Biophys Res Commun 2010; 395: 25–30.
- Richard G, Rouan F, Willoughby CE et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis–ichthyosis–deafness syndrome. Am J Hum Genet 2002; 70: 341–8.
- Markova TG, Brazhkina NB, Bliznech EA et al. Phenotype in a patient with p.D50N mutation in GJB2 gene resembles both KID and Clouston syndromes. Int J Pediatr Otorhinolaryngol. 2016; 81: 10–14.
- Smith FJD, Morely SM, McLean WH. A novel connexin 30 mutation in Clouston syndrome. J Invest Dermatol 2002; 118: 530–2.
- Jan AY, Amin S, Ratajczak P et al. Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J Invest Dermatol 2004; 122: 1108–13.
- Paznekas WA, Boyadjiev SA, Shapiro RE et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 2003; 72: 408–18.
- Clouston H. A hereditary ectodermal dystrophy. Can Med Assoc J 1929; 21: 18–31.
- Clouston H. The major forms of hereditary ectodermal dysplasia (with an autopsy and biopsies on the anhydrotic type). Can Med Assoc J 1939; 40: 1–7.
-
Joachim H. Hereditary dystrophy of the hair and nails in six generations. Ann Intern Med 1936; 10: 400–2.
10.7326/0003-4819-10-3-400 Google Scholar
- Wilkey WD, Stevenson GH. A family with inherited ectodermal dystrophy. Can Med Assoc J 1945; 53: 226–30.
- Williams M, Fraser FC. Hydrotic ectodermal dysplasia – Clouston's family revisited. Can Med Assoc J 1967; 96: 36–8.
- Rajagopalan K, Tay CH. Hidrotic ectodermal dysplasia: study of a large Chinese pedigree. Arch Dermatol 1977; 113: 481–5.
- Escobar V, Goldblatt LI, Bixler D et al. Clouston syndrome: an ultrastructural study. Clin Genet 1983; 24: 140–6.
- Pierard GE, van Neste D, Letot B. Hidrotic ectodermal dysplasia. Dermatologica 1979; 158: 168–74.
- Campbell CJ, Keokarn T. Squamous-cell carcinoma of the nail bed in epidermal dysplasia. J Bone Joint Surg Am 1966; 48: 92–9.
- Mauro JA, Maslyn R, Stein AA. Squamous-cell carcinoma of nail bed in hereditary ectodermal dysplasia. N Y State J Med 1972; 72: 1065–6.
- Parhizkar N, Jones VE, McClay EF et al. Metastatic melanoma in a patient with Clouston syndrome successfully treated with isolated hyperthermic limb perfusion. J Cutan Med Surg 2003; 7: 43–6.
- Hazen PG, Zamora I, Bruner WE et al. Premature cataracts in a family with hidrotic ectodermal dysplasia. Arch Dermatol 1980; 116: 1385–7.
- Levin LS. Dental and oral abnormalities in selected ectodermal dysplasia syndromes. Birth Defects Orig Artic Ser 1988; 24: 205–27.
- George DI Jr, Escobar VH. Oral findings of Clouston's syndrome (hidrotic ectodermal dysplasia). Oral Surg Oral Med Oral Pathol 1984; 57: 258–62.
- Wilkinson RD, Schopflocher P, Rozenfeld M. Hidrotic ectodermal dysplasia with diffuse eccrine poromatosis. Arch Dermatol 1977; 113: 472–6.
- Freire-Maia N, Pinheiro M. Ectodermal Dysplasias: A Clinical and Genetic Study. New York: Alan R. Liss, 1984.
- Burns FS. A case of generalized congenital keratoderma with unusual involvement of the eyes, ears and nasal and buccal mucous membranes. J Cutan Dis 1915; 33: 255–60.
- Skinner BA, Greist MC, Norins AL. The keratitis, ichthyosis, and deafness (KID) syndrome. Arch Dermatol 1981; 117: 285–9.
- Caceres-Rios H, Tamayo-Sanchez L, Duran-Mckinster C et al. Keratitis, ichthyosis, and deafness (KID syndrome): review of the literature and proposal of a new terminology. Pediatr Dermatol 1996; 13: 105–13.
- Titeux M, Mendonça V, Décha A et al. Keratitis-ichthyosis-deafness syndrome caused by GJB2 maternal mosaicism. J Invest Dermatol 2009; 129: 776–9.
- Easton JA, Donnelly S, Kamps MAF et al. Porokeratotic eccrine nevus may be caused by somatic connexin26 mutations. J Invest Dermatol 2012; 132: 2184–91.
- Messmer EM, Kenyon KR, Rittinger O et al. Ocular manifestations of keratitis-ichthyosis-deafness (KID) syndrome. Ophthalmology 2005; 112: e1–6.
- Harms M, Gilardi S, Levy PM et al. KID syndrome (keratitis, ichthyosis, and deafness) and chronic mucocutaneous candidiasis: case report and review of the literature. Pediatr Dermatol 1984; 2: 1–7.
- Mazereeuw-Hautier J, Bitoun E, Chevrant-Breton J et al. Keratitis ichthyosis-deafness syndrome: disease expression and spectrum of connexin 26 (GJB2) mutations in 14 patients. Br J Dermatol 2007; 156: 1015–19.
- Nyquist GG, Mumm C, Grau R et al. Malignant proliferating pilar tumors arising in KID syndrome: a report of two patients. Am J Med Genet A 2007; 143: 734–41.
- Janecke AR, Hennies HC, Günther B et al. GJB2 mutations in keratitis ichthyosis-deafness syndrome including its fatal form. Am J Med Genet A 2005; 133A: 128–31.
- Hampton SM, Toner JG, Small J. Cochlear implant extrusion in a child with keratitis, ichthyosis and deafness syndrome. J Laryngol Otol 1997; 111: 465–7.
- Shiraishi S, Murakami S, Miki Y. Oral fluconazole treatment of fungating candidiasis in the keratitis, ichthyosis and deafness (KID) syndrome. Br J Dermatol 1994; 131: 904–7.
- Fitzgerald DA, Verbov JL. Hereditary palmoplantar keratoderma with deafness. Br J Dermatol 1996; 134: 939–42.
- Crosby EF, Vidurrizaga RH. Knuckle pads, leukonychia, deafness, and keratosis palmoplantaris: report of a family. Johns Hopkins Med J 1976; 139(Suppl): 90–2.
- Hatamochi A, Nakagawa S, Ueki H et al. Diffuse palmoplantar keratoderma with deafness. Arch Dermatol 1982; 118: 605–7.
- Sharland M, Bleach NR, Goberdhan PD et al. Autosomal dominant palmoplantar hyperkeratosis and sensorineural deafness in three generations. J Med Genet 1992; 29: 50–2.
- Kelsell DP, Wilgoss AL, Richard G et al. Connexin mutations associated with palmoplantar keratoderma and profound deafness in a single family. Eur J Hum Genet 2000; 8: 141–4.
- Heathcote K, Syrris P, Carter ND et al. A connexin 26 mutation causes a syndrome of sensorineural hearing loss and palmoplantar hyperkeratosis (MIM 148350). J Med Genet 2000; 37: 50–1.
- Richard G, White TW, Smith LE et al. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum Genet 1998; 103: 393–9.
- Loffeld A, Kelsell DP, Moss C. Palmoplantar keratoderma and sensorineural deafness in an 8-year old boy: a case report. Br J Dermatol 2000; 143(Suppl. 57): 38.
- Reid FM, Vernham GA, Jacobs HT. Complete mtDNA sequence of a patient in a maternal pedigree with sensorineural deafness. Hum Mol Genet 1994; 3: 1435–6.
- Fischel-Ghodsian N, Prezant TR, Fournier P et al. Mitochondrial mutation associated with nonsyndromic deafness. Am J Otolaryngol 1995; 16: 403–8.
- Hatamochi A, Nakagawa S, Ueki H et al. Diffuse palmoplantar keratoderma with deafness. Arch Dermatol 1982; 118: 605–7.
- Martin L, Toutain A, Guillen C et al. Inherited palmoplantar keratoderma and sensorineural deafness associated with A7445G point mutation in the mitochondrial genome. Br J Dermatol 2000; 143: 876–83.
- Bart RS, Pumphrey RE. Knuckle pads, leukonychia and deafness. A dominantly inherited syndrome. N Engl J Med 1967; 276: 202–7.
- Ramer JC, Vasily DB, Ladda RL. Familial leuconychia, knuckle pads, hearing loss, and palmoplantar hyperkeratosis: an additional family with Bart–Pumphrey syndrome. J Med Genet 1994; 31: 68–71.
- Richard G, Brown N, Ishida-Yamamoto A et al. Expanding the phenotypic spectrum of Cx26 disorders: Bart–Pumphrey syndrome is caused by a novel missense mutation in GJB2. J Invest Dermatol 2004; 123: 856–63.
- Richardson RJ, Joss S, Tomkin S et al. A nonsense mutation in the first transmembrane domain of connexin 43 underlies autosomal recessive oculodentodigital syndrome. J Med Genet 2006; 43: e37.
- Pizzuti A, Flex E, Mingarelli R et al. A homozygous GJA1 gene mutation causes a Hallermann-Streiff/ODDD spectrum phenotype. Hum Mutat 2004; 23: 286.
- Gorlin RJ, Meskin LH, St Geme JW. Oculodentodigital dysplasia. J Pediatr 1963; 63: 69–75.
- Reisner SH, Kott E, Bornstein B et al. Oculodentodigital dysplasia. Am J Dis Child 1969; 118: 600–7.
- Eidelman E, Chosack A, Wagner ML. Orodigitofacial dysostosis and oculodentodigital dysplasia. Two distinct syndromes with some similarities. Oral Surg Oral Med Oral Pathol 1967; 23: 311–19.
- Gillespie FD. A hereditary syndrome: ‘dysplasia oculodentodigitalis’. Arch Ophthalmol 1964; 71: 187–92.
- Judisch GF, Martin-Casals A, Hanson JW et al. Oculodentodigital dysplasia. Four new reports and a literature review. Arch Ophthalmol 1979; 97: 878–84.
- Beighton P, Hamersma H, Raad M. Oculodento-osseous dysplasia: heterogeneity or variable expression? Clin Genet 1979; 16: 169–77.
References
- Quinlan RA, Hutchison CJ, Lane EB. Intermediate filaments. In: P Sheterline (ed.) Protein Profiles. London: Academic Press, 1994.
- Lane EB. Keratins. In: PM Royce, B Steinmann (eds) Connective Tissue and its Heritable Disorders. Molecular, Genetic and Medical Aspects. New York: Wiley-Liss, 1993: 237–47.
- Hatzfeld M, Weber K. The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of sitespecific mutagenesis and recombinant protein expression. J Cell Biol 1990; 110: 1199–210.
- Steinert PM. The two-chain coiled-coil molecule of native epidermal keratin intermediate filaments is a type I-type II heterodimer. J Biol Chem 1990; 265: 8766–74.
- Moll R, Franke WW, Schiller DL et al. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31: 11–24.
- Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 1980; 19: 1033–42.
- Sun T-T, Eichner R, Schermer A et al. Classification, Expression and Possible Mechanisms of Evolution of Mammalian Epithelial Keratins: A Unifying Model. Cold Spring Harbor Laboratory, NY: Cold Spring Harbor Laboratory Press, 1984.
- Oshima RG, Howe WE, Klier G et al. Intermediate filament protein synthesis in preimplantation murine embryos. Dev Biol 1983; 99: 447–55.
- Waseem A, Alexander CM, Steel JB et al. Embryonic simple epithelial keratins 8 and 18: chromosomal location emphasizes difference from other keratin pairs. New Biol 1990; 2: 464–78.
- Roop DR, Huitfeldt H, Kilkenny A et al. Regulated expression of differentiation-associated keratins in cultured epidermal cells detected by monospecific antibodies to unique peptides of mouse epidermal keratins. Differentiation 1987; 35: 143–50.
- Stasiak PC, Purkis PE, Leigh IM et al. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J Invest Dermatol 1989; 92: 707–16.
- Bonifas JM, Rothman AL, Epstein EH Jr. Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science 1991; 254: 1202–5.
- Coulombe PA, Hutton ME, Letai A et al. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 1991; 66: 1301–11.
- Lane EB, Rugg EL, Navsaria H et al. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 1992; 356: 244–6.
- Irvine AD, McLean WH. Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br J Dermatol 1999; 140: 815–28.
- Arin MJ. The molecular basis of human keratin disorders. Hum Genet 2009; 125: 355–73.
- Winter H, Schissel D, Parry DA et al. An unusual ala12thr polymorphism in the 1A alpha-helical segment of the companion layerspecific keratin K6hf: evidence for a risk factor in the etiology of the common hair disorder pseudofolliculitis barbae. J Invest Dermatol 2004; 122: 652–7.
- Richard G, de Laurenzi V, Didona B et al. Keratin 13 point mutation underlies the hereditary mucosal epithelia disorder white sponge nevus. Nat Genet 1995; 11: 453–5.
- Rugg EL, McLean WH, Allison WE et al. A mutation in the mucosal keratin K4 is associated with oral white sponge nevus. Nat Genet 1995; 11: 450–2.
- Betz RC, Planko L, Eigelshoven S et al. Loss-of-function mutations in the keratin 5 gene lead to Dowling–Degos disease. Am J Hum Genet 2006; 78: 510–19.
- Winter H, Rogers MA, Langbein L et al. Mutations in the hair cortex keratin hHb6 cause the inherited hair disease monilethrix. Nat Genet 1997; 16: 372–4.
- Winter H, Labrèze C, Chapalain V et al. A variable monilethrix phenotype associated with a novel mutation, Glu402Lys, in the helix termination motif of the type II hair keratin hHb1. J Invest Dermatol 1998; 111: 169–72.
- Van Steensel MA, Steijlen PM, Bladergroen RS et al. A missense mutation in the type II hair keratin hHb3 is associated with monilethrix. J Med Genet 2005; 42: e19.
- Zlotogorski A, Marek D, Horev L et al. An autosomal recessive form of monilethrix is caused by mutations in DSG4: clinical overlap with localized autosomal recessive hypotrichosis. J Invest Dermatol 2006; 126: 1292–6.
-
Barbareschi M, Cambiaghi S, Crupi AC et al. Family with ‘pure’ hair-nail ectodermal dysplasia. Am J Med Genet 1997; 72: 91–3.
10.1002/(SICI)1096-8628(19971003)72:1<91::AID-AJMG19>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- Pinheiro M, Freire-Maia N. Hair-nail dysplasia – a new pure autosomal dominant ectodermal dysplasia. Clin Genet 1992; 41: 296–8.
- Calzavara-Pinton P, Carlino A, Benetti A et al. Pili torti and onychodysplasia: report of a previously undescribed hidrotic ectodermal dysplasia. Dermatologica 1991; 182: 184–7.
- Naeem M, Wajid M, Lee K et al. A mutation in the hair matrix and cuticle keratin KRTHB5 gene causes ectodermal dysplasia of hair and nail type (letter). J Med Genet 2006; 43: 274–9.
- Shimomura Y, Wajid M, Kurban M et al. Mutations in the keratin 85 (KRT85/hHb5) gene underlie pure hair and nail ectodermal dysplasia. J Invest Dermatol 2010; 130: 892–5.
- Raykova D et al. Autosomal recessive transmission of a rare KRT74 variant causes hair and nail ectodermal dysplasia: allelism with dominant woolly hair/hypotrichosis. PLoS One 2014; 9: e93607.
- Lin Z, Chen Q, Shi L et al. Loss-of-function mutations in HOXC13 cause pure hair and nail ectodermal dysplasia. Am J Human Genet 2012; 91: 906–11.
- Harrison S, Sinclair R. Hypotrichosis and nail dysplasia: a novel hidrotic ectodermal dysplasia. Australas J Dermatol 2004; 45: 103–5.
- Jadassohn J, Lewandowsky F. Pachyonychia congenita. In: Jacobs Ikonographia Dermatologica. Berlin: Urban and Schwarzenberg, 1906: 29.
- Jackson ADM, Lawler SD. Pachyonychia congenita: a report of six cases in one family. Ann Eugen 1951; 16: 142–6.
- Munro CS, Carter S, Bryce S et al. A gene for pachyonychia congenita is closely linked to the keratin gene cluster on 17q12–q21. J Med Genet 1994; 31: 675–8.
- McLean WH, Rugg EL, Lunny DP et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet 1995; 9: 273–8.
- Bowden PE, Haley JL, Kansky A et al. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nat Genet 1995; 10: 363–5.
- Smith FJD, Corden LD, Rugg EL et al. Mutations in keratin-17 cause steatocystoma multiplex. J Invest Dermatol 1996; 106: 225.
- Smith FJ, Corden LD, Rugg EL et al. Missense mutations in keratin 17 cause either pachyonychia congenita type 2 or a phenotype resembling steatocystoma multiplex. J Invest Dermatol 1997; 108: 220–3.
- Smith FJ, Jonkman MF, van Goor H et al. A mutation in human keratin K6b produces a phenocopy of the K17 disorder pachyonychia congenita type 2. Hum Mol Genet 1998; 7: 1143–8.
- Shamsher MK, Navsaria HA, Stevens HP et al. Novel mutations in keratin 16 gene underlie focal non-epidermolytic palmoplantar keratoderma (NEPPK) in two families. Hum Mol Genet 1995; 4: 1875–81.
- Covello SP, Smith FJ, Sillevis Smitt JH et al. Keratin 17 mutations cause either steatocystoma multiplex or pachyonychia congenita type 2. Br J Dermatol 1998; 139: 475–80.
- Connors JB, Rahil AK, Smith FJ et al. Delayed-onset pachyonychia congenita associated with a novel mutation in the central 2B domain of keratin 16. Br J Dermatol 2001; 144: 1058–62.
- Terrinoni A, Puddu P, Didona B et al. A mutation in the V1 domain of K16 is responsible for unilateral palmoplantar verrucous nevus. J Invest Dermatol 2000; 114: 1136–40.
- Lugassy J, Itin P, Ishida-Yamamoto A et al. Naegeli–Franceschetti–Jadassohn syndrome and dermatopathia pigmentosa reticularis: two allelic ectodermal dysplasias caused by dominant mutations in KRT14. Am J Hum Genet 2006; 79: 724–30.
- Van Steensel MA, Lemmink HH. A missense mutation in KRT14 causing a dermatopathia pigmentosa reticularis/Naegeli–Franceschetti–Jadassohn phenotype. J Eur Acad Dermatol Venereol 2010; 24: 1116–17.
- Goh BK, Common JE, Gan WH et al. A case of dermatopathia pigmentosa reticularis with wiry scalp hair and digital fibromatosis resulting from a recurrent KRT14 mutation. Clin Exp Dermatol 2009; 34: 340–3.
- Lugassy J, McGrath JA, Itin P et al. KRT14 haploinsufficiency results in increased susceptibility of keratinocytes to TNF-alpha-induced apoptosis and causes Naegeli–Franceschetti–Jadassohn syndrome. J Invest Dermatol 2008; 128: 1517–24.
- Itin PH, Lautenschlager S, Meyer R et al. Natural history of the Naegeli–Franceschetti–Jadassohn syndrome and further delineation of its clinical manifestations. J Am Acad Dermatol 1993; 28: 942–50.
- Heimer WL, Brauner G, James WD. Dermatopathia pigmentosa reticularis: a report of a family demonstrating autosomal dominant inheritance. J Am Acad Dermatol 1992; 26: 298–301.
- Brar BK, Mehta V, Kubba A. Dermatopathia pigmentosa reticularis. Pediatr Dermatol 2007; 24: 566–70.
- Itin PH, Lautenschlager S. Genodermatosis with reticulate, patchy and mottled pigmentation of the neck – a clue to rare dermatologic disorders. Dermatology 1998; 197: 281–90.
- Whittock NV, Smith FJ, Wan H et al. Frameshift mutation in the V2 domain of human keratin 1 results in striate palmoplantar keratoderma. J Invest Dermatol 2002; 118: 838–44.
- FB UB, Cau L, Tafazzoli A et al. Mutations in three genes encoding proteins involved in hair shaft formation cause uncombable hair syndrome. Am J Human Genet 2016; 99: 1292–304.
- Green KJ, Gaudry CA. Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol 2000; 1: 208–16.
- Getsios S, Huen AC, Green KJ. Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol 2004; 5: 271–81.
- Schmidt A, Heid HW, Schafer S et al. Desmosomes and cytoskeletal architecture in epithelial differentiation: cell type-specific plaque components and intermediate filament anchorage. Eur J Cell Biol 1994; 65: 229–45.
- Kowalczyk AP, Bornslaeger EA, Norvell SM et al. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. Int Rev Cytol 1999; 185: 237–302.
- Oxford EM, Musa H, Maass K et al. Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ Res 2007; 101: 703–11.
- Fidler LM, Wilson GJ, Liu F et al. Abnormal connexin43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations. J Cell Mol Med 2009; 13: 4219–28.
- McGrath JA, McMillan JR, Shemanko CS et al. Mutations in the plakophilin 1 gene can result in ectodermal dysplasia/skin fragility syndrome. Nat Genet 1997; 17: 240–4.
- McMillan JR, Haftek M, Akiyama M et al. Alterations in desmosome size and number coincide with the loss of keratinocyte cohesion in skin with homozygous and heterozygous defects in the desmosomal protein plakophilin 1. J Invest Dermatol 2003; 121: 96–103.
- McGrath JA, Hoeger PH, Christiano AM et al. Skin fragility and hypohidrotic ectodermal dysplasia resulting from ablation of plakophilin 1. Br J Dermatol 1999; 140: 297–307.
- Whittock NV, Haftek M, Angoulvant N et al. Genomic amplification of the human plakophilin 1 gene and detection of a new mutation in ectodermal dysplasia/skin fragility syndrome. J Invest Dermatol 2000; 115: 368–74.
- Hamada T, South AP, Mitsuhashi Y et al. Genotype-phenotype correlation in skin fragility-ectodermal dysplasia syndrome resulting from mutations in plakophilin 1. Exp Dermatol 2002; 11: 107–14.
- Sprecher E, Molho-Pessach V, Ingber A et al. Homozygous splice site mutations in PKP1 result in loss of epidermal plakophilin 1 expression and underlie ectodermal dysplasia/skin fragility syndrome in two consanguineous families. J Invest Dermatol 2004; 122: 647–51.
- Zheng R, Bu DF, Zhu XJ. Compound heterozygosity for new splice site mutations in the plakophilin 1 gene (PKP1) in a Chinese case of ectodermal dysplasia-skin fragility syndrome. Acta Dermatol Venereol 2005; 85: 394–9.
- Ersoy-Evans S, Erkin G, Fassihi H et al. Ectodermal dysplasia-skin fragility syndrome resulting from a new homozygous mutation, 888delC, in the desmosomal protein plakophilin 1. J Am Acad Dermatol 2006; 55: 157–61.
- Moll I, Kurzen H, Langbein L et al. The distribution of the desmosomal protein, plakophilin 1 in human skin and skin tumours. J Invest Dermatol 1997; 108: 139–46.
- McGrath JA, Mellerio JE. Ectodermal dysplasia-skin fragility syndrome. Dermatol Clin 2010; 28: 125–9.
- Tanaka A, Lai-Cheong JE, Café ME et al. Novel truncating mutations in PKP1 and DSP cause similar skin phenotypes in two Brazilian families. Br J Dermatol 2009; 160: 692–7.
- Protonotarios N, Tsatsopoulou A, Patsourakos P et al. Cardiac abnormalities in familial palmoplantar keratosis. Br Heart J 1986; 56: 321–6.
- McKoy G, Protonotarios N, Crosby A et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000; 355: 2119–24.
- Protonotarios N, Tsatsopoulou A, Anastasakis A et al. Genotype phenotype assessment in autosomal recessive arrhythmogenic right ventricular cardiomyopathy (Naxos disease) caused by a deletion in plakoglobin. J Am Coll Cardiol 2001; 38: 1477–84.
- Asimaki A, Syrris P, Wichter T et al. A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2007; 81: 964–73.
- Djabali K, Martinez-Mir A, Horev L et al. Evidence for extensive locus heterogeneity in Naxos disease. J Invest Dermatol 2002; 118: 557–60.
- Protonotarios N, Tsatsopoulou A. Naxos disease: cardiocutaneous syndrome due to cell adhesion defect. Orphanet J Rare Dis 2006; 1: 4.
- Carvajal-Huerta L. Epidermolytic palmoplantar keratoderma with woolly hair and dilated cardiomyopathy. J Am Acad Dermatol 1998; 39: 418–21.
- Norgett EE, Hatsell SJ, Carvajal-Huerta L et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000; 9: 2761–6.
- Green KJ, Parry DA, Steinert PM et al. Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J Biol Chem 1990; 265: 2603–12.
- Armstrong DK, McKenna KE, Purkis PE et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum Mol Genet 1999; 8: 143–8.
- Wan H, Dopping-Hepenstal PJ, Gratian MJ et al. Striate palmoplantar keratoderma arising from desmoplakin and desmoglein 1 mutations is associated with contrasting perturbations of desmosomes and the keratin filament network. Br J Dermatol 2004; 150: 878–91.
- Whittock NV, Wan H, Morley SM et al. Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J Invest Dermatol 2002; 118: 232–8.
- Jonkman MF, Pasmooij AM, Pasmans SG et al. Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa. Am J Hum Genet 2005; 77: 653–60.
- Bolling MC, Veenstra MJ, Jonkman MF et al. Lethal acantholytic epidermolysis bullosa due to a novel homozygous deletion in DSP: expanding the phenotype and implications for desmoplakin function in skin and heart. Br J Dermatol 2010; 162: 1388–94.
- Uzumcu A, Norgett EE, Dindar A et al. Loss of desmoplakin isoform I causes early onset cardiomyopathy and heart failure in a Naxoslike syndrome. J Med Genet 2006; 43: e5.
- Alcalai R, Metzger S, Rosenheck S et al. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 2003; 42: 319–27.
- Rickman L, Simrak D, Stevens HP et al. N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease striate palmoplantar keratoderma. Hum Mol Genet 1999; 8: 971–6.
- Hunt DM, Rickman L, Whittock NV et al. Spectrum of dominant mutations in the desmosomal cadherin desmoglein 1, causing the skin disease striate palmoplantar keratoderma. Eur J Hum Genet 2001; 9: 197–203.
- Bergman R, Hershkovitz D, Fuchs D et al. Disadhesion of epidermal keratinocytes: a histologic clue to palmoplantar keratodermas caused by DSG1 mutations. J Am Acad Dermatol 2010; 62: 107–13.
- Kljuic A, Bazzi H, Sundberg JP et al. Desmoglein 4 in hair follicle differentiation and epidermal adhesion: evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 2003; 113: 249–60.
- Zlotogorski A, Marek D, Horev L et al. An autosomal recessive form of monilethrix is caused by mutations in DSG4: clinical overlap with localized autosomal recessive hypotrichosis. J Invest Dermatol 2006; 126: 1292–6.
- Rogaev EI, Zinchenko RA, Dvoryachikov G et al. Total hypotrichosis: genetic form of alopecia not linked to hairless gene. Lancet 1999; 354(9184): 1097–8.
- Azeem Z, Jelani M, Naz G et al. Novel mutations in G proteincoupled receptor gene (P2RY5) in families with autosomal recessive hypotrichosis (LAH3). Hum Genet 2008; 123: 515–19.
- Wali A, Chishti MS, Ayub M et al. Localization of a novel autosomal recessive hypotrichosis locus (LAH3) to chromosome 13q14.11-q21.32. Clin Genet 2007; 72: 23–9.
- Wajid M, Bazzi H, Rockey J et al. Localized autosomal recessive hypotrichosis due to a frameshift mutation in the desmoglein 4 gene exhibits extensive phenotypic variability within a Pakistani family. J Invest Dermatol 2007; 127: 1779–82.
- Kazantseva A, Goltsov A, Zinchenko R et al. Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science 2006; 314(5801): 982–5.
- Ali G, Chishti MS, Raza SI et al. A mutation in the lipase H (LIPH) gene underlie autosomal recessive hypotrichosis. Hum Genet 2007; 121(3–4): 319–25.
- Pasternack SM, von Kügelgen I, Aboud KA et al. G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 2008; 40: 329–34.
- Shimomura Y, Wajid M, Ishii Y et al. Disruption of P2RY5, an orphan G protein-coupled receptor, underlies autosomal recessive woolly hair. Nat Genet 2008; 40: 335–9.
- Ayub M, Basit S, Jelani M et al. A homozygous nonsense mutation in the human desmocollin-3 (DSC3) gene underlies hereditary hypotrichosis and recurrent skin vesicles. Am J Hum Genet 2009; 85: 515–20.
- Toribio J, Quiñones PA. Hereditary hypotrichosis simplex of the scalp. Evidence for autosomal dominant inheritance. Br J Dermatol 1974; 91: 687–96.
- Hess RO, Uno H. Hereditary hypotrichosis of the scalp. Am J Med Genet 1991; 39: 125–9.
- Betz RC, Lee YA, Bygum A et al. A gene for hypotrichosis simplex of the scalp maps to chromosome 6p21.3. Am J Hum Genet 2000; 66: 1979–83.
- Kohn G, Metzker A. Hereditary hypotrichosis simplex of the scalp. Clin Genet 1987; 32: 120–4.
- Levy-Nissenbaum E, Betz RC, Frydman M et al. Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin. Nat Genet 2003; 34: 151–3.
- Matsumoto M, Zhou Y, Matsuo S et al. Targeted deletion of the murine corneodesmosin gene delineates its essential role in skin and hair physiology. Proc Natl Acad Sci U S A 2008; 105: 6720–4.
- Romano MT, Tafazzoli A, Mattern M et al. Bi-allelic mutations in LSS, encoding lanosterol synthase, cause autosomal-recessive hypotrichosis simplex. Am J Human Genet 2018; 103: 777–85.
- Sprecher E, Bergman R, Richard G et al. Hypotrichosis with juvenile macular dystrophy is caused by a mutation in CDH3, encoding P-cadherin. Nat Genet 2001; 29: 134–6.
- Indelman M, Bergman R, Lurie R et al. A missense mutation in CDH3, encoding P-cadherin, causes hypotrichosis with juvenile macular dystrophy. J Invest Dermatol 2002; 119: 1210–13.
- Kjaer KW, Hansen L, Schwabe GC et al. Distinct CDH3 mutations cause ectodermal dysplasia, ectrodactyly, macular dystrophy (EEM syndrome). J Med Genet 2005; 42: 292–8.
- Suzuki K, Hu D, Bustos T et al. Mutations of PVRL1, encoding a cell-cell adhesion molecule/herpesvirus receptor, in cleft lip/palateectodermal dysplasia. Nat Genet 2000; 25: 427–30.
References
- Bergendal B, McAllister A, Stecksen-Blicks C. Orofacial dysfunction in ectodermal dysplasias measured using the Nordic Orofacial Test-Screening protocol. Acta Odontol Scand 2009; 67: 377–81.
- Nunn JH, Carter NE, Gillgrass TJ et al. The interdisciplinary management of hypodontia: background and role of paediatric dentistry. Br Dent J 2003; 194: 245–51.
- Sclar AG, Kannikal J, Ferreira CF et al. Treatment planning and surgical considerations in implant therapy for patients with agenesis, oligodontia, and ectodermal dysplasia: review and case presentation. J Oral Maxillofac Surg 2009; 67(11 Suppl): 2–12.
- Gill DS, Jones S, Hobkirk J et al. Counselling patients with hypodontia. Dent Update 2008; 35: 344–6, 348–50, 352.
- Lane MM, Dalton WT 3rd, Sherman SA et al. Psychosocial functioning and quality of life in children and families affected by AEC syndrome. Am J Med Genet A 2009; 149A: 1926–34.
- Hummel P, Guddack S. Psychosocial stress and adaptive functioning in children and adolescents suffering from hypohidrotic ectodermal dysplasia. Pediatr Dermatol 1997; 14: 180–5.
- Bale SJ, Mitchell AG. Genetic testing in ectodermal dysplasia: availability, clinical utility, and the nuts and bolts of ordering a genetic test. Am J Med Genet A 2009; 149A: 2052–6.
- Gaide O. Gene therapy and protein therapy of ectodermal dysplasias: a perspective. Am J Med Genet A 2009; 149A: 2042–4.