The Use of Nanomaterials and Microfluidics in Medical Diagnostics
Jon Ashley
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
Search for more papers by this authorYi Sun
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
Search for more papers by this authorJon Ashley
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
Search for more papers by this authorYi Sun
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
Search for more papers by this authorZeynep Altintas
Technical University of Berlin, Berlin, Germany
Search for more papers by this authorSummary
In the last few decades, there has been an increasing demand for more sensitive, cheaper and faster diagnostic tests in healthcare. Nanotechnology has the potential to revolutionise medical diagnostics by allowing rapid testing potentially in the doctor's office, greater sensitivity down to single cell or molecule level, as well as screening of diseases at an earlier stage through identification of disease biomarkers at extremely low concentrations. Nanotechnology is considered a broad area of science that incorporates multiple scientific disciplines, and can be defined as the creation and manipulation of materials, systems, and devices at the nanometer scale. The development of nanomaterials and nano-devices can be classified into two general approaches. The top down approach deals exclusively with developing nanostructures through machining, templating and lithographic techniques and refers to the fabrication and development of microfluidic and nanofluidic devices. The bottom-up approach focuses on the synthesis of nanomaterials from a single atom or molecule and relies on self-assembly or self-organization to produce particles with uniform size and shape. These micro/nanofluidic devices and nanomaterials display extraordinary physical and chemical properties which have been exploited for a large number of different novel nanodiagnostic applications. In this chapter, a general overview of nanotechnology for medical diagnostic applications will be given. The chapter will firstly define nanotechnology followed by a brief summary of bottom-up approaches to developing nanomaterials and their use in medical diagnostics. Then a discussion on the top-down approach will focus on nano-devices, methods for fabrication and the applications of these devices in medical diagnostics. The chapter will go on to review the current applications of these nanomaterials. In the final part of the chapter, the future prospects and outlooks for nanotechnology in the field of molecular diagnostics will be discussed.
References
- Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318 (6042), 162.
- Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. J. Mater. Chem. 2011, 21 (40), 15872.
- Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6 (3), 183–191.
- Avouris, P.; Dimitrakopoulos, C. Mater. Today 2012, 15, 86–97.
- Wang, Y.; Hu, A. J. Mater. Chem. C 2014, 2, 6921–6939.
- Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. Nat. Nanotechnol. 2012, 7 (1), 11–23.
- Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Chem. Rev. 2015, 115 (19), 10816–10906.
- Chen, H. H.; Yu, C.; Ueng, T. H.; Chen, S.; Chen, B. J.; Huang, K. J.; Chiang, L. Y. Toxicol. Pathol. 1998, 26 (1), 143–151.
- Xie, R.; Wang, Z.; Yu, H.; Fan, Z.; Yuan, F.; Li, Y.; Li, X.; Fan, L.; Fan, H. Electrochim. Acta 2016, 201, 220–227.
- Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Nat. Med. 2012, 18 (12), 1841–1846.
- Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (22), 8943–8948.
- Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y. P. J. Am. Chem. Soc. 2009, 131 (32), 11308–11309.
- Yang, S. T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y. P. J. Phys. Chem. C 2009, 113 (42), 18110–18114.
- Estelrich, J.; Sánchez-Martín, M. J.; Busquets, M. A. Int. J. Nanomed. 2015, 10, 1727–1741.
- Bakry, R.; Vallant, R. M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C. W.; Bonn, G. K. Int. J. Nanomed. 2007, 2 (4), 639–649.
- Wojcik, M.; Hauser, M.; Li, W.; Moon, S.; Xu, K. Nat. Commun. 2015, 6, 7384.
- Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y. Mater. Today 2013, 16 (10), 365–373.
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Electroanalysis 2010, 22 (10), 1027–1036.
- Rossetti, R.; Nakahara, S.; Brus, L. J. Chem. Phys. 1983, 79 (May 2016), 1086–1088.
- Murray, C. B.; Norris, D.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115 (4), 8706–8715.
- Pisanic, T. R.; Zhang, Y.; Wang, T. H. Analyst 2014, 139 (12), 2968–2981.
- Bruchez Jr., M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281 (5385), 2013–2016.
- Chan, W. C. W.; Nie, S. Science 1998, 281 (5385), 2016–2018.
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Chem. Rev. 2008, 108 (6), 2064–2110.
- Na, H. B.; Song, I. C.; Hyeon, T. Adv. Mater. 2009, 21 (21), 2133–2148.
- Kelly, K. A.; Bardeesy, N.; Anbazhagan, R.; Gurumurthy, S.; Berger, J.; Alencar, H.; DePinho, R. A.; Mahmood, U.; Weissleder, R. PLoS Med. 2008, 5 (4), 0657–0668.
- Ray Chowdhuri, A.; Bhattacharya, D.; Sahu, S. K. Dalton Trans. 2016, 45 (7), 2963–2973.
- Sun, H.; Zeng, X.; Liu, M.; Elingarami, S.; Li, G.; Shen, B.; He, N. J. Nanosci. Nanotechnol. 2012, 12 (1), 267–273.
- Shinde, S. B.; Fernandes, C. B.; Patravale, V. B. J. Control. Release 2012, 164–180.
- Rocha-Santos, T. A. P. TrAC Trends Anal. Chem. 2014, 62, 28–36.
- Turkevich, J.; Cooper, P. H. J. Discuss. Faraday Soc. 1951, 55 (c), 55–75.
- Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P. Mol. Pharm. 2013, 10 (3), 831–847.
- Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A.; Razin, S.; Hacia, J. G.; Mansfield, E. S.; Wang, J.; Kreibig, U.; Genzel, L.; Dusemund, B.; Brust, M.; Grabar, K. C.; Yang, W.-H.; Schatz, G. C.; Duyne, R. P. Van; Grabar, K. C.; Mirkin, C. A.; Weisbecker, C. S.; Gryaznov, S. M.; Letsinger, R. L.; Urdea, M. S. Science 1997, 277 (5329), 1078–1081.
- El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Nano Lett. 2005, 5 (5), 829–834.
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Res. Pharm. Sci. 2014, 9 (6), 385–406.
- Vo-Dinh, T.; Yan, F.; Wabuyele, M. B. J. Raman Spectrosc. 2005, 36 (6–7), 640–647.
- Loo, C.; Lin, A.; Hirsch, L.; Lee, M.-H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Technol. Cancer Res. Treat. 2004, 3 (1), 33–40.
- Duff, D. G.; Baiker, A.; Edwards, P. P. Langmuir 1993, 9 (96), 2301–2309.
- Wang, Y.; Qian, W.; Tan, Y.; Ding, S. Biosens. Bioelectron. 2008, 23 (7), 1166–1170.
- Wei, H.; Willner, M. R.; Marr, L. C.; Vikesland, P. J. Analyst 2016, 141 (17), 5159–5169.
- Ayala-Orozco, C.; Liu, J. G.; Knight, M. W.; Wang, Y.; Day, J. K.; Nordlander, P.; Halas, N. J. Nano Lett. 2014, 14 (5), 2926–2933.
-
Ochsenkühn, M. A.; Campbell, C. J. In Raman Spectroscopy for Nanomaterials Characterization; Springer: Berlin/Heidelberg, 2012; pp. 51–74.
10.1007/978-3-642-20620-7_3 Google Scholar
- Henry, A.-I.; Sharma, B.; Cardinal, M. F.; Kurouski, D.; Van Duyne, R. P. Anal. Chem. 2016, 88 (13), 6638–6647.
- Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Acc. Chem. Res. 2008, 41 (12), 1587–1595.
- Wang, Y.; Liu, Y.; Luehmann, H.; Xia, X.; Wan, D.; Cutler, C.; Xia, Y. Nano Lett. 2013, 13 (2), 581–585.
- Hua, J.; Wu, F.; Fan, F.; Wang, W.; Xu, Z.; Li, F. J. Phys. Condens. Matter 2016, 28 (25), 254005.
- Berthing, T.; Sørensen, C. B.; Nygård, J.; Martinez, K. L. J. Nanoneurosci. 2009, 1 (1), 3–9.
- Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. Adv. Mater. 2014, 26 (14), 2137–2183.
- Zhang, G. J.; Ning, Y. Anal. Chim. Acta 2012, 749, 1–15.
- Shen, F.; Wang, J.; Xu, Z.; Wu, Y.; Chen, Q.; Li, X.; Jie, X.; Li, L.; Yao, M.; Guo, X.; Zhu, T. Nano Lett. 2012, 12 (7), 3722–3730.
- Nuzaihan, M. M. N.; Hashim, U.; Md Arshad, M. K.; Kasjoo, S. R.; Rahman, S. F. A.; Ruslinda, A. R.; Fathil, M. F. M.; Adzhri, R.; Shahimin, M. M. Biosens. Bioelectron. 2016, 83, 106–114.
- Bedwell, T. S.; Whitcombe, M. J. Anal. Bioanal. Chem. 2016, 408, 1735–1751.
- Singh, P. Biotechnol. Appl. Biochem. 2007, 48 (Pt 1), 1–9.
- Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Angew. Chem. Int. Ed. Engl. 1990, 29 (2), 138–175.
- Abbasi, E.; Aval, S. F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H. T.; Joo, S. W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Nanoscale Res. Lett. 2014, 9 (1), 247.
- Soler, M.; Mesa-Antunez, P.; Estevez, M.-C.; Ruiz-Sanchez, A. J.; Otte, M. A.; Sepulveda, B.; Collado, D.; Mayorga, C.; Torres, M. J.; Perez-Inestrosa, E.; Lechuga, L. M. Biosens. Bioelectron. 2015, 66, 115–123.
- Prakash, S.; Pinti, M.; Bhushan, B. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370 (1967), 2269–2303.
- Sackmann, E. K.; Fulton, A. L.; Beebe, D. J. Nature 2014, 507 (7491), 181–189.
- Toh, A. G. G.; Wang, Z. P.; Yang, C.; Nguyen, N. T. Microfluid. Nanofluid. 2014, 16 (1–2), 1–18.
- Pennathur, S.; Meinhart, C. D.; Soh, H. T. Lab Chip 2008, 8 (1), 20–22.
- Vyawahare, S.; Griffiths, A. D.; Merten, C. A. Chem. Biol. 2010, 17 (10), 1052–1065.
- Sin, M. L.; Gao, J.; Liao, J. C.; Wong, P. K. J. Biol. Eng. 2011, 5 (1), 6.
- MacPherson, M.; Ravichandrian, M. Univ. West. Ont. Med. J. 2011, 80 (1), 24–26.
- Kulinsky, L.; Noroozi, Z.; Madou, M. Methods Mol. Biol. 2013, 949 (1), 3–23.
- Kumar, S.; Kumar, S.; Ali, M. A.; Anand, P.; Agrawal, V. V.; John, R.; Maji, S.; Malhotra, B. D. Biotechnol. J. 2013, 8 (11), 1267–1279.
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M. R.; Weigl, B. H. Nature 2006, 442 (7101), 412–418.
- Chin, C. D.; Linder, V.; Sia, S. K. Lab Chip 2012, 12 (12), 2118–2134.
- Wilding, P.; Verpoorte, S.; Allen Northrup, M.; Yager, P.; Quake, S.; Landers, J. Clin. Chem. 2010, 56 (4), 508–514.
- Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Chem. Soc. Rev. 2010, 39 (3), 1153–1182.
- St John, A.; Price, C. P. Clin. Biochem. Rev. 2014, 35 (3), 155–167.
- Han, K. N.; Li, C. A.; Seong, G. H. Annu. Rev. Anal. Chem. (Palo Alto. Calif.) 2013, 6, 119–141.
- ProteinSimple, “ Ella, Simple Plex,” 2016. [Online]. Available at http://www.proteinsimple.com/ (accessed on June 24, 2017).
-
Jenkins, G.; Mansfield, C.D. In Microfluidic Diagnostics: Methods and Protocols; Springer Science-Business Media, LLC: New York, 2013.
10.1007/978-1-62703-134-9 Google Scholar
- Spencer, D. H.; Sellenriek, P.; Burnham, C. A. D. Am. J. Clin. Pathol. 2011, 136 (5), 690–694.
- Abhari, F.; Jaafar, H.; Md Yunus, N. A. Int. J. Electrochem. Sci. 2012, 7, 9765–9780.
- Jung, W.; Han, J.; Choi, J. W.; Ahn, C. H. Microelectron. Eng. 2014, 132, 46–57.
- Abaxis, “ Piccolo Xpress,” 2016. [Online]. Available at http://www.piccoloxpress.com/ (accessed on June 24, 2017).
- Heikali, D.; Di Carlo, D. J. Assoc. Lab. Autom. 2010, 15 (4), 319–328.
- Mohammed, M. I.; Haswell, S.; Gibson, I. Procedia Technol. 2015, 20 (July), 54–59.
- Rozand, C. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33 (2), 147–156.
- Sajid, M.; Kawde, A. N.; Daud, M. J. Saudi Chem. Soc. 2015, 19 (6), 689–705.
- Maltha, J.; Gillet, P.; Jacobs, J. Clin. Microbiol. Infect. 2013, 19 (5), 399–407.
- Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E. Anal. Chem. 2010, 82 (1), 3–10.
- Cunningham, J. C.; Degregory, P. R.; Crooks, R. M. Annu. Rec. Anal. Chem. 2016, 9 (1), 183–202.
- Pollock, N. R.; Rolland, J. P.; Kumar, S.; Beattie, P. D.; Jain, S.; Noubary, F.; Wong, V. L.; Pohlmann, R. A.; Ryan, U. S.; Whitesides, G. M. Sci. Transl. Med. 2012, 4 (152), 152ra129.
- Liang, W.; Lin, H.; Chen, J.; Chen, C. Microsyst. Technol. 2016, 22 (10), 2363–2370.
- Ge, X.; Asiri, A. M.; Du, D.; Wen, W.; Wang, S.; Lin, Y. TrAC Trends Anal. Chem. 2014, 58, 31–39.
- Li, Z.; Wang, Y.; Wang, J.; Tang, Z.; Pounds, J. G.; Lin, Y. Anal. Chem. 2010, 82 (16), 7008–7014.
- Chin, C. D.; Laksanasopin, T.; Cheung, Y. K.; Steinmiller, D.; Linder, V.; Parsa, H.; Wang, J.; Moore, H.; Rouse, R.; Umviligihozo, G.; Karita, E.; Mwambarangwe, L.; Braunstein, S. L.; van de Wijgert, J.; Sahabo, R.; Justman, J. E.; El-Sadr, W.; Sia, S. K. Nat. Med. 2011, 17 (8), 1015–1019.
- Chung, H. J.; Castro, C. M.; Im, H.; Lee, H.; Weissleder, R. Nat. Nanotechnol. 2013, 8 (5), 369–375.
- Freedonia. World Nanomaterials to 2016—Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Trends and Companies including Arkema, BASF and Bayer. Available at http://www.freedoniagroup.com/World-Nanomaterials.html (accessed on June 24, 2017).
- Lux Research, Inc, Health Care Microfluidics Market to Grow to Nearly $4 Billion in 2020, 2016. [Online]. Available at http://www.luxresearchinc.com/news-and-events/press-releases/read/health-care-microfluidics-market-grow-nearly-4-billion-2020 (accessed on June 24, 2017).
- Chin, C. D.; Chin, S. Y.; Laksanasopin, T.; Sia, S. K. Low-cost microdevices for point-of-care testing. In D. Issadore, R. Westervelt (eds), Point-of-Care Diagnostics on a Chip. Biological and Medical Physics, Biomedical Engineering; Springer: Berlin/Heidelberg, 2013.