Microstructure of Dairy Products: Challenges and Future Trends
Maricê Nogueira de Oliveira
Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Brazil
Search for more papers by this authorMaricê Nogueira de Oliveira
Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Brazil
Search for more papers by this authorMamdouh Mahmoud Abdel-Rahman El-Bakry
Universitat Autònoma of Barcelona, Barcelona, Spain
Search for more papers by this authorAntoni Sanchez
Universitat Autònoma of Barcelona, Barcelona, Spain
Search for more papers by this authorBhavbhuti M. Mehta
Anand Agricultural University, Gujarat, India
Search for more papers by this authorAbstract
Abstract: Studying the microstructure of dairy products – milk powder, fermented milks, cheeses, means research information about the physico-chemical interactions that occur in the product matrix. Additionally, the comprehension of texture, solubility, flow, viscoelasticity and fracture characteristics of the product that can affect its sensorial, nutritional and functional characteristics may be learned. These aspects will be demonstrated and discussed in this chapter especially in dairy products where yogurt and cheese are the main products.
References
- Aguilera, J., Stanley, D., and Baker, K. (2000). New dimensions in microstructure of food products. [Review]. Trends in Food Science and Technology, 11(1), 3–9. doi: 10.1016/S0924-2244(00)00034-0.
- ANVISA. Ministério da Agricultura e do Abastecimento, Secretaria de Defesa Agropecuária. Departamento de Inspeção de Produtos de Origem Animal. Regulamento Técnico de Identidade e Qualidade de Bebidas Lácteas. Aprovado pela Instrução Normativa n° de Brasília, 2005.
- Bhullar, Y.S., Uddin, M.A., and Shah, N.P. (2002). Effects of ingredients supplementation on textural characteristics and microstructure of yoghurt. Milchwissenschaft, 57, 328–332.
- Damin, M.R., Alcantara, M.R., Nunes, A.P., and Oliveira, M.N. (2009). Effects of milk supplementation with skim milk powder, whey protein concentrate and sodium caseinate on acidification kinetics, rheological properties and structure of nonfat stirred yogurt. Lwt-Food Science and Technology, 42(10), 1744–1750. doi: 10.1016/j.lwt.2009.03.019.
- Devi, A., Buckow, R., Hemar, Y., and Kasapis, S. (2013). Structuring dairy systems through high pressure processing. Journal of Food Engineering, 114, 106–122.
- Dewettinck, K. (2011). IDF Symposium on Microstructure of Dairy Products, 9–11 June 2010, Tromso, Norway. [Editorial Material]. International Dairy Journal, 21(9), 663-663. doi: 10.1016/j.idairyj.2011.06.001.
-
Ercili-Cura, D., Lille, M., Legland, D., Gaucel, S., Poutanen, K., Partanen, R., and Lantto, R. (2013). Structural mechanisms leading to improved water retention in acid milk gels by use of transglutaminase. [Article]. Food Hydrocolloids, 30(1), 419–427. doi: 10.1016/j.foodhyd.2012.07.008.
10.1016/j.foodhyd.2012.07.008 Google Scholar
-
Espírito-Santo, A.P., Lagazzo, A., Sousa, A., Perego, P., Converti, A., and Oliveira, M. (2013). Rheology, spontaneous whey separation, microstructure and sensorial characteristics of probiotic yoghurts enriched with passion fruit fiber. [Article]. Food Research International, 50(1), 224–231. doi: 10.1016/j.foodres.2012.09.012.
10.1016/j.foodres.2012.09.012 Google Scholar
- Everett, D., and Olson, N. (2003). Free oil and rheology of cheddar cheese containing fat globules stabilized with different proteins. [Article]. Journal of Dairy Science, 86(3), 755–763. doi: 10.3168/jds.S0022-0302(03)73656-X.
-
Fallico, V., Tuminello, L., Pediliggieri, C., Horne, J., Carpino, S., and Licitra, G. (2006). Proteolysis and microstructure of Piacentinu Ennese cheese made using different farm technologies. [Article]. Journal of Dairy Science, 89(1), 37–48.
10.3168/jds.S0022-0302(06)72067-7 Google Scholar
- FAO/WHO. (2010). CODEX Standard for fermented milks.
- Fox, P.F. (1993). Cheese: an overview. In P. Fox (Ed.) Cheese: chemistry, physics, and microbiology. General aspects. (Vol. v.1, pp. 1–36). London: Chapman and Hall.
- Fox, P.F. (2001). Milk proteins as food ingredients. International Journal of Dairy Technology, 54, 41–55.
-
Geng, X., van den Berg, F., Bager, A., and Ipsen, R. (2011). Dynamic visualization and microstructure of syneresis of cheese curd during mechanical treatment. [Article]. International Dairy Journal, 21(9), 711–717. doi: 10.1016/j.idairyj.2011.01.013.
10.1016/j.idairyj.2011.01.013 Google Scholar
-
Hickey, C., Auty, M., Wilkinson, M., and Sheehan, J. (2015). The influence of cheese manufacture parameters on cheese microstructure, microbial localisation and their interactions during ripening: A review. [Review]. Trends in Food Science and Technology, 41(2), 135–148. doi: 10.1016/j.tifs.2014.10.006.
10.1016/j.tifs.2014.10.006 Google Scholar
- Hill, A., and Prashanti, K. (2013). Dairy products: cheese and yogurt. In A.M. Eskin and F. Shahidi (Eds.) Biochemistry of foods, 3rd edn. London: Elsevier, pp. 319–362.
- Karimi, R., Azizi, M., Ghasemlou, M., and Vaziri, M. (2015). Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. [Review]. Carbohydrate Polymers, 119, 85–100. doi: 10.1016/j.carbpol.2014.11.029.
- Koutina, G., Knudsen, J., Andersen, U., and Skibsted, L. (2015). Influence of colloidal calcium phosphate level on the microstructure and rheologicalproperties of rennet-induced skim milk gels. LWT – Food Science and Technology. doi: 10.1016/j.lwt.2015.03.035.
- Le Feunteun, S., and Mariette, F. (2007). Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by H-1 PFG-NMR. [Article]. Journal of Agricultural and Food Chemistry, 55(26), 10764–10772. doi: 10.1021/jf071982v.
- Li, J.-M., and Nie, S.-P. (2016). The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 53, 46–61.
- Lucey, J.A., and Singh, H. (1997). Formation and physical properties of acid milk gels: a review. Food Research International, 30(7), 529–542.
- Luo, J., Wang, Z., Wang, F., Zhang, H., Lu, J., Guo, H., and Ren, F. (2014). Cryo-SEM images of native milk fat globule indicate small casein micelles are constituents of the membrane. [Article]. RSC Advances, 4(90), 48963–48966. doi: 10.1039/c4ra06171c.
-
Marafon, A., Sumi, A., Granato, D., Alcantara, M., Tamime, A., and de Oliveira, M. (2011). Effects of partially replacing skimmed milk powder with dairy ingredients on rheology, sensory profiling, and microstructure of probiotic stirred-type yogurt during cold storage. [Article]. Journal of Dairy Science, 94(11), 5330–5340. doi: 10.3168/jds.2011-4366.
10.3168/jds.2011-4366 Google Scholar
- Morand, M., Dekkari, A., Guyomarc'h, F., and Famelart, M. (2012). Increasing the hydrophobicity of the heat-induced whey protein complexes improves the acid gelation of skim milk. [Article]. International Dairy Journal, 25(2), 103–111. doi: 10.1016/j.idairyj.2012.03.002.
-
Morell, P., Ramirez-Lopez, C., Velez-Ruiz, J., and Fiszman, S. (2015). Relating HPMC concentration to elicited expected satiation in milk-based desserts. [Article]. Food Hydrocolloids, 45, 158–167. doi: 10.1016/j.foodhyd.2014.11.011.
10.1016/j.foodhyd.2014.11.011 Google Scholar
- Morris, V., and Groves, K. (2013). Food Microstructures:Measurement and Modelling. Cambridge: Woodhead Publishing.
-
Nguyen, H., Ong, L., Lefevre, C., Kentish, S., and Gras, S. (2014). The microstructure and physicochemical properties of probiotic buffalo yoghurt during fermentation and storage: a comparison with bovine yoghurt. [Article]. Food and Bioprocess Technology, 7(4), 937–953. doi: 10.1007/s11947-013-1082-z.
10.1007/s11947-013-1082-z Google Scholar
- Oliveira, M.N. (2009). Tecnologia de Produtos Lácteos Funcionais. São Paulo: Atheneu.
- Oliveira, M.N. (2014). Fermented milks/Yoghurt. In: Encyclopedia of Food Microbiology. Elsevier: Oxford.
- Oliveira, M.N., Sodini, I., Remeuf, F., Tissier, J.P., and Corrieu, G. (2002). Manufacture of fermented lactic beverages containing probiotic cultures. Journal of Food Science, 67(6), 2336–2341.
- Ong, L., Dagastine, R., Kentish, S., and Gras, S. (2010). The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy. [Article]. Journal of Food Science, 75(3), E135–E145. doi: 10.1111/j.1750-3841.2010.01517.x.
-
Ong, L., Dagastine, R., Auty, M., Kentish, S., and Gras, S. (2011a). Coagulation temperature affects the microstructure and composition of full fat Cheddar cheese. [Article]. Dairy Science and Technology, 91(6), 739–758. doi: 10.1007/s13594-011-0033-6.
10.1007/s13594-011-0033-6 Google Scholar
- Ong, L., Dagastine, R., Kentish, S., and Gras, S. (2011b). Microstructure of milk gel and cheese curd observed using cryo scanning electron microscopy and confocal microscopy. [Article]. Lwt-Food Science and Technology, 44(5), 1291–1302. doi: 10.1016/j.lwt.2010.12.026.
-
Ong, L., Dagastine, R., Kentish, S., and Gras, S. (2012). The effect of pH at renneting on the microstructure, composition and texture of Cheddar cheese. [Article]. Food Research International, 48(1), 119–130. doi: 10.1016/j.foodres.2012.02.020.
10.1016/j.foodres.2012.02.020 Google Scholar
-
Ong, L., Dagastine, R., Kentish, S., and Gras, S. (2013). The effect of calcium chloride addition on the microstructure and composition of Cheddar cheese. [Article|Proceedings Paper]. International Dairy Journal, 33(2), 135–141. doi: 10.1016/j.idairyj.2013.03.002.
10.1016/j.idairyj.2013.03.002 Google Scholar
- Peng, Y., Horne, D., and Lucey, J.A. (2009). Impact of preacidification of milk and fermentation time on the properties of yogurt. Journal of Dairy Science, 2977–2990. doi: DOI 10.3168/jds.2008-1221.
-
Penna, A., Subbarao-Gurram, and Barbosa-Canovas, G. (2007). High hydrostatic pressure processing on microstructure of probiotic low-fat yogurt. [Article]. Food Research International, 40(4), 510–519. doi: 10.1016/j.foodres.2007.01.001.
10.1016/j.foodres.2007.01.001 Google Scholar
-
Robinson, R.K. (2002). Dairy Microbiology Handbook ( 3rd edn). New York: Wiley-Interscience.
10.1002/0471723959 Google Scholar
- Rovira, S., Lopez, M., Ferrandini, E., and Laencina, J. (2011). Hot topic: Microstructure quantification by scanning electron microscopy and image analysis of goat cheese curd. [Article]. Journal of Dairy Science, 94(3), 1091–1097. doi: 10.3168/jds.2010-3996.
-
Silva, J., Legland, D., Cauty, C., Kolotuev, I., and Floury, J. (2015). Characterization of the microstructure of dairy systems using automated image analysis. [Article]. Food Hydrocolloids, 44, 360–371. doi: 10.1016/j.foodhyd.2014.09.028.
10.1016/j.foodhyd.2014.09.028 Google Scholar
- Simões, T. (2015). Behavior of elagic acid in symbiotic milk drinks supplemented with L-tryptophan and red fruit pulp. Master, São Paulo University.
- Sodini, I., Montella, J., and Tong, P.S. (2005). Physical properties of yogurt fortified with various commercial whey protein concentrates. Journal of the Science of Food and Agriculture, 85, 853–859.
- Sodini, I., Remeuf, F., Haddad, S., and Corrieu, G. (2004). The relative effect of milk base, starter, and process on yogurt texture: a review. Critical Reviews in Food Science and Nutrition, 44, 113–137.
- Solowiej, B., Glibowski, P., Muszynski, S., Wydrych, J., Gawron, A., and Jelinski, T. (2015). The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. [Article]. Food Hydrocolloids, 44, 1–11. doi: 10.1016/j.foodhyd.2014.08.022.
-
Soodam, K., Ong, L., Powell, I., Kentish, S., and Gras, S. (2014). The effect of milk protein concentration on the microstructure and textural properties of full fat cheddar cheese during ripening. [Article]. Food and Bioprocess Technology, 7(10), 2912–2922. doi: 10.1007/s11947-014-1342-6.
10.1007/s11947-014-1342-6 Google Scholar
- Séverin, S., and Wenshui, X. (2005). Milk biologically active components as nutraceuticals: review. Critical Reviews in Food Science and Nutrition, 45, 645–656.
-
Tamime, A.Y. (2007). Structure of Dairy Products. West Sussex: Wiley-Blackwell.
10.1002/9780470995921 Google Scholar
- Tamime, A.Y., Kalab, M., and Davies, G. (1984). Microstructure of set-style yoghurt manufactured from cow's milk fortified by various methods. Food Microstructure, 3, 83–92.
-
Tamime, A.Y., Hassan, A., Farnworth, E., and Toba, T. (2007a). Structure of fermented milks. In A. Tamime (Ed.), Structure of dairy products (pp. 134–169). Oxford, UK, Iowa, USA. Victoria, AUS: Blackwell Publishing Ltd.
10.1002/9780470995921.ch6 Google Scholar
-
Tamime, A.Y., Hasan, A., Farnworth, E.R., and Toba, T. (2007b). Structure of fermented milks (Vol. Chapter 6): Wiley-Blackwell.
10.1002/9780470995501 Google Scholar
- Tamime, A.Y., and Robinson, R.K. (2007). Yoghurt: Science and Technology ( 3rd edn). Boca Raton: CRC.
- Vasiljevic, T., and Shah, N.P. (2008). Probiotics-From Metchnikoff to bioactives. International Dairy Journal, 18, 714–728.
- Walstra, P., Wouters, J.T.M., and Geurts, T.J. (2006). Dairy Science and Technology (2nd edn).
-
Wium, H., Pedersen, P., and Qvist, K. (2003). Effect of coagulation conditions on the microstructure and the large deformation properties of fat-free Feta cheese made from ultrafiltered milk. [Article]. Food Hydrocolloids, 17(3), 287–296. doi: 10.1016/S0268-005X(02)00079-6
10.1016/S0268-005X(02)00079-6 Google Scholar
- Xu, Z.M., Emmanouelidou, D.G., Raphaelides, S.N., and Antoniou, K.D. (2008). Effects of heating temperature and fat content on the structure development of set yogurt. Journal of Food Engineering, 85, 590–597.