Improving Probiotics for Functional Foods
Lorena Ruiz
Alimentary Pharmabiotic Centre & Department of Microbiology, University College Cork, Cork, Ireland
Search for more papers by this authorMiguel Gueimonde
Institute of Dairy Products (IPLA-CSIC), Department of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
Search for more papers by this authorPatricia Ruas-Madiedo
Institute of Dairy Products (IPLA-CSIC), Department of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
Search for more papers by this authorAbelardo Margolles
Institute of Dairy Products (IPLA-CSIC), Department of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
Search for more papers by this authorBorja Sánchez
Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo, Ourense Campus, E-32004, Ourense, Spain
Search for more papers by this authorLorena Ruiz
Alimentary Pharmabiotic Centre & Department of Microbiology, University College Cork, Cork, Ireland
Search for more papers by this authorMiguel Gueimonde
Institute of Dairy Products (IPLA-CSIC), Department of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
Search for more papers by this authorPatricia Ruas-Madiedo
Institute of Dairy Products (IPLA-CSIC), Department of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
Search for more papers by this authorAbelardo Margolles
Institute of Dairy Products (IPLA-CSIC), Department of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
Search for more papers by this authorBorja Sánchez
Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo, Ourense Campus, E-32004, Ourense, Spain
Search for more papers by this authorRavishankar Rai V
Department of Studies in Microbiology, University of Mysore, Mysore, India
Search for more papers by this authorSummary
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most probiotic microorganisms used in the food industry are strains belonging to the genera Lactobacillus and Bifidobacterium, and the most common vehicles to deliver them include dairy products such as fermented milk or yogurt. In these products, the bacteria can contribute to the food fermentation or just be present as adjunct culture. However, the natural habitat of probiotics is normally the intestinal tract of humans and mammals. Therefore, the capacity of these bacteria to adapt to the food environment is critical in order to deliver the microorganism in a physiological state that allows survival and, desirably, persistence and colonization of our gut epithelium. In this way, the study of novel markers and traits related to probiotic robustness is of key importance to avoid a low bacterial viability. In this chapter, we attempt to shed some light on the strategies to make a rational selection of Lactobacillus and Bifidobacterium strains intended to be used in functional foods, as well as the processes to enhance their functionality.
References
- Aakko, J., Sánchez, B., Gueimonde, M. & Salminen, S. 2014. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG. Journal of Applied Microbiology 117, 239–248.
- Andriantsoanirina, V., Allano, S., Butel, M.J. & Aires, J. 2013. Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe 21, 39–42.
- Arroyo-López, F.N., Bautista-Gallego, J., Domínguez-Manzano, J., Romero-Gil, V., Rodriguez-Gómez, F., García-García, P., Garrido-Fernández, A. & Jiménez-Díaz, R. 2012. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiology 32, 295–301.
- Asensi, G.F., de Sales, N.F., Dutra, F.F., Feijó, D.F., Bozza, M.T., Ulrich, R.G., Miyoshi, A., de Morais, K., Azevedo, V.A., Silva, J.T., Le Loir, Y. & Paschoalin, V.M. 2013. Oral immunization with Lactococcus lactis secreting attenuated recombinant staphylococcal enterotoxin B induces a protective immune response in a murine model. Microbial Cell Factories 12, 32.
- Ashraf, R. & Shah, N.P. 2011. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt – a review. International Journal of Food Microbiology 149 (3), 194–208.
- Avila-Reyes, S.V., Garcia-Suarez, F.J., Jiménez, M.T., San Martín-Gonzalez, M.F. & Bello-Perez, L.A. 2014. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers 102, 423–430.
- Bai, D.M., Zhao, X.M., Li, X.G. & Xu, S.M. 2004. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Biotechnology and Bioengineering 88 (6), 681–689.
- Begley, M., Gahan, C.G. & Hill, C. 2005. The interaction between bacteria and bile FEMS Microbiology Reviews 29 (4), 625–651.
- Berger, B., Moine, D., Mansourian, R. & Arigoni, F. 2010. HspR mutations are naturally selected in Bifidobacterium longum when successive heat shock treatments are applied. Journal of Bacteriology 192, 256–263.
- Bermúdez-Humarán, L.G., Aubry, C., Motta, J.P., Deraison, C., Steidler, L., Vergnolle, N., Chatel, J.M. & Langella, P. 2013. Engineering lactococci and lactobacilli for human health Current Opinion in Microbiology 16 (3), 278–283.
- Bhat, A.R., Irorere, V.U., Bartlett, T., Hill, D., Kedia, G., Morris, M.R., Charalampopoulos, D. & Radecka, I. 2013. Bacillus subtilis Natto, a non-toxic source of poly-γ-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. AMB Express 3 (1), 36.
- Bottacini, F., Medini, D., Pavesi, A., Turroni, F., Foroni, E., Riley, D., Giubellini, V., Tettelin, H., van Sinderen, D. & Ventura, M. 2010. Comparative genomics of the genus Bifidobacterium . Microbiology 156, 3243–3254.
- Boylston, T.D., Vinderola, C.G., Ghoddusi, H.B. & Reinheimer, J.A. 2004. Incorporation of bifidobacteria into cheeses, challenges and rewards. International Dairy Journal 14, 375–387.
- Bron, P.A. & Kleerebezem, M. 2011. Engineering lactic acid bacteria for increased industrial functionality Bioengineered Bugs 2 (2), 80–87.
- Bron, P.A., Molenaar, D., de Vos, W.M. & Kleerebezem, M. 2006. DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum . Journal of Applied Microbiology 100, 728–738.
- Bron, P.A., Wels, M., Bongers, R.S., van Bokhorst-van de Veen, H., Wiersma, A., Overmars, L., Marco, M.L. & Kleerebezem, M. 2012. Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum . PLoS ONE 7, e38720.
- Burns, P., Sánchez, B., Vinderola, G., Ruas-Madiedo, P., Ruiz, L., Margolles, A., Reinheimer, J. & de los Reyes-Gavilán, C.G. 2010. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. International Journal of Food Microbiology 142, 132–141.
- Burns, P., Reinheimer, J. & Vinderola, G. 2011. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. lactis 200 on its interaction capacity with the gut. Research in Microbiology 162, 782–790.
- Cabiscol, E., Tamarit, J. & Ros, J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology 3 (1), 3–8.
- Carvalho, A.L., Cardoso, F.S., Bohn, A., Neves, A.R. & Santos, H. 2011. Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Applied and Environmental Microbiology 77 (12), 4189–4199.
- Céspedes, M., Cárdenas, P., Staffolani, M., Ciappini, M.C. & Vinderola, G. 2013. Performance in nondairy drinks of probiotic L. casei strains usually employed in dairy products. Journal of Food Science 78 (5), M756–762.
- Chou, L.S. & Weimer, B. 1999. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus . Journal of Dairy Science 82, 23–31.
- Claes, I.J., Lebeer, S., Shen, C., Verhoeven, T.L., Dilissen, E., De Hertogh, G., Bullens, D.M., Ceuppens, J.L., Van Assche, G., Vermeire, S., Rutgeerts, P., Vanderleyden, J. & De Keersmaecker, S.C. 2010. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clinical & Experimental Immunology 162 (2), 306–314.
- Clare, D.A., Zheng, Z., Hassan, H.M., Swaisgood, H.E. & Catignani, G.L 2008. Antimicrobial properties of milkfat globule membrane fractions. Journal of Food Protection 71 (1), 126–133.
- Collado, M.C. & Sanz, Y. 2006. Method for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid adaptation ability. Journal of Microbiological Methods 66 (3), 560–563.
- Collado, M.C. & Sanz, Y. 2007. Induction of acid resistance in Bifidobacterium, a mechanism for improving desirable traits of potentially probiotic strains. Journal of Applied Microbiology 103 (4), 1147–1157.
- Costa, M.G., Fonteles, T.V., de Jesus, A.L. & Rodrigues, S. 2013. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development, process optimization and product stability. Food Chemistry 139 (1–4), 261–266.
- Cotter, P.D. & Hill, C. 2003. Surviving the acid test, responses of Gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews 67, 429–453.
- Cronin, M., Ventura, M., Fitzgerald, G.F. & van Sinderen, D. 2011. Progress in genomics, metabolism and biotechnology of bifidobacteria. International Journal of Food Microbiology 149, 4–18.
- Damin, M.R., Minowa, E., Alcantar, M.R. & Oliveira, M.N. 2008. Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. Journal of Texture Studies 39, 40–55.
- Daniel, C., Sebbane, F., Poiret, S., Goudercourt, D., Dewulf, J., Mullet, C., Simonet, M. & Pot, B. 2009. Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine 27 (8), 1141–1144.
- de Azevedo, M.S., Innocentin, S., Dorella, F.A., Rocha, C.S., Mariat, D., Pontes, D.S., Miyoshi, A., Azevedo, V., Langella, P. & Chatel, J.M. 2013. Immunotherapy of allergic diseases using probiotics or recombinant probiotics. Journal of Applied Microbiology 115 (2), 319–333.
- de los Reyes-Gavilán, C.G., Suárez, A., Fernández-García, M., Margolles, A., Gueimonde, M. & Ruas-Madiedo, P. 2011. Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Research in Microbiology 162 (5), 514–519.
- Deepika, G., Rastall, R.A. & Charalampopoulos, D. 2011. Effect of food models and low-temperature storage on the adhesion of Lactobacillus rhamnosus GG to Caco-2 cells. Journal of Agricultural and Food Chemistry 59, 8661–8666.
- Desmond, C., Fitzgerald, G.F., Stanton, C. & Ross, R.P. 2004. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Applied and Environmental Microbiology 70 (10), 5929–5936.
- Esteban, L.E., Temprana, C.F., Argüelles, M.H., Glikmann, G. & Castello, A.A. 2013. Antigenicity and immunogenicity of rotavirus VP6 protein expressed on the surface of Lactococcus lactis . BioMed Research International 2013, 298598.
- Fanning, S., Hall, L.J., Cronin, M., Zomer, A., MacSharry, J., Goulding, D., Motherway, M.O., Shanahan, F., Nally, K., Dougan, G. & van Sinderen, D. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences of the United States of America 109, 2108–2113.
- Foligné, B., Daniel, C. & Pot, B. 2013. Probiotics from research to market, the possibilities, risks and challenges. Current Opinion in Microbiology 16, 284–292.
- Forssten, S.D., Sindelar, C.W. & Ouwehand, A.C. 2011. Probiotics from an industrial perspective. Anaerobe 17, 410–413.
- Furtado-Martins, E.M., Mota-Ramos, A., Lago-Vanzela, E.S., Stringheta, P.C., de Oliveira-Pinto, C.L. & Martins, J.M. 2013. Products of vegetable origin, a new alternative for the consumption of probiotic bacteria. Food Research International 51, 764–770.
- Garrigues, C., Johansen, E. & Crittenden, R. 2013. Pangenomics – an avenue to improved industrial starter cultures and probiotics. Current Opinion in Biotechnology 24, 187–191.
- Giraffa, G. 2012. Selection and design of lactic acid bacteria probiotic cultures. Engineering in Life Sciences 12, 391–398.
- Gonzalez-Gonzalez, C., Gibson, T. & Jauregi, P. 2013. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. International Journal of Food Microbiology 167, 131–137.
- Guglielmotti, D., Marcó, M.B., Vinderola, C., de Los Reyes Gavilán, C.G., Reinheimer, J. & Quiberoni, A. 2007. Spontaneous Lactobacillus delbrueckii phage-resistant mutants with acquired bile tolerance. International Journal of Food Microbiology 119, 236–242.
- Hamon, E., Horvatovich, P., Marchioni, E., Aoudé-Werner, D. & Ennahar, S. 2014. Investigation of potential markers of acid resistance in Lactobacillus plantarum by comparative proteomics. Journal of Applied Microbiology 116, 134–144.
- Hanson, M.L., Hixon, J.A., Li, W., Felber, B.K., Anver, M.R., Stewart, C.A., Janelsins, B.M., Datta, S.K., Shen, W., McLean, M.H. & Durum, S.K. 2014. Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology 146 (1), 210–221.
- Heidebach, T., Först, P. & Kulozik, U. 2012. Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition 52, 291–311.
- Hidalgo-Cantabrana, C., Sánchez, B., Milani, C., Ventura, M., Margolles, A. & Ruas-Madiedo, P. 2014. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology 80, 9–18.
- Hugenholtz, J., Sybesma, W., Groot, M.N., Wisselink, W., Ladero, V., Burgess, K., van Sinderen, D., Piard, J.C., Eggink, G., Smid, E.J., Savoy, G., Sesma, F., Jansen, T., Hols, P. & Kleerebezem, M. 2002. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals Antonie Van Leeuwenhoek 82 (1–4), 217–235.
- Hugentobler, F., Di Roberto, R.B., Gillard, J. & Cousineau, B. 2012. Oral immunization using live Lactococcus lactis co-expressing LACK and IL-12 protects BALB/c mice against Leishmania major infection. Vaccine 30 (39), 5726–5732.
- Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E. & Mercenier, A. 2010. Application of probiotics in food products--challenges and new approaches. Current Opinion in Biotechnology 21, 175–181.
- Jin, J., Zhang, B., Guo, H., Cui, J., Jiang, L., Song, S., Sun, M. & Ren, F. 2012. Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA sequencing. PLoS ONE 7 (12), e50777.
- Karimi, R., Mortazavian, A.M. & Da Cruz, A.G. 2011. Viability of probiotic microorganisms in cheese during production and storage, a review. Dairy Science and Technology 91, 283–308.
- Karimi, R., Sohrabvandi, S. & Mortazavian, A.M. 2012. Review Article, Sensory characteristics of probiotic cheese. Comprehensive Reviews in Food Science and Food Safety 11, 437–452.
- Kim, D.W., Cho, S.B., Lee, H.J., Chung, W.T., Kim, K.H., Hwangbo, J., Nam, I.S., Cho, Y.I., Yang, M.P. & Chung, I.B. 2007. Comparison of cytokine and nitric oxide induction in murine macrophages between whole cell and enzymatically digested Bifidobacterium sp. obtained from monogastric animals. Journal of Microbiology 45 (4), 305–310.
- Koponen, J., Laakso, K., Koskenniemi, K., Kankainen, M., Savijoki, K., Nyman, T.A., de Vos, W.M., Tynkkynen, S., Kalkkinen, N. & Varmanen, P. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. Journal of Proteomics 75 (4), 1357–1374.
- Koskenniemi, K., Laakso, K., Koponen, J., Kankainen, M., Greco, D., Auvinen, P., Savijoki, K., Nyman, T.A., Surakka, A., Salusjärvi, T., de Vos, W.M., Tynkkynen, S., Kalkkinen, N. & Varmanen, P. 2011. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Molecular and Cellular Proteomics 10, M110.002741.
- Kullen, M.J. & Klaenhammer, T.R. 2000. Genetic modification of intestinal lactobacilli and bifidobacteria. Current Issues in Molecular Biology 2 (2), 41–50.
- Kurdi, P., Kawanishi, K., Mizutani, K. & Yokota, A. 2006. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. Journal of Bacteriology 188, 1979–1986.
- Lacroix, C. & Yildirim, S. 2007. Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology 18, 176–183.
- Lebeer, S., Vanderleyden, J. & De Keersmaecker, S.C. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews 72 (4), 728–764.
- LeBlanc, J.G., Aubry, C., Cortes-Perez, N.G., de Moreno de LeBlanc, A., Vergnolle, N., Langella, P., Azevedo, V., Chatel, J.M., Miyoshi, A. & Bermúdez-Humarán, L.G. 2013. Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria, an update. FEMS Microbiology Letters 344 (1), 1–9.
- Lee, I.C., Tomita, S., Kleerebezem, M. & Bron, P.A 2013. The quest for probiotic effector molecules--unraveling strain specificity at the molecular level. Pharmacological Research 69 (1), 61–74.
- Leroy, F. & De Vuyst, L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology 15, 67–78.
- Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H. & Chen, W. 2011. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and Biotechnology 92 (3), 609–616.
- Li, Q.Q., Chen, Q.H., Hui, R., Zhu, D.S. & He, G.Q. 2010. Isolation and characterization of an oxygen, acid and bile resistant Bifidobacterium animalis subsp lactis Qq08. Journal of the Science of Food and Agriculture 90, 1340–1346.
- Liu, D., Wang, S., Xu, B., Guo, Y., Zhao, J., Liu, W., Sun, Z., Shao, C., Wei, X., Jiang, Z., Wang, X., Liu, F., Wang, J., Huang, L., Hu, D., He, X.A., Riedel, C.U. & Yuan, J. 2011. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose. Proteomics 11, 2628–2638.
- Liu, S.Q. & Tsao, M. 2009. Enhancement of survival of probiotic and non-probiotic lactic acid bacteria by yeasts in fermented milk under non-refrigerated conditions. International Journal of Food Microbiology 135 (1), 34–38.
- Liu, X., Champagne, C.P., Lee, B.H., Boye, J.I. & Casgrain, M. 2014. Thermostability of probiotics and their α-galactosidases and the potential for bean products. Biotechnology Research International 2014, 472723.
- Losurdo, L., Quintieri, L., Caputo, L., Gallerani, R., Mayo, B. & De Leo, F. 2013. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum . FEMS Microbiology Letters 340 (1), 24–32.
- Makarova, K.S. & Koonin, E.V. 2007. Evolutionary genomics of lactic acid bacteria. Journal of Bacteriology 189, 1199–1208.
- Marco, M.L. & Tachon, S. 2013. Environmental factors influencing the efficacy ofprobiotic bacteria. Current Opinion in Biotechnology 24, 207–213.
- Marelli, B., Perez, A.R., Banchio, C., de Mendoza, D. & Magni, C. 2011. Oral immunization with live Lactococcus lactis expressing rotavirus VP8 subunit induces specific immune response in mice. Journal of Virological Methods 175 (1), 28–37.
- Margolles, A. & Sánchez, B. 2012. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid. Applied and Environmental Microbiology 78, 3338–3342.
- Martín, R., Chain, F., Miquel, S., Natividad, J.M., Sokol, H., Verdu, E.F., Langella, P. & Bermúdez-Humarán, L.G. 2014. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Human Vaccines & Immunotherapeutics 10 (6), doi: 10.4161/hv.28549.
- Masco, L., Huys, G., De Brandt, E., Temmerman, R. & Swings, J. 2005. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. International Journal of Food Microbiology 102, 221–230.
- Maus, J.E. & Ingham, S.C. 2003. Employment of stressful conditions during culture production to enhance subsequent cold- and acid-tolerance of bifidobacteria. Journal of Applied Microbiology 95, 146–154.
- Meng, X.C., Stanton, C., Fitzgerald, G.F. et al. 2008. Anhydrobiotics, The challenges of drying probiotic cultures. Food Chemistry 106, 1406–1416.
- Mills, S., Stanton, C., Fitzgerald, G.F. & Ross, R.P. 2011. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microbial Cell Factories 10 (Suppl 1), S19.
- Mohammadi, R., Sohrabvandi, S. & Mortazavian, A.M. 2012. The starter culture characteristics of probiotic microorganisms in fermented milks. Engineering in Life Science 12, 399–409.
- Moslehi-Jenabian, S., Gori, K. & Jespersen, L. 2009. AI-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp. International Journal of Food Microbiology 135 (3), 295–302.
- Motta, J.P., Bermúdez-Humarán, L.G., Deraison, C., Martin, L., Rolland, C., Rousset, P., Boue, J., Dietrich, G., Chapman, K., Kharrat, P., Vinel, J.P., Alric, L., Mas, E., Sallenave, J.M., Langella, P. & Vergnolle, N. 2012. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Science Translational Medicine 4 (158), 144.
- Mozzetti, V., Grattepanche, F., Moine, D., Berger, B., Rezzonico, E., Arigoni, F. & Lacroix, C. 2012. Transcriptome analysis and physiology of Bifidobacterium longum NCC2705 cells under continuous culture conditions. Beneficial Microbes 3, 261–272.
- Muller, J.A., Stanton, C., Sybesma, W., Fitzgerald, G.F. & Ross, R.P. 2010. Reconstitution conditions for dried probiotic powders represent a critical step in determining cell viability. Journal of Applied Microbiology 108 (4), 1369–1379.
- Ng, E.W., Yeung, M. & Tong, P.S. 2011. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus . International Journal of Food Microbiology 145 (1), 169–175.
- Odamaki, T., Xiao, J.Z., Yonezawa, S., Yaeshima, T. & Iwatsuki, K. 2011. Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis . Journal of Dairy Science 94 (3), 1112–1121.
- Oliveira, R.P., Florence, A.C., Silva, R.C., Perego, P., Converti, A., Gioielli, L.A. & Oliveira, M.N. 2009. Effect of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milks. International Journal of Food Microbiology 128 (3), 467–472.
- Ouwehand, A.C., Tolkko, S. & Salminen, S. 2001. The effect of digestive enzymes on the adhesion of probiotic bacteria in vitro . JFS, Food Microbiology and Safety 66 (6), 856–859.
- Peres, C.M., Peres, C., Hernández-Mendoza, A. & Malcata, F.X. 2012. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria - With an emphasis on table olives. Trends in Food Science and Technology 26, 31–42.
- Polari, L., Ojansivu, P., Mäkelä, S., Eckerman, C., Holmbom, B. & Salminen, S. 2012. Galactoglucomannan extracted from spruce (Picea abies) as a carbohydrate source for probiotic bacteria. Journal of Agricultural and Food Chemistry 60, 11037–11043.
- Prasanna, P.H.P., Grandison, A.S. & Charalampopoulos, D. 2014. Bifidobacteria in milk products. An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Research International 55, 247–262.
- Qin, J., Li, R., Raes, J. et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.
- Ranadheera, R.D.C.S., Baines, S.K. & Adams, M.C. 2010. Importance of food in probiotic efficacy. Food Research International 43, 1–7.
- Ritter, P., Kohler, C. & Von Ah, U. 2009. Evaluation of the passage of Lactobacillus gasseri K7 and bifidobacteria from the stomach to intestines using a single reactor model. BMC Microbiology 9, 1–9.
- Rivera-Espinoza, Y. & Gallardo-Navarro, Y. 2010. Non-dairy probiotic products. Food Microbiology 27, 1–11.
- Rokka, S. & Rantamäki, P. 2010. Protecting probiotic bacteria by microencapsulation, challenges for industrial applications. European Food Research and Technology 231, 1–12.
- Rosberg-Cody, E., Ross, R.P., Hussey, S., Ryan, C.A., Murphy, B.P., Fitzgerald, G.F., Devery, R. & Stanton, C. 2004. Mining the microbiota of the neonatal gastrointestinal tract for conjugated linoleic acid-producing bifidobacteria. Applied and Environmental Microbiology 70, 4635–4641.
- Ruas-Madiedo, P., Gueimonde, M., Arigoni, F., de los Reyes-Gavilán, C.G. & Margolles, A. 2009. Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis . Applied and Environmental Microbiology 75, 1204–1207.
- Ruiz, L., Sánchez, B., Ruas-Madiedo, P., de Los Reyes-Gavilán, C.G. & Margolles, A. 2007. Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile. FEMS Microbiology Letters 274, 316–322.
- Ruiz, L., Ruas-Madiedo, P., Gueimonde, M., de los Reyes-Gavilán, C.G., Margolles, A. & Sánchez. B. 2011. How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition 6, 307–318.
- Ruiz, L., Margolles, A. & Sánchez, B. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium Frontiers in Microbiology 4, 396.
- Saarela, M.H., Alakimi, H.L., Matto, J., Ahonen, A.M. & Tynkkynen, S. 2011. Acid tolerant mutants of Bifidobacterium animalis subsp. lactis with improved stability in fruit juice Food Science and Technology 44, 1012–1018.
- Salazar, N., Binetti, A., Gueimonde, M., Alonso, A., Garrido, P., Gonzalez del Rey, C., Ruas-Madiedo, P. & de los Reyes-Gavilan, C.G. 2011. Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. International Journal of Food Microbiology 144, 342–351.
- Sánchez, B., de los Reyes-Gavilán, C.G. & Margolles, A. 2006. The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environmental Microbiology 8, 1825–1833.
- Sánchez, B., Champomier-Vergès, M.C., Collado, M.C., Anglade, P., Baraige, F., Sanz, Y., de los Reyes-Gavilán, C.G., Margolles, A. & Zagorec, M. 2007. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum . Applied and Environmental Microbiology 73, 6450–6459.
- Sánchez, B., Ruiz, L., de los Reyes-Gavilán, C.G. & Margolles, A. 2008. Proteomics of stress response in Bifidobacterium . Frontiers in Bioscience 13, 6905–6919.
- Sánchez, B., Ruiz, L., Gueimonde, M., Ruas-Madiedo, P. & Margolles, A. 2013. Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacological Research 69, 127–136.
- Savini, M., Cecchini, C., Verdenelli, M.C., Silvi, S., Orpianesi, C. & Cresci, A. 2010. Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients 2 (3), 330–339.
- Serafini, F., Turroni, F., Ruas-Madiedo, P., Lugli, G.A., Milani, C., Duranti, S., Zamboni, N., Bottacini, F., van Sinderen, D., Margolles, A. & Ventura M. 2014. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology 178, 50–59.
- Shah, N.P. 2000. Probiotic bacteria, selective enumeration and survival in dairy foods. Journal of Dairy Science 83 (4), 894–907.
- Sheehan, V.M., Sleator, R.D., Fitzgerald, G.F. & Hill, C. 2006. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Applied and Environmental Microbiology 72 (3), 2170–2177.
- Sheehan, V.M., Sleator, R.D., Hill, C. & Fitzgerald, G.F. 2007. Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology 153 (10), 3563–3571.
- Siaterlis, A., Deepika, G. & Charalampopoulos, D. 2009. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Letters in Applied Microbiology 48 (3), 295–301.
- Simpson, P.J., Stanton, C., Fitzgerald, G.F. & Ross, R.P. 2005. Intrinsinc tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage Journal of Applied Microbiology 99 (3), 493–501.
- Sleator, R.D. & Hill, C. 2009. Rational design of improved pharmabiotics. Journal of Biomedicine and Biotechnology 2009, 275287.
- Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C. & Fisk I.D. 2014. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chemistry 159, 302–308.
- Steidler, L., Rottiers, P. & Coulie, B. 2009. Actobiotics as a novel method for cytokine delivery. Annals of the New York Academy of Sciences 1182, 135–145.
- Streit, F., Delettre, J., Corrieu, G. & Béal, C. 2008. Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. Journal of Applied Microbiology 105 (4), 1071–1080.
- Sybesma, W., Starrenburg, M., Tijsseling, L., Hoefnagel, M.H.N. & Hugenholtz J. 2003. Effects of cultivation conditions on folate production by lactic acid bacteria. Applied and Environmental Microbiology 69, 4542–4548.
- Talwalkar, A. & Kailasapathy, K. 2003. Oxygen toxicity in probiotic yogurts, influence on the survival of probiotic bacteria and protective techniques. Comprehensive Reviews in Food Science and Food Safety 3, 117–124.
- Tangney, M. 2010. Gene therapy for cancer, dairy bacteria as delivery vectors Discovery Medicine 10 (52), 195–200.
- Tian, H., Tan, J., Zhang, L., Gu, X., Xu, W., Guo, X. & Luo, Y. 2012. Increase of stress resistance in Lactococcus lactis via a novel food-grade vector expressing a shsp gene from Streptococcus thermophilus . Brazilian Journal of Microbiology 43 (3), 1157–1164.
- Tymczyszyn, E.E., Gerbino, E., Illanes, A. & Gómez-Zavaglia, A. 2011. Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus . Cryobiology 62 (2), 123–129.
- Vesterlund, S., Salminen, K. & Salminen, S. 2012. Water activity in dry foods containing live probiotic bacteria should be carefully considered, a case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology 157 (2), 319–321.
- Vinderola, C.G. & Reinheimer, J.A. 2003. Lactic acid starter and probiotic bacteria, a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Research International 36, 895–904.
- Vinderola, C.G., Costa, G.A., Regenhardt, S. & Reinheimer, J.A. 2002. Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. International Dairy Journal 12 (7), 579–589.
- Waddington, L., Cyr, T., Hefford, M., Hansen, L.T. & Kalmokoff, M. 2010. Understanding the acid tolerance response of bifidobacteria. Journal of Applied Microbiology 108 (4), 1408–1420.
- Wang, L.Q., Meng, X.C., Zhang, B.R., Wang, Y. & Shang, Y.L. 2010. Influence of cell surface properties on adhesion ability of bifidobacteria. World Journal of Microbiology and Biotechnology 26 (11), 1999–2007.
- Wells, J.M. 2011. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annual Review of Food Science and Technology 2, 423–445.
- Wells, J.M. & Mercenier, A. 2008. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology 6 (5), 349–362.
- WGO (World Gastroenterology Organisation). 2011. WGO Practice Guideline - Probiotics and Prebiotics. Available at http://www.worldgastroenterology.org/probiotics-prebiotics.html (accessed 30 June 2015).
- Whitehead, K., Versalovic, J., Roos, S. & Britton, R.A. 2008. Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Applied and Environmental Microbiology 74 (6), 1812–1819.
- Wu, C., Zhang, J., Wang, M., Du, G. & Chen, J. 2012. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. Journal of Industrial Microbiology and Biotechnology 39, 1031–1039.
- Zhai, Z., Douillard, F.P., An, H., Wang, G., Guo, X., Luo, Y. & Hao, Y. 2014. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environmental Microbiology 16 (6), 1524–1537.
- Zhang, J., Du, G.C., Zhang, Y., Liao, X.Y., Wang, M., Li, Y. & Chen, J. 2010. Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment. Applied and Environmental Microbiology 76 (9), 2989–2996.