Ionic Liquid-Based Surfactants
Synthesis, Molecular Structure, Micellar Properties and Applications
Omar A. El Seoud
Institute of Chemistry, University of São Paulo, São Paulo, Brazil
Search for more papers by this authorOmar A. El Seoud
Institute of Chemistry, University of São Paulo, São Paulo, Brazil
Search for more papers by this authorBidyut K. Paul
Search for more papers by this authorSatya P. Moulik
Search for more papers by this authorSummary
The favorable properties of ionic liquids (ILs), for example, negligible vapor pressure, polarity, high chemical and thermal stability, as well as molecular structural versatility, are expected to be carried over to their surface-active counterparts, ionic liquid-based surfactants (ILBSs; ILs with long-chain “tails”); this has been verified experimentally for several 1,3-dialkylimidazolium chlorides, bromides, and tetrafluoroborates. The impetus for studying ILBSs is the enormous potential for their applications, for example, in the biomedical and nanotechnological fields. The progress in these applications rests on a clear understanding of the relationship between surfactant molecular structure and properties of its solution. This article is focused on the imidazole-based ILBSs, including syntheses, determination of the properties of their solutions, and comparison between their micellar properties and those of “conventional” cationic surfactants, for example, pyridine-based cationics, and of some of their main applications. The most frequently employed schemes for the synthesis and purification of ILBSs are given; the following micellar properties are listed, where available: the critical micelle concentration, counterion dissociation constant, surfactant aggregation number, and thermodynamic parameters of aggregation. The applications of the ILBSs are briefly discussed.
References
- Gaillon L., Sirieix-Plenet J., Letellier P. J Solut Chem 2004, 33, 1333–1347.
- Galgano P. D., El Seoud O. A. Surface-Active Ionic Liquids: Syntheses, Solution Properties, and Applications. In: J. Mun, H. Sim, editors. Handbook of Ionic Liquids: Properties, Applications and Hazards, 2012, Nova Publisher, Hauppauge, pp. 521–548.
- Chiu Y. C., Wang S. J. Colloids Surf 1990, 48, 297–309.
- Lunkenheimer K., Wienskol G., Prosser A. J. Langmuir 2004, 20, 5738–5744.
-
P. Wasserscheid, T. Welton, editors. Ionic Liquids in Synthesis (Green Chemistry), 2007, 2nd ed. Wiley-VCH Verlag GmbH, Weinheim.
10.1002/9783527621194 Google Scholar
- Welton T. Chem Rev 1999, 99, 2071–2084.
- Cravotto G., Gaudino E. C., Boffa L., Lévêque J.-M., Estager J., Bonrath W. Molecules 2008, 13, 149–156.
- Thomaier S., Kunz W. J Mol Liq 2007, 130, 104–107.
- El Seoud O. A., Pires P. A. R., Abdel-Moghny T. J Colloid Interface Sci 2007, 313, 296–304.
- Ao M., Huang P., Xu G., Yang X., Wang Y. Colloid Polym Sci 2009, 287, 395–402.
- Inoue T., Ebina H., Dong B., Zheng L. J Colloid Interface Sci 2007, 314, 236–241.
- Baltazar Q. Q., Chandawalla J., Sawyer K., Anderson J. L. I. Colloids Surf A Physicochem Eng Asp 2007, 302, 150–156.
- Kanjilal S., Sunitha S., Reddy P. S., Kumar K. P., Murty U. S. N., Prasad R. B. N. Eur J Lipid Sci Technol 2009, 111, 941–948.
- Gordon C. M., Holbrey J. D., Kennedy A. R., Seddon K. R. J Mater Chem 1998, 8, 2627–2636.
- Aupoix A., Pégot B., Vo-Thanh G. Tetrahedron 2010, 66, 1352–1356.
- Dupont J., Consorti C. S., Suarez P. A. Z., De Souza R. F. P. Org Synth 2003, 79, 236–243.
- Cook R., Dispenziere N., Mehnert C. Method for Preparing High-Purity Ionic Liquids. US20040074842 A1, 2004.
- Zhu W., Yang H., Yu Y., Hua L., Li H., Feng B., et al. Phys Chem Chem Phys 2011, 13, 13492–13500.
- Bhadani A., Singh S. Langmuir 2011, 27, 14033–14044.
- Deng Y., Morrissey S., Gathergood N., Delort A.-M., Husson P., Costa Gomes M. F. ChemSusChem 2010, 3, 377–385.
- Wang X., Liu J., Yu L., Jiao J., Wang R., Sun L. J Colloid Interface Sci 2013, 391, 103–110.
- Wang X., Wang R., Zheng Y., Sun L., Yu L., Jiao J., et al. J Phys Chem B 2013, 117, 1886–1895.
- Liu X., Dong L., Fang Y. J Surfactant Deterg 2011, 14, 497–504.
- Ding K., Miao Z., Liu Z., An G., Xie Y., Tao R., et al. J Mater Chem 2008, 18, 5406–5411.
- El Seoud O. A., Koschella A., Fidale L. C., Dorn S., Heinze T. Biomacromolecules 2007, 8, 2629–2647.
- Kaper H., Sallard S., Djerdj I., Antonietti M., Smarsly B. M. Chem Mater 2010, 22, 3502–3510.
- Ma J., Liu X., Lian J., Duan X., Zheng W. Cryst Growth Des 2010, 10, 2522–2527.
-
Mukerjee P. Adv Colloid Interface Sci 1967, 1, 242–275.
10.1016/0001-8686(67)80005-8 Google Scholar
-
Mukerjee P., Mysels K. J. Critical Micelle Concentrations of Aqueous Surfactant Systems, 1971, U.S. National Bureau of Standards, U.S. Government Printing Office, Washington, DC.
10.6028/NBS.NSRDS.36 Google Scholar
- Frahm J., Diekmann S., Haase A. Ber Bunsen Ges 1980, 84, 566–571.
- Evans H. C. J Chem Soc 1956, 579–586.
- Shanks P. C., Franses E. I. J Phys Chem 1992, 96, 1794–1805.
- Schulz P. C., Hernandez-Vargas M. E., Puig J. E. Lat Am Appl Res 1995, 25, 153–159.
-
Hiemenz P. C., Rajagopalan R. Principles of Colloid and Surface Chemistry, 1997, 3rd ed. Marcel Deker, New York.
10.1201/9781315274287 Google Scholar
-
Rosen M. J. Surfactants and Interfacial Phenomena, 2004, 3rd ed. Wiley-Interscience, Hoboken.
10.1002/0471670561 Google Scholar
- Galgano P. D., El Seoud O. A. J Colloid Interface Sci 2010, 345, 1–11.
- Tanford C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 1980, Wiley-Interscience, New York.
- Moulik S. P., Mitra D. J Colloid Interface Sci 2009, 8, 569–578.
- Bhargava B. L., Klein M. L. J Phys Chem B 2009, 113, 9499–9505.
- Cornellas A., Perez L., Comelles F., Ribosa I., Manresa A., Garcia M. T. J Colloid Interface Sci 2011, 355, 164–171.
- Goodchild I., Collier L., Millar S. L., Prokes I., Lord J. C. D., Butts C. P., et al. J Colloid Interface Sci 2007, 307, 455–468.
- Liu J., Zhang Q., Huo Y., Zhao M., Sun D., Wei X., et al. Colloid Polym Sci 2012, 290, 1721–1730.
- Liu J., Zhao M., Zhang Q., Sun D., Wei X., Zheng L. Colloid Polym Sci 2011, 289, 1711–1718.
- Wang J., Wang H., Zhang S., Zhang H., Zhao Y. J Phys Chem B 2007, 111, 6181–6188.
- Zhao Y., Gao S., Wang J., Tang J. J Phys Chem B 2008, 112, 2031–2039.
- Vaghela N. M., Sastry N. V., Aswal V. K. Colloids Surf A Physicochem Eng Asp 2011, 373, 101–109.
- Vanyúr R., Biczók L., Miskolczy Z. Colloids Surf A Physicochem Eng Asp 2007, 299, 256–261.
- Dong B., Li N., Zheng L., Yu L., Inoue T. Langmuir 2007, 23, 4178–4182.
- Wang H., Feng Q., Wang J., Zhang H. J Phys Chem B 2010, 114, 1380–1387.
- Geng F., Liu J., Zheng L., Yu L., Li Z., Li G., et al. J Chem Eng Data 2010, 55, 147–151.
- Brinchi L., Germani R., Braccalenti E., Spreti N., Tiecco M., Savelli G. J Colloid Interface Sci 2010, 348, 137–145.
- Feng Q., Wang H., Zhang S., Wang J. Colloids Surf A Physicochem Eng Asp 2010, 367, 7–11.
- Kaper H., Smarsly B. Z Phys Chem (Muenchen, Ger) 2006, 220, 1455–1471.
- Jungnickel C., Luczak J., Ranke J., Fernández J. F., Müller A., Thöming J. Colloids Surf A Physicochem Eng Asp 2008, 316, 278–284.
- Łuczak J., Jungnickel C., Joskowska M., Thöming J., Hupka J. J Colloid Interface Sci 2009, 336, 111–116.
- Galgano P. D., El Seoud O. A. J Colloid Interface Sci 2011, 361, 186–194.
- Blesic M., Marques M. H., Plechkova N. V., Seddon K. R., Rebelo L. P. N., Lopes A. Green Chem 2007, 9, 481–490.
- Bai G., Lopes A., Bastos M. J Chem Thermodyn 2008, 40, 1509–1516.
- Blesic M., Swadźba-Kwaśny M., Holbrey J. D., Canongia Lopes J. N., Seddon K. R., Rebelo L. P. N. Phys Chem Chem Phys 2009, 11, 4260–4268.
- Li X.-W., Gao Y.-A., Liu J., Zheng L.-Q., Chen B., Wu L.-Z., et al. J Colloid Interface Sci 2010, 343, 94–101.
- Ao M., Xu G., Zhu Y., Bai Y. J Colloid Interface Sci 2008, 326, 490–495.
- Zhang S., Yuan J., Ma H., Li N., Zheng L., Inoue T. Colloid Polym Sci 2011, 289, 213–218.
- Li H., Yu C., Chen R., Li J., Li J. Colloids Surf A Physicochem Eng Asp 2012, 395, 116–124.
- Heintz A., Lehmann J. K., Kozlova S. A., Balantseva E. V., Bazyleva A. B., Ondo D. Fluid Phase Equilib 2010, 294, 187–196.
- Liu G., Gu D., Liu H., Ding W., Li Z. J Colloid Interface Sci 2011, 358, 521–526.
-
Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications, 1999, 2nd ed., Wiley-VCH Verlag GmbH, New York.
10.1002/0471234990 Google Scholar
- Bazito R. C., El Seoud O. A. Berichte Bunsenges Phys Chem 1997, 101, 1933–1941.
- Tada E. B., Novaki L. P., El Seoud O. A. Langmuir 2001, 17, 652–658.
- Impey R. W., Madden P. A., McDonald I. R. J Phys Chem 1983, 87, 5071–5083.
- Sepulveda L., Cortes J. I. J Phys Chem 1985, 89, 5322–5324.
- Reichardt C., Welton T. Solvents and Solvent Effects in Organic Chemistry, 2011, Wiley-VCH Verlag GmbH, Weinheim.
- Hallett J. P., Welton T. Chem Rev 2011, 111, 3508–3576.
- Bernot R. J., Brueseke M. A., Evans-White M. A., Lamberti G. A. Environ Toxicol Chem 2005, 24, 87–92.
- Bernot R. J., Kennedy E. E., Lamberti G. A. Environ Toxicol Chem 2005, 24, 1759–1765.
- Docherty K. M., Charles F., Kulpa J. Green Chem 2005, 7, 185–189.
- Pretti C., Chiappe C., Pieraccini D., Gregori M., Abramo F., Monni G., et al. Green Chem 2006, 8, 238–240.
- Carson L., Chau P. K. W., Earle M. J., Gilea M. A., Gilmore B. F., Gorman S. P., et al. Green Chem 2009, 11, 492–497.
- Demberelnyamba D., Kim K.-S., Choi S., Park S.-Y., Lee H., Kim C.-J., et al. Bioorg Med Chem 2004, 12, 853–857.
- Dorjnamjin D., Ariunaa M., Shim Y. K. Int J Mol Sci 2008, 9, 807–820.
- Łuczak J., Jungnickel C., Łącka I., Stolte S., Hupka J. Green Chem 2010, 12, 593–601.
- Birnie C. R., Malamud D., Schnaare R. L. Antimicrob Agents Chemother 2000, 44, 2514–2517.
- Pernak J., Sobaszkiewicz K., Mirska I. Green Chem 2003, 5, 52–56.
- Kaushik N. K., Attri P., Kaushik N., Choi E. H. Molecules 2012, 17, 13727–13739.
- Nagaraj K., Arunachalam S. New J Chem 2013, 38, 366–375.
- Hu X., Deng J., Wang L., Yuan Y. Med Chem 2013, 9, 1058–1062.
- Rao V. K., Tiwari R., Chhikara B. S., Shirazi A. N., Parang K., Kumar A. J Phys Chem B 2013, 3, 15396–15403.
- Kumar V., Malhotra S. V. Bioorg Med Chem Lett 2009, 19, 4643–4646.
- Malhotra S. V., Kumar V. Bioorg Med Chem Lett 2010, 20, 581–585.
- Mukherjee I., Mukherjee S., Naskar B., Ghosh S., Moulik S. P. J Colloid Interface Sci 2013, 395, 135–144.
- Arning J., Stolte S., Böschen A., Stock F., Pitner W.-R., Welz-Biermann U., et al. Green Chem 2008, 10, 47–58.
- Wang X., Liu J., Sun L., Yu L., Jiao J., Wang R. J Phys Chem B 2012, 116, 12479–12488.
- Tao A. R., Habas S., Yang P. Small 2008, 4, 310–325.
-
Hoffmann F., Cornelius M., Morell J., Fröba M. Angew Chem 2006, 118, 3290–3328.
10.1002/ange.200503075 Google Scholar
- Ji Q., Acharya S., Hill J. P., Richards G. J., Ariga K. Adv Mater 2008, 20, 4027–4032.
- Antonietti M., Kuang D., Smarsly B., Zhou Y. Angew Chem Int Ed 2004, 43, 4988–4992.
- Zhou Y., Antonietti M. Adv Mater 2003, 15, 1452–1455.
- Zhou Y., Antonietti M. Chem Mater 2004, 16, 544–550.
- Wang T., Kaper H., Antonietti M., Smarsly B. Langmuir 2007, 23, 1489–1495.
- Adams C. J., Bradley A. E., Seddon K. R. Aust J Chem 2001, 54, 679–681.
- Yue H., Zhao H., Liu L., Wang S., Ruan Q., Wang T. Front Chem Eng China 2008, 2, 135–139.
- Zhang Q., Yang F., Tang F., Zeng K., Wu K., Cai Q., et al. Analyst 2010, 135, 2426–2433.
- Liu J., Sun D., Wei X., Wang S., Yu L., Zheng L. J. Disper. Sci. Technol., 2012, 33, 5–14.