Characterization of Self-Assembled Amphiphiles in Ionic Liquids
Lang G. Chen
Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, USA
Search for more papers by this authorStephen H. Strassburg
Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, USA
Search for more papers by this authorHarry Bermudez
Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, USA
Search for more papers by this authorLang G. Chen
Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, USA
Search for more papers by this authorStephen H. Strassburg
Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, USA
Search for more papers by this authorHarry Bermudez
Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, USA
Search for more papers by this authorBidyut K. Paul
Search for more papers by this authorSatya P. Moulik
Search for more papers by this authorSummary
The diversity of potential uses of ionic liquids (ILs) (e.g., heterogeneous catalysis, reaction media, and fuel cells) motivates studies of their interfacial and bulk behavior. The introduction of amphiphilic character, either by means of an additive or by modification of the IL itself, broadens opportunities for these unique solvents. This review focuses on characterization of techniques for small-molecule and polymeric amphiphiles in ILs. Comparisons are also made with aqueous systems to highlight similarities or differences between ILs and water as self-assembly media. In addition to traditional techniques used in colloid science, we emphasize the use of ultrahigh vacuum (UHV) methods, which are allowed by the extremely low vapor pressure of ILs. A discussion on possible applications and future directions of IL study is also presented.
References
- Castner, E. W.; Wishart, J. F. J. Chem. Phys. 2010, 132, 120901.
- Greaves, T. L.; Drummond, C. J. Chem. Rev. 2008, 108, 206–237.
- Greaves, T. L.; Drummond, C. J. Chem. Soc. Rev. 2008, 37, 1709–1726.
- Aliaga, C.; Santos, C. S.; Baldelli, S. Phys. Chem. Chem. Phys. 2007, 9, 3683–3700.
- Fletcher, K. A.; Pandey, S. Langmuir 2004, 20, 33–36.
- Li, N.; Zhang, S. H.; Zheng, L. Q.; Wu, J. P.; Li, X. W.; Yu, L. J. Phys. Chem. B 2008, 112, 12453–12460.
- Patrascu, C.; Gauffre, F.; Nallet, F.; Bordes, R.; Oberdisse, J.; de Lauth-Viguerie, N.; Mingotaud, C. ChemPhysChem 2006, 7, 99–101.
- Lee, H. N.; Bai, Z. F.; Newell, N.; Lodge, T. P. Macromolecules 2010, 43, 9522–9528.
- Simone, P. M.; Lodge, T. P. Macromolecules 2008, 41, 1753–1759.
- Santos, C. S.; Baldelli, S. Chem. Soc. Rev. 2010, 39, 2136–2145.
-
Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. Engl. 2000, 39, 3772–3789.
10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792–793.
- Lovelock, K. R. J.; Villar-Garcia, I. J.; Maier, F.; Steinruck, H. P.; Licence, P. Chem. Rev. 2010, 110, 5158–5190.
- Smith, E. F.; Villar Garcia, I. J.; Briggs, D.; Licence, P. Chem. Commun. 2005, 5633–5635.
- Chen, L. G.; Lerum, R. V.; Aranda-Espinoza, H.; Bermudez, H. J. Phys. Chem. B 2010, 114, 11502–11508.
- Gottfried, J. M.; Maier, F.; Rossa, J.; Gerhard, D.; Schulz, P. S.; Wasserscheid, P.; Steinruck, H. P. Z. Phys. Chem. 2006, 220, 1439–1453.
- Kolbeck, C.; Cremer, T.; Lovelock, K. R. J.; Paape, N.; Schulz, P. S.; Wasserscheid, P.; Maier, F.; Steinruck, H. P. J. Phys. Chem. B 2009, 113, 8682–8688.
- Lovelock, K. R. J.; Kolbeck, C.; Cremer, T.; Paape, N.; Schulz, P. S.; Wasserscheid, P.; Maier, F.; Steinruck, H. P. J. Phys. Chem. B 2009, 113, 2854–2864.
- Lockett, V.; Sedev, R.; Bassell, C.; Ralston, J. Phys. Chem. Chem. Phys. 2008, 10, 1330–1335.
- A. E. Visser, ed., Ionic Liquids: Science and Applications, ACS Symposium Series 1117; American Chemical Society, Washington, DC, 2012, pp. 289–302.
- Wakeham, D.; Niga, P.; Warr, G. G.; Rutland, M. W.; Atkin, R. Langmuir 2010, 26, 8313–8318.
- Wakeham, D.; Warr, G. G.; Atkin, R. Langmuir 2012, 28, 13224–13231.
- Baldelli, S. J. Phys. Chem. B 2003, 107, 6148–6152.
- Santos, C. S.; Baldelli, S. J. Phys. Chem. B 2007, 111, 4715–4723.
- Jeon, Y.; Sung, J.; Bu, W.; Vaknin, D.; Ouchi, Y.; Kim, D. J. Phys. Chem. C 2008, 112, 19649–19654.
- Iwahashi, T.; Sakai, Y.; Kanai, K.; Kim, D.; Ouchi, Y. Phys. Chem. Chem. Phys. 2010, 12, 12943–12946.
- Romero, C.; Baldelli, S. J. Phys. Chem. B 2006, 110, 6213–6223.
- Baldelli, S. J. Phys. Chem. Lett. 2013, 4, 244–252.
- Hayes, R.; El Abedin, S. Z.; Atkin, R. J. Phys. Chem. B 2009, 113, 7049–7052.
- Atkin, R.; El Abedin, S. Z.; Hayes, R.; Gasparotto, L. H. S.; Borisenko, N.; Endres, F. J. Phys. Chem. C 2009, 113, 13266–13272.
- Wakeham, D.; Hayes, R.; Warr, G. G.; Atkin, R. J. Phys. Chem. B 2009, 113, 5961–5966.
- Segura, J. J.; Elbourne, A.; Wanless, E. J.; Warr, G. G.; Voitchovsky, K.; Atkin, R. Phys. Chem. Chem. Phys. 2013, 15, 3320–3328.
- Atkin, R.; De Fina, L. M.; Kiederling, U.; Warr, G. G. J. Phys. Chem. B 2009, 113, 12201–12213.
- Atkin, R.; Warr, G. G. J. Am. Chem. Soc. 2005, 127, 11940–11941.
- Sedev, R. Curr. Opin. Colloid Interface Sci. 2011, 16, 310–316.
- Tariq, M.; Freire, M. G.; Saramago, B.; Coutinho, J. A. P.; Lopes, J. N. C.; Rebelo, L. P. N. Chem. Soc. Rev. 2012, 41, 829–868.
- Li, N.; Zhang, S.; Zheng, L.; Inoue, T. Langmuir 2009, 25, 10473–10482.
- Chen, L. G.; Bermudez, H. Langmuir 2012, 28, 1157–1162.
- Gunster, J.; Hofft, O.; Krischok, S.; Souda, R. Surf. Sci. 2008, 602, 3403–3407.
- Law, G.; Watson, P. R.; Carmichael, A. J.; Seddon, K. R.; Seddon, B. Phys. Chem. Chem. Phys. 2001, 3, 2879–2885.
- Sloutskin, E.; Ocko, B. M.; Taman, L.; Kuzmenko, I.; Gog, T.; Deutsch, M. J. Am. Chem. Soc. 2005, 127, 7796–7804.
- Shi, L. J.; Li, N.; Zheng, L. Q. J. Phys. Chem. C 2011, 115, 18295–18301.
- Marwani, H. M. J. Fluoresc. 2013, 23, 251–257.
- Mok, M. M.; Thiagarajan, R.; Flores, M.; Morse, D. C.; Lodge, T. P. Macromolecules 2012, 45, 4818–4829.
- Lopez-Barron, C. R.; Wagner, N. J. Langmuir 2012, 28, 12722–12730.
- Araos, M. U.; Warr, G. G. J. Phys. Chem. B 2005, 109, 14275–14277.
- Greaves, T. L.; Weerawardena, A.; Fong, C.; Drummond, C. J. Langmuir 2007, 23, 402–404.
- Wang, L. Y.; Chen, X.; Chai, Y. C.; Hao, J. C.; Sui, Z. M.; Zhuang, W. C.; Sun, Z. W. Chem. Commun. 2004, 2840–2841.
- Zhang, G. D.; Chen, X.; Zhao, Y. R.; Ma, F. M.; Jing, B.; Qiu, H. Y. J. Phys. Chem. B 2008, 112, 6578–6584.
- Inoue, T.; Misono, T. J. Colloid Interface Sci. 2009, 337, 247–253.
- Inoue, T. J. Colloid Interface Sci. 2009, 337, 240–246.
- Inoue, T.; Yamakawa, H. J. Colloid Interface Sci. 2011, 356, 798–802.
- Misono, T.; Sakai, H.; Sakai, K.; Abe, M.; Inoue, T. J. Colloid Interface Sci. 2011, 358, 527–533.
- http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf (accessed March 14, 2015).
- Lopez-Barron, C. R.; Basavaraj, M. G.; DeRita, L.; Wagner, N. J. J. Phys. Chem. B 2012, 116, 813–822.
- Cohen, Y.; Liat, A.; Frish, L. Angew. Chem. Int. Ed. 2005, 44, 520–554.
- Tourne-Peteilh, C.; Devoisselle, J. M.; Vioux, A.; Judeinstein, P.; In, M.; Viau, L. Phys. Chem. Chem. Phys. 2011, 13, 15523–15529.
- Kunze, M.; Jeong, S.; Paillard, E.; Schonhoff, M.; Winter, M.; Passerini, S. Adv. Energy Mater. 2011, 1, 274–281.
- Pramanik, R.; Sarkar, S.; Ghatak, C.; Rao, V. G.; Sarkar, N. J. Phys. Chem. B 2011, 115, 2322–2330.
- Mondain-Monval, O. Curr. Opin. Colloid Interface Sci. 2005, 10, 250–255.
- Glaeser, R. M. Phys. Today 2008, 61, 48–54.