Magnetic Vortices, Abrikosov Lattices, and Automorphic Functions
Israel Michael Sigal
Department of Mathematics, University of Toronto, Ontario, Canada
Search for more papers by this authorIsrael Michael Sigal
Department of Mathematics, University of Toronto, Ontario, Canada
Search for more papers by this authorRoderick Melnik
Wilfrid Laurier University, Waterloo, Ontario, Canada
Search for more papers by this authorSummary
This chapter presents some recent results on the Ginzburg-Landau equations of superconductivity, and reviews appropriate background. The Ginzburg–Landau equations describe the key mesoscopic and macroscopic properties of superconductors and form the basis of the phenomenological theory of superconductivity. One of the most interesting mathematical and physical phenomena connected with Ginzburg–Landau equations is the presence of vortices in their solutions. Vortex represents a localized defect where the normal state intrudes and magnetic flux penetrates. For vortex lattices the energy is infinite, but the flux quantization still holds for each lattice cell because of gauge-periodic boundary conditions. The chapter describes the existence of Abrikosov solutions at low magnetic fields near the first critical magnetic field. Configurations containing several vortices are not static solutions. Heuristically, this is due to an effective inter-vortex interaction, which causes the vortex centers to move.
References
- A.A. Abrikosov, “On the magnetic properties of superconductors of the second group,” Sov. Phys., JETP 5, 1174–1182 (1957).
- A. Aftalion, X. Blanc, and F. Nier, “Lowest Landau level functional and Bargmann spaces for Bose Einsein condensates,” J. Fund. Anal. 241, 661–702 (2006).
- A. Aftalion and S. Serfaty, “Lowest Landau level approach in superconductivity for the Abrikosov lattice close to HC2 ,” Selecta Math. (N.S.) 13, 183–202 (2006).
- S. Alama, L. Bronsard and E. Sandier, “On the shape of interlayer vortices in the Lawrence–Doniach model,” Trans. AMS 360(1), 1–34 (2008).
- S. Alama, L. Bronsard, and E. Sandier, “Periodic minimizers of the anisotropie Ginzburg–Landau model,” Calc. Var. Partial Differ. Equ. 36, (3), 399–417 (2009).
- Y. Almog, “On the bifurcation and stability of periodic solutions of the Ginzburg–Landau equations in the plane,” SIAM J. Appl. Math. 61, 149–171 (2000).
- Y Almog, ‘Abrikosov lattices in finite domains,” Comm. Math. Phys. 262, 677–702 (2006).
- H. Aydi and E. Sandier, “Vortex analysis of the periodic Ginzburg–Landau model,” Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 4, 1223–1236 (2009).
- E. Barany, M. Golubitsky, and J. Turksi, “Bifurcations with local gauge symmetries in the Ginzburg–Landau equations,” Phys. D 67, 66–87 (1993).
- P. Baumann, D. Phillips, and Q. Shen, “Singular limits in polymerized liquid crystals,” Proc. Roy. Soc. Edinb. A 133 (1), 11–34 (2003).
- M.S. Berger and Y. Y. Chen, “Symmetric vortices for the nonlinear Ginzburg–Landau equations of superconductivity, and the nonlinear desingularization phenomenon,” J. Funct. Anal. 82, 259–295 (1989).
- E Bethuel, H. Brezis, and E Hélein, Ginzburg–Landau Vortices, Birkhauser, Boston, 1994.
- E Bethuel, G. Orlandi, D. Smets, “Dynamics of multiple degree Ginzburg–Landau vortices,” Comm. Math. Phys. 272 (1), 229–261 (2007).
- E.B. Bogomol'nyi, “The stability of classical solutions,” Yad. Fiz. 24 , 861–870 (1976).
- A. Boutet de Monvel-Berthier, V. Georgescu, and R. Purice, “A boundary value problem related to the Ginzburg–Landau model,” Comm. Math. Phys. 142 (1), 1–23 (1991).
- H. Brezis, Degree theory: old and new. Topological nonlinear analysis, II (Frascati, 1995), 87D108, Progr. Nonlinear Differential Equations Appl., 27, Birkhauser Boston, MA, 1997.
- J. Burzlaff and V. Moncrief, “The global existence of time-dependent vortex solutions,” J. Math. Phys. 26, 1368–1372 (1985).
- S.J. Chapman, “Nucleation of superconductivity in decreasing fields,” Fur. J. Appl. Math. 5 449–468(1994).
- S.J. Chapman ‘Asymptotic analysis of the Ginzburg–Landau model of superconductivity: reduction to a free boundary model,” Quart. Appl. Math. 53, 601–627 (1995).
- S.J. Chapman, “Hierarchy of models for type-II superconductors,” SIAM Rev., 42, (4), 555–598 (2000).
- S.J. Chapman, S.D. Howison, and J.R. Ockendon, “Macroscopic models for superconductivity,” SIAM Rev. 34 (4), 529–560 (1992).
- R.M. Chen and D. Spirn, “Symmetric Chern-Simons vortices,” Comm. Math. Phys. 285, 1005–1031 (2009).
- J. Colliander and R. Jerrard, “Vortex dynamics for the Ginzburg–Landau Schrödinger equation,” Int. Math. Res. Not. 7, 333–358 (1998).
- M. Comte and M. Sauvageot, “On the hessian of the energy form in the Ginzburg–Landau model of superconductivity.” Rev. Math. Phys. 16 (4), 421–150 (2004).
-
S. Demoulini and D. Stuart, “Gradient flow of the superconducting Ginzburg–Landau functional on the plane,” Comm. Anal. Geom. 5, 121–198 (1997).
10.4310/CAG.1997.v5.n1.a3 Google Scholar
- S. Demoulini and D. Stuart, “Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schroedinger system,” Comm. Math. Phys. 290 (2), 597–632 (2009).
- Q. Du and F-H. Lin, “Ginzburg–Landau vortices: dynamics, pinning, and hysteresis,” SIAM J. Math. Anal. 28, (6), 1265–1293 (1997).
- M. Dutour, “Phase diagram for Abrikosov lattice,” J. Math. Phys. 42, 4915–4926 (2001).
- M. Dutour, Bifurcation vers l'tat d'Abrikosov et diagramme des phases, Thesis Orsay, http://www.arxiv.org/abs/math-ph/9912011. (accessed October 31, 2014).
- G. Eilenberger, “Zu Abrikosovs Theorie der periodischen Lösungen der GL-Gleichungen für Supraleiter 2,” Z. Phys. 180, 32–42 (1964).
- S. Fournais and B. Helffer, “Spectral methods in surface superconductivity,” Prog. Nonlin. Diff. Equ. 77, 324p (2010).
- S. Fournais and A. Kachmar, “Nucleation of bulk superconductivity close to critical magnetic field,” Adv. Math. 226, (2), 1213–1258 (2011).
- S. Fournais and A. Kachmar, “The ground state energy of the three dimensional Ginzburg–Landau functional. Part I: Bulk regime,” Comm. Partial Diff. Equ. 38, (2), 339–383 (2013).
- R.L. Frank, C. Hainzl, R. Seiringer, and J.R Solovej, “Microscopic derivation of Ginzburg–Landau theory,” J. AMS 25 (3), 667–713 (2012).
- V.L. Ginzburg and L.D. Landau, “On the theory of superconductivity,” Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950).
- L.R Gorkov, “Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity,” Sov. Phys. JETP 36, 635 (1959).
- L.R Gork'ov and G.M. Eliashberg, “Generalization of the Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities,” Sov. Phys. JETP 27 (2), 328–334 (1968).
- R.C. Gunning, “The structure of factors of automorphy,” Am. J. Math, 78, (2), 357–382 (1956).
-
R.C. Gunning, Riemann Surfaces and Generalized Theta Functions, Springer, New York, 1976.
10.1007/978-3-642-66382-6 Google Scholar
- SJ. Gustafson, “Dynamical stability of magnetic vortices,” Nonlinearity 15, 1717–1728 (2002).
- SJ. Gustafson and I.M. Sigal, “The stability of magnetic vortices,” Comm. Math. Phys. 212, 257–275 (2000).
-
SJ. Gustafson and I.M. Sigal. Mathematical Concepts of Quantum Mechanics.Springer-Verlag, Berlin, 2nd Edition, 2011.
10.1007/978-3-642-21866-8 Google Scholar
- SJ. Gustafson and I.M. Sigal, “Effective dynamics of magnetic vortices,” Adv. Math. 199, 448–498 (2006).
- S J. Gustafson and E Ting. “Dynamic stability and instability of pinned fundamental vortices,” J. Nonlin. Sci. 19, 341–374 (2009).
- SJ. Gustafson, I.M. Sigal, and T. Tzaneteas, “Statics and dynamics of magnetic vortices and of Nielsen-Olesen (Nambu) strings,” J. Math. Phys. 51, 015217 (2010).
- L. Jacobs and C. Rebbi, “Interaction of superconducting vortices,” Phys. Rev. B19, 4486–4494 (1979).
- A. Jaffe and C. Taubes, Vortices and Monopolos: Structure of Static Gauge Theories. Progress in Physics 2, Birkhäuser, Boston, 1980.
- R. Jerrard, “Vortex dynamics for the Ginzburg–Landau wave equation,” Calc. Var. Partial Diff. Equ. 9 (8), 683–688 (1999).
- R. Jerrard and M. Soner, “Dynamics of Ginzburg–Landau vortices,” Arch. Rational Mech. Anal. 142 (2), 99–125 (1998).
- R. Jerrard and D. Spirn, “Refined Jacobian estimates and Gross-Piaevsky vortex dynamics,” Arch. Rat. Mech. Anal. 190, 425–475 (2008).
-
W.H. Kleiner, L. M. Roth, and S.H. Autler, “Bulk solution of Ginzburg–Landau equations for type II superconductors: upper critical field region,” Phys. Rev. 133, A1226-A1227 (1964).
10.1103/PhysRev.133.A1226 Google Scholar
- S. Komineas and N. Papanicolaou, “Vortex dynamics in two-dimensional antiferromagnets,” Nonlinearity 11, 265–290 (1998).
- G. Lasher, “Series solution of the Ginzburg–Landau equations for the Abrikosov mixed state,” Phys. Rev. 140, A523-A528 (1965).
- F-H. Lin and J. Xin, “On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation,” Comm. Math. Phys. 200, 249–274 (1999).
- N. Manton, “A remark on the scattering of BPS monopoles,” Phys. Lett. B 110 (1), 54–56 (1982).
-
N. Manton and P. Sutcliffe, Topological Solitons, Cambridge Monographs on Mathematical Physics,Cambridge University Press, Cambridge, 2004.
10.1017/CBO9780511617034 Google Scholar
- S. Nonnenmacher and A. Voros, “Chaotic eigenfunctions in phase space,” J. Stat. Phys. 92, 431–518(1998).
- F. Odeh, “Existence and bifurcation theorems for the Ginzburg–Landau equations,” J. Math. Phys. 8, 2351–2356 (1967).
- Yu. N. Ovchinnikov, “Structure of the superconducting state of superconductors near the critical field HC2 for values of the Ginzburg–Landau parameter κ close to unity,” JETP 85(4), 818–823 (1997).
- Yu. N. Ovchinnikov, “Generalized Ginzburg–Landau equation and properties of superconductors for values of Ginzburg–Landau parameter κ close to 1,” JETP 88(2), 398–405 (1999).
- Yu. Ovchinnikov and I.M. Sigal, “Symmetry breaking solutions to the Ginzburg–Landau equations,” JETP 99 (5), 1090–1107 (2004).
- N. Papanicolaou and T.N. Tomaras, “On dynamics of vortices in a nonrelativistic Ginzburg–Landau model,” Phys. Lett. 179, 33–37 (1993).
- N. Papanicolaou and T.N. Tomaras, “Dynamics of magnetic vortices,” Nucl Phys. B360, 425–462 (1991); “Dynamics of interacting magnetic vortices in a model Landau-Lifshitz equation,” Phys. D 80, 225–245 (1995).
- L. Peres and J. Rubinstein, “Vortex dynamics in U(l) Ginzburg–Landau models,” Phys. D 64, 299–309 (1993).
- L.M. Pismen and D. Rodriguez, “Mobility of singularities in dissipative Ginzburg–Landau equations,” Phys. Rev. A 42, 2471 (1990).
- L.M. Pismen and J. Rubinstein, “Motion of vortex lines in the Ginzburg–Landau model,” Phys. D 47, 353–360(1991).
- L.M. Pismen, D. Rodriguez and L. Sirovich, “Motion of interacting defects in the Ginzburg–Landau model,” Phys. Rev. A 44, 798 (1991).
- B. Plohr, The existence, regularity, and behavior ofisotropie solutions of classical Gauge field theories, Princeton thesis (1980).
- J. Rubinstein, “Six Lectures on Superconductivity,” Boundaries, Interfaces, and Transitions. CRM Proc. Lee. Notes 13, 163–184 (1998).
- E. Sandier and S. Serfaty, “Gamma-convergence of gradient flows with applications to Ginzburg–Landau,” Comm. Pure Appl. Math. 57, (12), 1627–1672 (2004).
- E. Sandier and S. Serfaty, “ Vortices in the Magnetic Ginzburg–Landau Model,” Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, Berlin, 2007.
- E. Sandier and S. Serfaty, “From the Ginzburg–Landau model to vortex lattice problems,” Comm. Math. Phys. 313, (3), 635–743 (2012).
- M. Sauvageot, “Classification of symmetric vortices for the Ginzburg–Landau equation,” Diff. Int. Equ. 19, (7), 721–760 (2006).
- A. Schmidt, “A time dependent Ginzburg–Landau equation and its application to the problem of resistivity in the mixed state,” Phys. Kondens. Materie 5, 302–317 (1966).
- I.M. Sigal and F. Ting, “Pinning of magnetic vortices,” Algebra Anal. 16, 239–268 (2004).
- LM. Sigal and T. Tzaneteas, “Abrikosov vortex lattices at weak magnetic fields,” J. Fund. Anal, 263, 675–702(2012).
- I.M. Sigal and T. Tzaneteas, “Stability of Abrikosov lattices under gauge-periodic perturbations,” Nonlinearity 25, 1–24 (2012).
- I.M. Sigal and T. Tzaneteas. “ On stability of Abrikosov lattices,” in preparation.
- D. Spirn, “Vortex dynamics of the full time-dependent Ginzburg–Landau equations,” Comm. Pure Appl. Math. 55, (5), 537–581 (2002).
- D. Spirn, “Vortex dynamics of the Ginzburg–Landau-Schrödinger equations,” SIAM. J. Math. Anal. 34, 1435–1476 (2003).
- G.N. Stratopoulos, and T.M. Tomaras, “Vortex pairs in charged fluids,” Phys. Rev. B N17, 12493–12504 (1996).
- D. Stuart, “Dynamics of Abelian Higgs vortices in the near Bogomolny regime,” Adv. Math. Phys. 159, 51–91 (1994).
- P. Takáč, “Bifurcations and vortex formation in the Ginzburg–Landau equations,” Z Angew. Math. Mech 81, 523–539 (2001).
- C. Taubes, ‘Arbitrary n-vortex solutions to the first order Ginzburg–Landau equations,” Comm. Math. Phys. 72, 277 (1980).
- C. Taubes, “On the equivalence of the first and second order equations for gauge theories,” Comm. Math. Phys. 75, 207 (1980).
- D.R. Tilley and J. Tilley, Superfluidity and Superconductivity. 3rd edition. Institute of Physics Publishing, Bristol and Philadelphia, 1990.
- F Ting and J.-C. Wei, “Finite-energy degree-changing non-radial magnetic vortex solutions to the Ginzburg–Landau equations,” Commun. Math. Phys. 317(1), 69–97 (2013).
- M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York, 1996.
- T. Tzaneteas and I. M. Sigal, ‘Abrikosov lattice solutions of the Ginzburg–Landau equations,” In Spectral Theory and Geometric Analysis. Contemp. Math, 535, 195–213, (2011).
- T. Tzaneteas and I.M. Sigal, “On Abrikosov lattice solutions of the Ginzburg–Landau equations,” Math. Model. Nat. Phenom., 8(05), 190–305 (2013), arXiv1112.1897, 2011.
- E. Weinan, “Dynamics of vortices in Ginzburg–Landau theories with applications to superconductivity,” Phys. D 77, 383–404 (1994).
- E. Weinberg, “Multivortex solutions of the Ginzburg–Landau equations,” Phys. Rev. D 19, 3008–3012(1979).
- E. Witten, “From superconductors and four-manifolds to weak interactions,” Bull. AMS 44 (3), 361–391 (2007).
- Y. Zhang, W. Bao, and Q. Du, “The dynamics and interaction of quantized vortices in Ginzburg–Landau-Schrödinger equation,” SIAM J. Appl. Math. 67, (6), 1740–1775 (2007).