Toward Spin Electronic Devices Based on Semiconductor Nanowires
S. Heedt
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorI. Wehrmann
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorK. Weis
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorR. Calarco
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorH. Hardtdegen
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorD. Grützmacher
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorTh. Schäpers
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorC. Morgan
Peter Grünberg Institute – 6, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorD. E. Bürgler
Peter Grünberg Institute – 6, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorS. Heedt
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorI. Wehrmann
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorK. Weis
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorR. Calarco
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorH. Hardtdegen
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorD. Grützmacher
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorTh. Schäpers
Peter Grünberg Institute – 9, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorC. Morgan
Peter Grünberg Institute – 6, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorD. E. Bürgler
Peter Grünberg Institute – 6, Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich, 52425 Jülich, Germany
Search for more papers by this authorSerge Luryi
Search for more papers by this authorAlex Zaslavsky
Search for more papers by this authorSummary
This chapter presents a brief summary of major efforts on spin injection into semiconductors, addressing fundamental investigations of spin relaxation properties as well as prospective applications in spin logic devices. In particular, it focuses on spin injection in III-V semiconductor nanowires prepared in the bottom-up paradigm. The chapter also describes a high degree of control over the preparation of the ferromagnetic contacts, stepping closer toward actual applications in nanowire spintronics, and discusses the switching properties of micromagnetic contacts. Finally, the chapter presents first evidence for spin injection into InN nanowires, as demonstrated by magnetoresistance measurements in the nonlocal spin injection geometry.
Controlled Vocabulary Terms
magnetostrictive devices; nanowires; spin systems
References
- K. C. Hall and M. E. Flatté, “Performance of a spin-based insulated gate field effect transistor,” Appl. Phys. Lett. 88, 162503 (2006).
- R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183 (1961).
- K. C. Hall, W. H. Lau, K. Gündoǧdu, M. E. Flatté, and T. F. Boggess, “Nonmagnetic semiconductor spin transistor,” Appl. Phys. Lett. 83, 2937 (2003).
- S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665 (1990).
- S. Bandyopadhyay and M. Cahay, “Alternate spintronic analog of the electro-optic modulator,” Appl. Phys. Lett. 85, 1814 (2004).
- H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, “Control of spin precession in a spin-injected field effect transistor,” Science 325, 1515 (2009).
- N. Rangaraju, J. A. Peters, and B. W. Wessels, “Magnetoamplification in a bipolar magnetic junction transistor,” Phys. Rev. Lett. 105, 117202 (2010).
- C. Betthausen, T. Dollinger, H. Saarikoski, et al., “Spin-transistor action via tunable Landau-Zener transitions,” Science 337, 324 (2012).
- J. Jacob, H. Lehmann, U. Merkt, S. Mehl, and E. M. Hankiewicz, “Direct current-biased InAs spin-filter cascades,” J. Appl. Phys. 112, 013706 (2012).
- A. A. Kiselev and K. W. Kim, “T-shaped ballistic spin filter,” Appl. Phys. Lett. 78, 775 (2001).
- V. Krueckl and K. Richter, “Switching spin and charge between edge states in topological insulator constrictions,” Phys. Rev. Lett. 107, 086803 (2011).
- H. Dery, Y. Song, P. Li, and Igor Žutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
- B. Huang, H.-J. Jang, and I. Appelbaum, “Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices,” Appl. Phys. Lett. 93, 162508 (2008).
- A. E. Hansen, M. T. Björk, C. Fasth, C. Thelander, and L. Samuelson, “Spin relaxation in InAs nanowires studied by tunable weak antilocalization,” Phys. Rev. B 71, 205328 (2005).
- A. Bournel, P. Dollfus, P. Bruno, and P. Hesto, “Gate-induced spin precession in an In0.53Ga0.47As two dimensional electron gas,” Eur. Phys. J. Appl. Phys. 4, 1 (1998).
- A. A. Kiselev and K. W. Kim, “Progressive suppression of spin relaxation in two-dimensional channels of finite width,” Phys. Rev. B 61, 13115 (2000).
- A. W. Holleitner, V. Sih, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Suppression of spin relaxation in submicron InGaAs wires,” Phys. Rev. Lett. 97, 036805 (2006).
- Th. Schäpers, V. A. Guzenko, M. G. Pala, et al., “Suppression of weak antilocalization in GaxIn1-xAs/InP narrow quantum wires,” Phys. Rev. B 74, 081301 (2006).
- F. A. Zwanenburg, D. W. van der Mast, H. B. Heersche, and L. P. Kouwenhoven, “Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts,” Nano Lett. 9, 2704 (2009).
- E.-S. Liu, J. Nah, K. M. Varahramyan, and E. Tutuc, “Lateral spin injection in germanium nanowires,” Nano Lett. 10, 3297 (2010).
- J. Tarun, S. Huang, Y. Fukuma, et al., “Demonstration of spin valve effects in silicon nanowires,” J. Appl. Phys. 109, 07C508 (2011).
- S. Heedt, C. Morgan, K. Weis, et al., “Electrical spin injection into InN semiconductor nanowires,” Nano Lett. 12, 4437 (2012).
- G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, “Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive,” Phys. Rev. B 62, R4790 (2000).
- E. I. Rashba, “Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem,” Phys. Rev. B 62, R16–267 (2000).
- A. Fert and H. Jaffrès, “Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor,” Phys. Rev. B 64, 184420 (2001).
- H. B. Heersche, Th. Schäpers, J. Nitta, and H. Takayanagi, “Enhancement of spin injection from ferromagnetic metal into a two-dimensional electron gas using a tunnel barrier,” Phys. Rev. B 64, 161307 (2001).
- D. L. Smith and R. N. Silver, “Electrical spin injection into semiconductors,” Phys. Rev. B 64, 045323 (2001).
- T. Richter, H. Lüth, Th. Schäpers, et al., “Electrical transport properties of single undoped and n-type doped InN nanowires,” Nanotechnol. 20, 405206 (2009).
- A. Bringer and Th. Schäpers, “Spin precession and modulation in ballistic cylindrical nanowires due to the Rashba effect,” Phys. Rev. B 83, 115305 (2011).
- F. Werner, F. Limbach, M. Carsten, C. Denker, J. Malindretos, and A. Rizzi, “Electrical conductivity of InN nanowires and the influence of the native indium oxide formed at their surface,” Nano Lett. 9, 1567–1571 (2009).
- M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376, Gaithersburg, MD: NIST, 2002.
- M. Johnson and R. H. Silsbee, “Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals,” Phys. Rev. Lett. 55, 1790 (1985).
- C. Gould, C. Rüster, T. Jungwirth, et al., “Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer,” Phys. Rev. Lett. 93, 117203 (2004).
- M. Johnson and R. H. Silsbee, “Calculation of nonlocal baseline resistance in a quasi-one-dimensional wire,” Phys. Rev. B 76, 153107 (2007).
- S. Takahashi and S. Maekawa, “Spin injection and detection in magnetic nanostructures,” Phys. Rev. B 67, 052409 (2003).