Electrolyte Secretion and Absorption in the Small Intestine and Colon
Daniel K. Podolsky MD
President, University of Texas Southwestern Medical Center, Professor of Internal Medicine, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
Search for more papers by this authorMichael Camilleri MD
Executive Dean for Development, Atherton and Winifred W. Bean Professor, Professor of Medicine, Physiology and Pharmacology, Distinguished Investigator, Mayo Clinic, Rochester, MN, USA
Search for more papers by this authorJ. Gregory Fitz MD FAASLD
Executive Vice President for Academic Aff airs and Provost, University of Texas Southwestern Medical Center, Dean, Professor of Internal Medicine, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
Search for more papers by this authorAnthony N. Kalloo MD
Professor of Medicine, Johns Hopkins University School of Medicine, Director, Division of Gastroenterology & Hepatology, Johns Hopkins Hospital, Baltimore, MD, USA
Search for more papers by this authorFergus Shanahan MD
Professor and Chair, Department of Medicine, Director, Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland
Search for more papers by this authorTimothy C. Wang MD
Chief, Division of Digestive and Liver Diseases, Silberberg Professor of Medicine, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, USA
Search for more papers by this authorSummary
The balance between absorption and secretion must therefore be closely regulated. Both the small intestine and colon have a reserve capacity for absorption, but if this is exceeded, or if absorption is inhibited and/or secretion is stimulated excessively, diarrhea results. Fluid movement into and out of the intestinal lumen depends on the active secretion and absorption of electrolytes. The primary functions of the intestinal epithelium are to act as a barrier that prevents the uptake of harmful substances from the intestinal contents, and to transport fluids, nutrients, and electrolytes into and out of the gut. Substances may traverse the intestinal epithelium by multiple routes. The functional polarity of epithelial cells is the basis for this net movement of electrolytes. Molecular information about transporters and their regulation has provided insights into the diarrheal symptoms that accompany complex, not strictly genetic, disorders, such as inflammatory bowel diseases and enteric infections.
References
- Barrett K.E., Keely S.J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Ann Rev Physiol 2000; 62: 535.
- Donowitz M., Cha B., Zachos N.C., et al. NHERF family and NHE3 regulation. J Physiol 2005; 567(Pt 1): 3.
- Kato A., Romero M.F. Regulation of electroneutral NaCl absorption by the small intestine. Ann Rev Physiol 2011; 73: 261.
- Keating N., Keely S.J. Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep 2009; 11: 375.
- Kopic S., Geibel J.P. Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins. 2010; 2: 2132.
- Kunzelmann K., Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 2002; 82: 245.
- Raybould H.E. Nutrient sensing in the gastrointestinal tract: possible role for nutrient transporters. J Physiol Biochem 2008; 64: 349.
-
Rowe S.M.,
Verkman A.S.
Cystic fibrosis transmembrane regulator correctors and potentiators.
Cold Spring Harb Perspect Med
2013;
3:
pii.
10.1101/cshperspect.a009761 Google Scholar
- Turner J.R. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9: 799.
- Wright E.M., Loo D.D., Hirayama B.A. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733.
- Barrett KE, Dharmsathaphorn K. Transport of water and electrolytes in the gastrointestinal tract: physiological mechanisms, regulation and methods for study. In: RG Narins (ed). Maxwell and Kleeman's Clinical Disorders of Fluid and Electrolyte Metabolism, Fifth Edition. New York: McGraw-Hill, Inc.; 1994: 493.
- Nejsum LN, Nelson WJ. Epithelial cell surface polarity: the early steps. Front Biosci 2009; 14: 1088.
- Rodriguez-Boulan E, Kreitzer G, Musch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 2005; 6: 233.
- Ali S, Hall J, Hazlewood GP, et al. A protein targeting signal that functions in polarized epithelial cells in vivo. Biochem J 1996; 315(Pt 3): 857.
- Schuck S, Simons K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 2004; 117(Pt 25): 5955.
- Urquhart P, Pang S, Hooper NM. N-glycans as apical targeting signals in polarized epithelial cells. Biochem Soc Symp 2005; ••: 39.
- Low SH, Vasanji A, Nanduri J, et al. Syntaxins 3 and 4 are concentrated in separate clusters on the plasma membrane before the establishment of cell polarity. Mol Biol Cell 2006; 17: 977.
- Sharma N, Low SH, Misra S, et al. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J Cell Biol 2006; 173: 937.
- Reales E, Sharma N, Low SH, et al. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS ONE 2011; 6: e21181.
- Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends Cell Biol 2006; 16: 181.
- Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 2: 285.
- Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269(4 Pt 1): G467.
- Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 1987; 253(6 Pt 1): C749.
- Schulzke JD, Gunzel D, John LJ, et al. Perspectives on tight junction research. Ann N Y Acad Sci 2012; 1257: 1.
- Vetrano S, Rescigno M, Cera MR, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 2008; 135: 173.
- Laukoetter MG, Nava P, Lee WY, et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 2007; 204: 3067.
- Utech M, Bruwer M, Nusrat A. Tight junctions and cell-cell interactions. Methods Mol Biol 2006; 341: 185.
- Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci 2012; 1258: 9.
- Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9: 799.
- Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 2000; 11: 315.
- Balda MS, Matter K. Tight junctions and the regulation of gene expression. Biochim Biophys Acta 2009; 1788: 761.
- Cunningham KE, Turner JR. Myosin light chain kinase: pulling the strings of epithelial tight junction function. Ann N Y Acad Sci 2012; 1258: 34.
- Turner JR, Black ED, Ward J, et al. Transepithelial resistance can be regulated by the intestinal brush-border Na(+)/H(+) exchanger NHE3. Am J Physiol Cell Physiol 2000; 279: C1918.
- Turner JR. Show me the pathway! Regulation of paracellular permeability by Na(+)-glucose cotransport. Adv Drug Deliv Rev 2000; 41: 265.
- Berglund JJ, Riegler M, Zolotarevsky Y, et al. Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport. Am J Physiol Gastrointest Liver Physiol 2001; 281: G1487.
- De Lisle RC. Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res 2014; 355: 131.
- de Souza WF, Barbosa LA, Liu L, et al. Ouabain-induced alterations of the apical junctional complex involve alpha1 and beta1 Na,K-ATPase downregulation and ERK1/2 activation independent of caveolae in colorectal cancer cells. J Membr Biol 2014; 247: 23.
- Nighot PK, Blikslager AT. Chloride channel ClC-2 modulates tight junction barrier function via intracellular trafficking of occludin. Am J Physiol Cell Physiol 2012; 302: C178.
- Nighot P, Young K, Nighot M, et al. Chloride channel ClC-2 is a key factor in the development of DSS-induced murine colitis. Inflamm Bowel Dis 2013; 19: 2867.
- Blikslager AT, Roberts MC, Argenzio RA. Prostaglandin-induced recovery of barrier function in porcine ileum is triggered by chloride secretion. Am J Physiol 1999; 276(1 Pt 1): G28.
- Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70: 631.
- Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24: 503.
- Barreau F, Hugot J. Intestinal barrier dysfunction triggered by invasive bacteria. Curr Opin Microbiol 2014; 17C: 91.
- Madsen KL. Interactions between microbes and the gut epithelium. J Clin Gastroenterol 2011; 45(Suppl): S111.
- Fasano A, Nataro JP. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 2004; 56: 795.
- Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta 2009; 1788: 832.
- Guttman JA, Li Y, Wickham ME, et al. Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol 2006; 8: 634.
- Bertelsen LS, Paesold G, Marcus SL, et al. Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. Am J Physiol Cell Physiol 2004; 287: C939.
- Berkes J, Viswanathan VK, Savkovic SD, et al. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003; 52: 439.
- Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev 2013; 26: 2.
- Cotton JA, Beatty JK, Buret AG. Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol 2011; 41: 925.
- Bergmann KR, Liu SX, Tian R, et al. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 2013; 182: 1595.
- Miyauchi E, O′Callaghan J, Butto LF, et al. Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 2012; 303: G1029.
- Resta-Lenert S, Barrett KE. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 2006; 130: 731.
- Sandle GI, Wills NK, Alles W, et al. Electrophysiology of the human colon: evidence of segmental heterogeneity. Gut 1986; 27: 999.
- Bachmann O, Seidler U. News from the end of the gut–how the highly segmental pattern of colonic HCO(3)(-) transport relates to absorptive function and mucosal integrity. Biol Pharm Bull 2011; 34: 794.
- Kiela PR, Ghishan FK. Ion transport in the intestine. Curr Opin Gastroenterol 2009; 25: 87.
- Kato A, Romero MF. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 2011; 73: 261.
- Coon S, Kekuda R, Saha P, et al. Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells. Am J Physiol Cell Physiol 2011; 300: C496s.
- Zachos NC, Kovbasnjuk O, Donowitz M. Regulation of intestinal electroneutral sodium absorption and the brush border Na+/H+ exchanger by intracellular calcium. Ann N Y Acad Sci 2009; 1165: 240.
- Mutch DM, Anderle P, Fiaux M, et al. Regional variations in ABC transporter expression along the mouse intestinal tract. Physiol Genomics 2004; 17: 11.
- Anderle P, Sengstag T, Mutch DM, et al. Changes in the transcriptional profile of transporters in the intestine along the anterior-posterior and crypt-villus axes. BMC Genomics 2005; 6: 69.
- Middendorp S, Schneeberger K, Wiegerinck CL, et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014; ••: ••.
- Bosse T, Piaseckyj CM, Burghard E, et al. Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol 2006; 26: 9060.
- Gupta IR, Ryan AK. Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet 2010; 77: 314.
- Fujita H, Chiba H, Yokozaki H, et al. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 2006; 54: 933.
- Holmes JL, Van Itallie CM, Rasmussen JE, et al. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 2006; 6: 581.
- Snippert HJ, van der Flier LG, Sato T, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010; 143: 134.
- Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol 2010; 26: 547.
- Merlin D, Yue G, Lencer WI, et al. Cryptdin-3 induces novel apical conductance(s) in Cl- secretory, including cystic fibrosis, epithelia. Am J Physiol Cell Physiol 2001; 280: C296.
- Johansson ME, Sjovall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013; 10: 352.
- Kovacs I, Ludany A, Koszegi T, et al. Substance P released from sensory nerve endings influences tear secretion and goblet cell function in the rat. Neuropeptides 2005; 39: 395.
- Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 2013; 20: 14.
- Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 2010; 153: 41.
- Geibel JP. Secretion and absorption by colonic crypts. Annu Rev Physiol 2005; 67: 471.
- Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300: G82.
- Bullen TF, Forrest S, Campbell F, et al. Characterization of epithelial cell shedding from human small intestine. Lab Invest 2006; 86: 1052.
- Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011; 469: 415.
- Horvay K, Abud HE. Regulation of intestinal stem cells by Wnt and Notch signalling. Adv Exp Med Biol 2013; 786: 175.
- van Es JH, Haegebarth A, Kujala P, et al. A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cell Biol 2012; 32: 1918.
- Korinek V, Barker N, Willert K, et al. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol 1998; 18: 1248.
- Hirata A, Utikal J, Yamashita S, et al. Dose-dependent roles for canonical Wnt signalling in de novo crypt formation and cell cycle properties of the colonic epithelium. Development 2013; 140: 66.
- Fre S, Huyghe M, Mourikis P, et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005; 435: 964.
- Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992; 256: 385.
- Laforenza U. Water channel proteins in the gastrointestinal tract. Mol Aspects Med 2012; 33: 642.
- Silberstein C, Kierbel A, Amodeo G, et al. Functional characterization and localization of AQP3 in the human colon. Braz J Med Biol Res 1999; 32: 1303.
- Koyama Y, Yamamoto T, Tani T, et al. Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol 1999; 276(3 Pt 1): C621.
- Wang KS, Ma T, Filiz F, et al. Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am J Physiol Gastrointest Liver Physiol 2000; 279: G463.
- Yang B, Song Y, Zhao D, et al. Phenotype analysis of aquaporin-8 null mice. Am J Physiol Cell Physiol 2005; 288: C1161.
- Hartley JL, Zachos NC, Dawood B, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 2010; 138: 2388, 98 e1-2.
- Guttman JA, Samji FN, Li Y, et al. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol 2007; 9: 131.
- Laforenza U, Miceli E, Gastaldi G, et al. Solute transporters and aquaporins are impaired in celiac disease. Biol Cell 2010; 102: 457.
- Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733.
- Loo DD, Zeuthen T, Chandy G, et al. Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci U S A 1996; 93: 13367.
- Zeuthen T, Meinild AK, Klaerke DA, et al. Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol Cell 1997; 89: 307.
- Loo DD, Hirayama BA, Meinild AK, et al. Passive water and ion transport by cotransporters. J Physiol 1999; 518(Pt 1): 195.
- Lapointe JY, Gagnon MP, Gagnon DG, et al. Controversy regarding the secondary active water transport hypothesis. Biochem Cell Biol 2002; 80: 525.
- Larsen EH, Willumsen NJ, Mobjerg N, et al. The lateral intercellular space as osmotic coupling compartment in isotonic transport. Acta Physiol (Oxf) 2009; 195: 171.
- Kaplan JH. Sodium ions and the sodium pump: transport and enzymatic activity. Am J Physiol 1983; 245: G327.
- Fuller PJ, Verity K. Colonic sodium-potassium adenosine triphosphate subunit gene expression: ontogeny and regulation by adrenocortical steroids. Endocrinology 1990; 127: 32.
- Chow DC, Forte JG. Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol 1995; 198(Pt 1): 1.
- Lubarski I, Pihakaski-Maunsbach K, Karlish SJ, et al. Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel). J Biol Chem 2005; 280: 37717.
- Geering K. Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenerg Biomembr 2005; 37: 387.
- Goldschmidt I, Grahammer F, Warth R, et al. Kidney and colon electrolyte transport in CHIF knockout mice. Cell Physiol Biochem 2004; 14: 113.
- Sweiry JH, Binder HJ. Active potassium absorption in rat distal colon. J Physiol 1990; 423: 155.
- Del Castillo JR, Rajendran VM, Binder HJ. Apical membrane localization of ouabain-sensitive K(+)-activated ATPase activities in rat distal colon. Am J Physiol 1991; 261(6 Pt 1): G1005.
- Belisario DC, Rocafull MA, del Castillo JR. Purification and characterization of the ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon. Arch Biochem Biophys 2010; 496: 21.
- Shao J, Gumz ML, Cain BD, et al. Pharmacological profiles of the murine gastric and colonic H,K-ATPases. Biochim Biophys Acta 2010; 1800: 906.
- Lee J, Rajendran VM, Mann AS, et al. Functional expression and segmental localization of rat colonic K-adenosine triphosphatase. J Clin Invest 1995; 96: 2002.
- Cougnon M, Planelles G, Crowson MS, et al. The rat distal colon P-ATPase alpha subunit encodes a ouabain-sensitive H+, K+-ATPase. J Biol Chem 1996; 271: 7277.
- von Engelhardt W, Burmester M, Hansen K, et al. Effects of amiloride and ouabain on short-chain fatty acid transport in guinea-pig large intestine. J Physiol 1993; 460: 455.
- Aizman RI, Celsi G, Grahnquist L, et al. Ontogeny of K+ transport in rat distal colon. Am J Physiol 1996; 271(2 Pt 1): G268.
- Sangan P, Kolla SS, Rajendran VM, et al. Colonic H-K-ATPase beta-subunit: identification in apical membranes and regulation by dietary K depletion. Am J Physiol 1999; 276(2 Pt 1): C350.
- Crowson MS, Shull GE. Isolation and characterization of a cDNA encoding the putative distal colon H+,K(+)-ATPase. Similarity of deduced amino acid sequence to gastric H+,K(+)-ATPase and Na+,K(+)-ATPase and mRNA expression in distal colon, kidney, and uterus. J Biol Chem 1992; 267: 13740.
- Sangan P, Thevananther S, Sangan S, et al. Colonic H-K-ATPase alpha- and beta-subunits express ouabain-insensitive H-K-ATPase. Am J Physiol Cell Physiol 2000; 278: C182.
- Codina J, Delmas-Mata JT, DuBose TD Jr. The alpha-subunit of the colonic H+,K+-ATPase assembles with beta1-Na+,K+-ATPase in kidney and distal colon. J Biol Chem 1998; 273: 7894.
- Hediger MA, Coady MJ, Ikeda TS, et al. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 1987; 330: 379.
- Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med 2007; 261: 32.
- Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch 2004; 447: 510.
- Panayotova-Heiermann M, Loo DD, Kong CT, et al. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein. J Biol Chem 1996; 271: 10029.
- Martin MG, Turk E, Lostao MP, et al. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet 1996; 12: 216.
- Wright EM, Loo DD, Turk E, et al. Sodium cotransporters. Curr Opin Cell Biol 1996; 8: 468.
- Bachmann O, Juric M, Seidler U, et al. Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf) 2011; 201: 33.
- Romero MF, Chen AP, Parker MD, et al. The SLC4 family of bicarbonate (HCO(3)(-)) transporters. Mol Aspects Med 2013; 34: 159.
- Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93: 803.
- Gawenis LR, Bradford EM, Prasad V, et al. Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3- cotransporter. J Biol Chem 2007; 282: 9042.
- Dorfman R, Li W, Sun L, et al. Modifier gene study of meconium ileus in cystic fibrosis: statistical considerations and gene mapping results. Hum Genet 2009; 126: 763.
- Barmeyer C, Ye JH, Soroka C, et al. Identification of functionally distinct Na-HCO3 co-transporters in colon. PLoS ONE 2013; 8: e62864.
- Chen M, Praetorius J, Zheng W, et al. The electroneutral Na(+):HCO(3)(-) cotransporter NBCn1 is a major pHi regulator in murine duodenum. J Physiol 2012; 590(Pt 14): 3317.
- Singh AK, Xia W, Riederer B, et al. Essential role of the electroneutral Na+-HCO3- cotransporter NBCn1 in murine duodenal acid-base balance and colonic mucus layer build-up in vivo. J Physiol 2013; 591(Pt 8): 2189.
- Smith DE, Clemencon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 2013; 34: 323.
- Liang R, Fei YJ, Prasad PD, et al. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 1995; 270: 6456.
- Thwaites DT, Anderson CM. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 2007; 92: 603.
- Ritzhaupt A, Wood IS, Ellis A, et al. Identification of a monocarboxylate transporter isoform type 1 (MCT1) on the luminal membrane of human and pig colon. Biochem Soc Trans 1998; 26: S120.
- Garcia CK, Goldstein JL, Pathak RK, et al. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 1994; 76: 865.
- Kirat D, Kato S. Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum. Exp Physiol 2006; 91: 835.
- Dharmsathaphorn K, Mandel KG, Masui H, et al. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. J Clin Invest 1985; 75: 462.
- Rechkemmer G, Halm DR. Aldosterone stimulates K secretion across mammalian colon independent of Na absorption. Proc Natl Acad Sci U S A 1989; 86: 397.
- D′Andrea L, Lytle C, Matthews JB, et al. Na:K:2Cl cotransporter (NKCC) of intestinal epithelial cells. Surface expression in response to cAMP. J Biol Chem 1996; 271: 28969.
- Hegde RS, Palfrey HC. Ionic effects on bumetanide binding to the activated Na/K/2Cl cotransporter: selectivity and kinetic properties of ion binding sites. J Membr Biol 1992; 126: 27.
- Gimenez I. Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 2006; 15: 517.
- Chang H, Tashiro K, Hirai M, et al. Identification of a cDNA encoding a thiazide-sensitive sodium-chloride cotransporter from the human and its mRNA expression in various tissues. Biochem Biophys Res Commun 1996; 223: 324.
- Moes AD, van der Lubbe N, Zietse R, et al. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch 2014; 466: 107.
- Bazzini C, Vezzoli V, Sironi C, et al. Thiazide-sensitive NaCl-cotransporter in the intestine: possible role of hydrochlorothiazide in the intestinal Ca2+ uptake. J Biol Chem 2005; 280: 19902.
- Murer H, Hopfer U, Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 1976; 154: 597.
- Dudeja PK, Foster ES, Brasitus TA, et al. antiporter of rat colonic basolateral membrane vesicles. Am J Physiol 1989; 257(4 Pt 1): G624.
- Rajendran VM, Oesterlin M, Binder HJ. Sodium uptake across basolateral membrane of rat distal colon. Evidence for Na-H exchange and Na-anion cotransport. J Clin Invest 1991; 88: 1379.
- Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2014; 466: 61.
- Donowitz M, Ming Tse C, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na(+)/H(+) exchangers. Mol Aspects Med 2013; 34: 236.
- Tse CM, Ma AI, Yang VW, et al. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J 1991; 10: 1957.
- Yun CH, Tse CM, Nath SK, et al. Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol 1995; 269(1 Pt 1): G1.
- Tse CM, Brant SR, Walker MS, et al. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem 1992; 267: 9340.
- Bookstein C, DePaoli AM, Xie Y, et al. Na+/H+ exchangers, NHE-1 and NHE-3, of rat intestine. Expression and localization. J Clin Invest 1994; 93: 106.
- Seidler U, Singh AK, Cinar A, et al. The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 2009; 1165: 249.
- Levine SA, Nath SK, Yun CH, et al. Separate C-terminal domains of the epithelial specific brush border Na+/H+ exchanger isoform NHE3 are involved in stimulation and inhibition by protein kinases/growth factors. J Biol Chem 1995; 270: 13716.
- Wakabayashi S, Ikeda T, Noel J, et al. Cytoplasmic domain of the ubiquitous Na+/H+ exchanger NHE1 can confer Ca2+ responsiveness to the apical isoform NHE3. J Biol Chem 1995; 270: 26460.
- Zachos NC, Tse M, Donowitz M. Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 2005; 67: 411.
- Gens JS, Du H, Tackett L, et al. Different ionic conditions prompt NHE2 and NHE3 translocation to the plasma membrane. Biochim Biophys Acta 2007; 1768: 1023.
- Yun CH, Gurubhagavatula S, Levine SA, et al. Glucocorticoid stimulation of ileal Na+ absorptive cell brush border Na+/H+ exchange and association with an increase in message for NHE-3, an epithelial Na+/H+ exchanger isoform. J Biol Chem 1993; 268: 206.
- Maher MM, Gontarek JD, Bess RS, et al. The Na+/H+ exchange isoform NHE3 regulates basal canine ileal Na+ absorption in vivo. Gastroenterology 1997; 112: 174.
- Donowitz M, De La Horra C, Calonge ML, et al. In birds, NHE2 is major brush-border Na+/H+ exchanger in colon and is increased by a low-NaCl diet. Am J Physiol 1998; 274(6 Pt 2): R1659.
- Cermak R, Lawnitzak C, Scharrer E. Influence of ammonia on sodium absorption in rat proximal colon. Pflugers Arch 2000; 440: 619.
- Schultheis PJ, Clarke LL, Meneton P, et al. Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest 1998; 101: 1243.
- Schultheis PJ, Clarke LL, Meneton P, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 1998; 19: 282.
- Cabado AG, Yu FH, Kapus A, et al. Distinct structural domains confer cAMP sensitivity and ATP dependence to the Na+/H+ exchanger NHE3 isoform. J Biol Chem 1996; 271: 3590.
- Rajendran VM, Binder HJ. Distribution and regulation of apical Cl/anion exchanges in surface and crypt cells of rat distal colon. Am J Physiol 1999; 276(1 Pt 1): G132.
- Vaandrager AB, De Jonge HR. A sensitive technique for the determination of anion exchange activities in brush-border membrane vesicles. Evidence for two exchangers with different affinities for HCO3- and SITS in rat intestinal epithelium. Biochim Biophys Acta 1988; 939: 305.
- Hoglund P, Haila S, Socha J, et al. Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 1996; 14: 316.
- Byeon MK, Westerman MA, Maroulakou IG, et al. The down-regulated in adenoma (DRA) gene encodes an intestine-specific membrane glycoprotein. Oncogene 1996; 12: 387.
- Xia W, Yu Q, Riederer B, et al. The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch 2013; ••: ••.
- Byeon MK, Frankel A, Papas TS, et al. functions as a sulfate transporter in Sf9 insect cells. Protein Expr Purif 1998; 12: 67.
- Melvin JE, Park K, Richardson L, et al. Mouse down-regulated in adenoma (DRA) is an intestinal Cl(-)/HCO(3)(-) exchanger and is up-regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. J Biol Chem 1999; 274: 22855.
- Norbis F, Perego C, Markovich D, et al. cDNA cloning of a rat small-intestinal Na+/SO4(2-) cotransporter. Pflugers Arch 1994; 428: 217.
- Alper SL, Rossmann H, Wilhelm S, et al. Expression of AE2 anion exchanger in mouse intestine. Am J Physiol 1999; 277(2 Pt 1): G321.
- Alrefai WA, Tyagi S, Nazir TM, et al. Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization. Biochim Biophys Acta 2001; 1511: 17.
- Gawenis LR, Bradford EM, Alper SL, et al. AE2 Cl-/HCO3- exchanger is required for normal cAMP-stimulated anion secretion in murine proximal colon. Am J Physiol Gastrointest Liver Physiol 2010; 298: G493.
- Rajendran VM, Black J, Ardito TA, et al. Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am J Physiol Gastrointest Liver Physiol 2000; 279: G931.
- Xu J, Barone S, Petrovic S, et al. Identification of an apical Cl-/HCO3- exchanger in gastric surface mucous and duodenal villus cells. Am J Physiol Gastrointest Liver Physiol 2003; 285: G1225.
- Simpson JE, Schweinfest CW, Shull GE, et al. PAT-1 (Slc26a6) is the predominant apical membrane Cl-/HCO3- exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 2007; 292: G1079.
- Collins JF, Bai L, Ghishan FK. The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch 2004; 447: 647.
- Wagner CA, Hernando N, Forster IC, et al. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch 2014; 466: 139.
- Markovich D. Na+-sulfate cotransporter SLC13A1. Pflugers Arch 2014; 466: 131.
- Kolek OI, Hines ER, Jones MD, et al. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 2005; 289: G1036.
- Gillen CM, Brill S, Payne JA, et al. Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J Biol Chem 1996; 271: 16237.
- Reuss L. Basolateral KCl co-transport in a NaCl-absorbing epithelium. Nature 1983; 305: 723.
- Rossier BC. The renal epithelial sodium channel: new insights in understanding hypertension. Adv Nephrol Necker Hosp 1996; 25: 275.
- Smith PR, Benos DJ. Epithelial Na+ channels. Annu Rev Physiol 1991; 53: 509.
- Canessa CM, Schild L, Buell G, et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994; 367: 463.
- Firsov D, Schild L, Gautschi I, et al. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A 1996; 93: 15370.
- Snyder PM, Price MP, McDonald FJ, et al. Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell 1995; 83: 969.
- Grunder S, Firsov D, Chang SS, et al. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 1997; 16: 899.
- Kabra R, Knight KK, Zhou R, et al. Nedd4-2 induces endocytosis and degradation of proteolytically cleaved epithelial Na+ channels. J Biol Chem 2008; 283: 6033. [Epub 2008/01/05].
- Kashlan OB, Kleyman TR. Epithelial Na(+) channel regulation by cytoplasmic and extracellular factors. Exp Cell Res 2012; 318: 1011. [Epub 2012/03/13].
- Chen SY, Bhargava A, Mastroberardino L, et al. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci U S A 1999; 96: 2514. [Epub 1999/03/03].
- Snyder PM, Olson DR, Thomas BC. Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J Biol Chem 2002; 277: 5. [Epub 2001/11/07].
- Snyder PM, Olson DR, Kabra R, et al. cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4-2. J Biol Chem 2004; 279: 45753. [Epub 2004/08/26].
- McCole DF, Rogler G, Varki N, et al. Epidermal growth factor partially restores colonic ion transport responses in mouse models of chronic colitis. Gastroenterology 2005; 129: 591.
- Rexhepaj R, Artunc F, Grahammer F, et al. SGK1 is not required for regulation of colonic ENaC activity. Pflugers Arch 2006; 453: 97.
- Malsure S, Wang Q, Charles RP, et al. Colon-Specific Deletion of Epithelial Sodium Channel Causes Sodium Loss and Aldosterone Resistance. J Am Soc Nephrol 2014; ••: ••.
- Coric T, Hernandez N, Alvarez de la Rosa D, et al. Expression of ENaC and serum- and glucocorticoid-induced kinase 1 in the rat intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2004; 286: G663.
- Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066. [Epub 1989/09/08].
- Poulsen JH, Fischer H, Illek B, et al. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 1994; 91: 5340. [Epub 1994/06/07].
- Bradbury NA, Bridges RJ. Role of membrane trafficking in plasma membrane solute transport. Am J Physiol 1994; 267(1 Pt 1): C1. [Epub 1994/07/01].
- Jovov B, Ismailov II, Berdiev BK, et al. Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels. J Biol Chem 1995; 270: 29194. [Epub 1995/12/08].
- Stutts MJ, Canessa CM, Olsen JC, et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 1995; 269: 847. [Epub 1995/08/11].
- Gadsby DC, Nairn AC. Regulation of CFTR channel gating. Trends Biochem Sci 1994; 19: 513. [Epub 1994/11/01].
- Berschneider HM, Knowles MR, Azizkhan RG, et al. Altered intestinal chloride transport in cystic fibrosis. FASEB J 1988; 2: 2625. [Epub 1988/07/01].
- Wagner JA, Cozens AL, Schulman H, et al. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase. Nature 1991; 349: 793. [Epub 1991/02/28].
- Ko EA, Jin BJ, Namkung W, et al. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice. Gut 2013; ••: ••.
- Ousingsawat J, Mirza M, Tian Y, et al. Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Arch 2011; 461: 579.
- Ferrera L, Zegarra-Moran O, Galietta LJ. Ca2+-activated Cl- channels. Compr Physiol 2011; 1: 2155.
- Namkung W, Phuan PW, Verkman AS. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 2011; 286: 2365.
- Ousingsawat J, Martins JR, Schreiber R, et al. Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J Biol Chem 2009; 284: 28698.
- Sakamoto H, Kawasaki M, Uchida S, et al. Identification of a new outwardly rectifying Cl- channel that belongs to a subfamily of the ClC Cl- channels. J Biol Chem 1996; 271: 10210. [Epub 1996/04/26].
- Vandewalle A, Cluzeaud F, Peng KC, et al. Tissue distribution and subcellular localization of the ClC-5 chloride channel in rat intestinal cells. Am J Physiol Cell Physiol 2001; 280: C373. [Epub 2001/02/24].
- Thiemann A, Grunder S, Pusch M, et al. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 1992; 356: 57. [Epub 1992/03/05].
- Novarino G, Weinert S, Rickheit G, et al. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 2010; 328: 1398. [Epub 2010/05/01].
- Lin Z, Jin S, Duan X, et al. Chloride channel (Clc)-5 is necessary for exocytic trafficking of Na+/H+ exchanger 3 (NHE3). J Biol Chem 2011; 286: 22833.
- Gyomorey K, Yeger H, Ackerley C, et al. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 2000; 279: C1787. [Epub 2000/11/18].
- Catalan MA, Flores CA, Gonzalez-Begne M, et al. Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology 2012; 142: 346.
- Johanson JF, Ueno R. Lubiprostone, a locally acting chloride channel activator, in adult patients with chronic constipation: a double-blind, placebo-controlled, dose-ranging study to evaluate efficacy and safety. Aliment Pharmacol Ther 2007; 25: 1351. [Epub 2007/05/19].
- Cuppoletti J, Malinowska DH, Tewari KP, et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol 2004; 287: C1173. [Epub 2004/06/24].
- Cuppoletti J, Chakrabarti J, Tewari K, et al. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents. Cell Biochem Biophys 2013; 66: 53.
- Norimatsu Y, Moran AR, MacDonald KD. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4). Biochem Biophys Res Commun 2012; 426: 374.
- Sorensen MV, Matos JE, Praetorius HA, et al. Colonic potassium handling. Pflugers Arch 2010; 459: 645.
- Wills NK. Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium. J Physiol 1985; 358: 433. [Epub 1985/01/01].
- Lomax RB, McNicholas CM, Lombes M, et al. Aldosterone-induced apical Na+ and K+ conductances are located predominantly in surface cells in rat distal colon. Am J Physiol 1994; 266(1 Pt 1): G71. [Epub 1994/01/01].
- Sorensen MV, Strandsby AB, Larsen CK, et al. The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence. Pflugers Arch 2011; 462: 745.
- Sausbier M, Matos JE, Sausbier U, et al. Distal colonic K(+) secretion occurs via BK channels. J Am Soc Nephrol 2006; 17: 1275. [Epub 2006/03/31].
- Sandle GI, McNicholas CM, Lomax RB. Potassium channels in colonic crypts. Lancet 1994; 343: 23. [Epub 1994/01/01].
- Lomax RB, Warhurst G, Sandle GI. Characteristics of two basolateral potassium channel populations in human colonic crypts. Gut 1996; 38: 243. [Epub 1996/02/01].
- Nanda Kumar NS, Singh SK, Rajendran VM. Mucosal potassium efflux mediated via Kcnn4 channels provides the driving force for electrogenic anion secretion in colon. Am J Physiol Gastrointest Liver Physiol 2010; 299: G707.
- Flores CA, Melvin JE, Figueroa CD, et al. Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4. J Physiol 2007; 583(Pt 2): 705. [Epub 2007/06/23].
- Alzamora R, O′Mahony F, Bustos V, et al. Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K(+) channels. J Physiol 2011; 589(Pt 21): 5091. [Epub 2011/09/14].
- Nakajo K, Kubo Y. Nano-environmental changes by KCNE proteins modify KCNQ channel function. Channels (Austin, Tex) 2011; 5: 397. [Epub 2011/06/10].
- Preston P, Wartosch L, Gunzel D, et al. Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl- transport. J Biol Chem 2010; 285: 7165. [Epub 2010/01/07].
- Bajwa PJ, Alioua A, Lee JW, et al. Fenofibrate inhibits intestinal Cl- secretion by blocking basolateral KCNQ1 K+ channels. Am J Physiol Gastrointest Liver Physiol 2007; 293: G1288. [Epub 2007/10/06].
- Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 2002; 82: 245. [Epub 2002/01/05].
- Frizzell RA, Field M, Schultz SG. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 1979; 236: F1. [Epub 1979/01/01].
- Foster ES, Budinger ME, Hayslett JP, et al. Ion transport in proximal colon of the rat. Sodium depletion stimulates neutral sodium chloride absorption. J Clin Invest 1986; 77: 228. [Epub 1986/01/01].
- Grady GF, Duhamel RC, Moore EW. Active transport of sodium by human colon in vitro. Gastroenterology 1970; 59: 583. [Epub 1970/10/01].
- Hubel KA, Renquist K, Shirazi S. Ion transport in human cecum, transverse colon, and sigmoid colon in vitro. Baseline and response to electrical stimulation of intrinsic nerves. Gastroenterology 1987; 92: 501. [Epub 1987/02/01].
- Turnamian SG, Binder HJ. Regulation of active sodium and potassium transport in the distal colon of the rat. Role of the aldosterone and glucocorticoid receptors. J Clin Invest 1989; 84: 1924.
- Greig E, Sandle GI. Diarrhea in ulcerative colitis. The role of altered colonic sodium transport. Ann N Y Acad Sci 2000; 915: 327. [Epub 2001/02/24].
- Fordtran JS. Stimulation of active and passive sodium absorption by sugars in the human jejunum. J Clin Invest 1975; 55: 728. [Epub 1975/04/01].
- Kimmich GA, Randles J. Sodium-sugar coupling stoichiometry in chick intestinal cells. Am J Physiol 1984; 247(1 Pt 1): C74. [Epub 1984/07/01].
- Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol B 1987; 86: 439. [Epub 1987/01/01].
- Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982; 83: 424. [Epub 1982/08/01].
- Binder HJ, Mehta P. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 1989; 96: 989. [Epub 1989/04/01].
- Chu S, Montrose MH. Extracellular pH regulation in microdomains of colonic crypts: effects of short-chain fatty acids. Proc Natl Acad Sci U S A 1995; 92: 3303. [Epub 1995/04/11].
- Chu S, Montrose MH. Non-ionic diffusion and carrier-mediated transport drive extracellullar pH regulation of mouse colonic crypts. J Physiol 1996; 494(Pt 3): 783. [Epub 1996/08/01].
- Mascolo N, Rajendran VM, Binder HJ. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology 1991; 101: 331. [Epub 1991/08/01].
- Hadjiagapiou C, Schmidt L, Dudeja PK, et al. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 2000; 279: G775. [Epub 2000/09/27].
- Tamai I, Takanaga H, Maeda H, et al. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem Biophys Res Commun 1995; 214: 482. [Epub 1995/09/14].
- Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol 2010; 72: 297.
- Goncalves P, Araujo JR, Martel F. Characterization of butyrate uptake by nontransformed intestinal epithelial cell lines. J Membr Biol 2011; 240: 35. [Epub 2011/02/03].
- Maouyo D, Chu S, Montrose MH. pH heterogeneity at intracellular and extracellular plasma membrane sites in HT29-C1 cell monolayers. Am J Physiol Cell Physiol 2000; 278: C973. [Epub 2000/05/04].
- Reynolds DA, Rajendran VM, Binder HJ. Bicarbonate-stimulated [14C]butyrate uptake in basolateral membrane vesicles of rat distal colon. Gastroenterology 1993; 105: 725. [Epub 1993/09/01].
- Agarwal R, Afzalpurkar R, Fordtran JS. Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology 1994; 107: 548. [Epub 1994/08/01].
- Kaunitz JD, Sachs G. Identification of a vanadate-sensitive potassium-dependent proton pump from rabbit colon. J Biol Chem 1986; 261: 14005.
- Sangan P, Brill SR, Sangan S, et al. Basolateral K-Cl cotransporter regulates colonic potassium absorption in potassium depletion. J Biol Chem 2000; 275: 30813. [Epub 2000/07/06].
- Dietz J, Field M. Ion transport in rabbit ileal mucosa. IV. Bicarbonate secretion. Am J Physiol 1973; 225: 858. [Epub 1973/10/01].
- Flemstrom G, Garner A. Gastroduodenal HCO3(-) transport: characteristics and proposed role in acidity regulation and mucosal protection. Am J Physiol 1982; 242: G183. [Epub 1982/03/01].
- Mandel KG, McRoberts JA, Beuerlein G, et al. Ba2+ inhibition of VIP- and A23187-stimulated Cl- secretion by T84 cell monolayers. Am J Physiol 1986; 250(3 Pt 1): C486. [Epub 1986/03/01].
- Gustafsson JK, Ermund A, Ambort D, et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med 2012; 209: 1263.
- Praetorius J, Hager H, Nielsen S, et al. Molecular and functional evidence for electrogenic and electroneutral Na(+)-HCO(3)(-) cotransporters in murine duodenum. Am J Physiol Gastrointest Liver Physiol 2001; 280: G332.
- Hubel KA. Bicarbonate secretion in rat ileum and its dependence on intraluminal chloride. Am J Physiol 1967; 213: 1409. [Epub 1967/12/01].
- Hogan DL, Crombie DL, Isenberg JI, et al. CFTR mediates cAMP- and Ca2+-activated duodenal epithelial HCO3- secretion. Am J Physiol 1997; 272(4 Pt 1): G872. [Epub 1997/04/01].
- Pratha VS, Hogan DL, Martensson BA, et al. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology 2000; 118: 1051. [Epub 2000/06/02].
- Roediger WE, Moore A. Effect of short-chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Dig Dis Sci 1981; 26: 100. [Epub 1981/02/01].
- Talbot C, Lytle C. Segregation of Na/H exchanger-3 and Cl/HCO3 exchanger SLC26A3 (DRA) in rodent cecum and colon. Am J Physiol Gastrointest Liver Physiol 2010; 299: G358.
- Schweinfest CW, Spyropoulos DD, Henderson KW, et al. slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J Biol Chem 2006; 281: 37962. [Epub 2006/09/27].
- Edmonds CJ, Willis CL. Aldosterone in colonic potassium adaptation in rats. J Endocrinol 1988; 117: 379. [Epub 1988/06/01].
- Singh SK, O′Hara B, Talukder JR, et al. Aldosterone induces active K(+) secretion by enhancing mucosal expression of Kcnn4c and Kcnma1 channels in rat distal colon. Am J Physiol Cell Physiol 2012; 302: C1353.
- Halm DR, Rick R. Secretion of K and Cl across colonic epithelium: cellular localization using electron microprobe analysis. Am J Physiol 1992; 262(6 Pt 1): C1392. [Epub 1992/06/01].
- Linley J, Loganathan A, Kopanati S, et al. Evidence that two distinct crypt cell types secrete chloride and potassium in human colon. Gut 2014; 63: 472.
- Kanthesh BM, Sandle GI, Rajendran VM. Enhanced K(+) secretion in dextran sulfate-induced colitis reflects upregulation of large conductance apical K(+) channels (BK; Kcnma1). Am J Physiol Cell Physiol 2013; 305: C972.
- Kononowa N, Dickenmann MJ, Kim MJ. Severe hyperkalemia following colon diversion surgery in a patient undergoing chronic hemodialysis: a case report. J Med Case Rep 2013; 7: 207.
- Poesen R, Meijers B, Evenepoel P. The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial 2013; 26: 323.
- Sweiry JH, Binder HJ. Characterization of aldosterone-induced potassium secretion in rat distal colon. J Clin Invest 1989; 83: 844. [Epub 1989/03/01].
- Smith PL, McCabe RD. Mechanism and regulation of transcellular potassium transport by the colon. Am J Physiol 1984; 247(5 Pt 1): G445. [Epub 1984/11/01].
- Zhang J, Halm ST, Halm DR. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2012; 303: G1322.
- Huott PA, Liu W, McRoberts JA, et al. Mechanism of action of Escherichia coli heat stable enterotoxin in a human colonic cell line. J Clin Invest 1988; 82: 514. [Epub 1988/08/01].
- Ghanem E, Robaye B, Leal T, et al. The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 2005; 146: 364. [Epub 2005/08/02].
- Madara JL, Patapoff TW, Gillece-Castro B, et al. 5′-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest 1993; 91: 2320. [Epub 1993/05/01].
- Uribe JM, Barrett KE. Nonmitogenic actions of growth factors: an integrated view of their role in intestinal physiology and pathophysiology. Gastroenterology 1997; 112: 255. [Epub 1997/01/01].
- Warhurst G, Barbezat GO, Higgs NB, et al. Expression of somatostatin receptor genes and their role in inhibiting Cl- secretion in HT-29cl.19A colonocytes. Am J Physiol 1995; 269(5 Pt 1): G729. [Epub 1995/11/01].
- Uribe JM, Gelbmann CM, Traynor-Kaplan AE, et al. Epidermal growth factor inhibits Ca(2+)-dependent Cl- transport in T84 human colonic epithelial cells. Am J Physiol 1996; 271(3 Pt 1): C914. [Epub 1996/09/01].
- Opleta-Madsen K, Hardin J, Gall DG. Epidermal growth factor upregulates intestinal electrolyte and nutrient transport. Am J Physiol 1991; 260(6 Pt 1): G807. [Epub 1991/06/01].
- Donowitz M, Montgomery JL, Walker MS, et al. Brush-border tyrosine phosphorylation stimulates ileal neutral NaCl absorption and brush-border Na(+)-H+ exchange. Am J Physiol 1994; 266(4 Pt 1): G647. [Epub 1994/04/01].
- Janecki AJ, Janecki M, Akhter S, et al. Basic fibroblast growth factor stimulates surface expression and activity of Na(+)/H(+) exchanger NHE3 via mechanism involving phosphatidylinositol 3-kinase. J Biol Chem 2000; 275: 8133. [Epub 2000/03/14].
- Chang N, Uribe JM, Keely SJ, et al. Insulin and IGF-I inhibit calcium-dependent chloride secretion by T84 human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2001; 281: G129.
- Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension 1992; 19: 221.
- Snyder PM. Minireview: regulation of epithelial Na+ channel trafficking. Endocrinology 2005; 146: 5079.
- Mroz MS, Keating N, Ward JB, et al. Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut 2013; ••: ••.
- Mayol JM, Arbeo-Escolar A, Alarma-Estrany P, et al. Progesterone inhibits chloride transport in human intestinal epithelial cells. World J Surg 2002; 26: 652.
- Saint-Criq V, Rapetti-Mauss R, Yusef YR, et al. Estrogen regulation of epithelial ion transport: Implications in health and disease. Steroids 2012; 77: 918.
- Sandle GI, McGlone F. Acute effects of dexamethasone on cation transport in colonic epithelium. Gut 1987; 28: 701. [Epub 1987/06/01].
- Matosin-Matekalo M, Mesonero JE, Delezay O, et al. Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells. Biochem J 1998; 334(Pt 3): 633. [Epub 1998/09/08].
- Wendler A, Baldi E, Harvey BJ, et al. Position paper: rapid responses to steroids: current status and future prospects. Eur J Endocrinol 2010; 162: 825.
- Donowitz M, Welsh MJ. Ca2+ and cyclic AMP in regulation of intestinal Na, K, and Cl transport. Annu Rev Physiol 1986; 48: 135. [Epub 1986/01/01].
- Kimberg DV, Field M, Johnson J, et al. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J Clin Invest 1971; 50: 1218. [Epub 1971/06/01].
- Field M, Graf LH Jr, Laird WJ, et al. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A 1978; 75: 2800. [Epub 1978/06/01].
- Golin-Bisello F, Bradbury N, Ameen N. STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 2005; 289: C708. [Epub 2005/05/06].
- Grubb BR. Ion transport across the jejunum in normal and cystic fibrosis mice. Am J Physiol 1995; 268(3 Pt 1): G505. [Epub 1995/03/01].
- Yao B, Hogan DL, Bukhave K, et al. Bicarbonate transport by rabbit duodenum in vitro: effect of vasoactive intestinal polypeptide, prostaglandin E2, and cyclic adenosine monophosphate. Gastroenterology 1993; 104: 732. [Epub 1993/03/01].
- Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 2005; 288: C1.
- Schnizler M, Mastroberardino L, Reifarth F, et al. cAMP sensitivity conferred to the epithelial Na+ channel by alpha-subunit cloned from guinea-pig colon. Pflugers Arch 2000; 439: 579.
- Mies F, Spriet C, Heliot L, et al. Epithelial Na+ channel stimulation by n-3 fatty acids requires proximity to a membrane-bound A-kinase-anchoring protein complexed with protein kinase A and phosphodiesterase. J Biol Chem 2007; 282: 18339. [Epub 2007/05/05].
- Muanprasat C, Chatsudthipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem 2013; 5: 781.
- Currie MG, Fok KF, Kato J, et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A 1992; 89: 947. [Epub 1992/02/01].
- Forte LR Jr. Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics. Pharmacol Ther 2004; 104: 137. [Epub 2004/11/03].
- Chao AC, de Sauvage FJ, Dong YJ, et al. Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J 1994; 13: 1065.
- Seidler U, Blumenstein I, Kretz A, et al. A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca(2+)-dependent HCO3- secretion. J Physiol 1997; 505(Pt 2): 411.
- Qiu W, Lee B, Lancaster M, et al. Cyclic nucleotide-gated cation channels mediate sodium and calcium influx in rat colon. Am J Physiol Cell Physiol 2000; 278: C336.
- Xiao Q, Yu K, Perez-Cornejo P, et al. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A 2011; 108: 8891.
- Jung J, Nam JH, Park HW, et al. Dynamic modulation of ANO1/TMEM16A HCO3(-) permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A 2013; 110: 360.
- Jensen BS, Strobaek D, Olesen SP, et al. The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2001; 2: 401. [Epub 2001/12/06].
- Dharmsathaphorn K, Cohn J, Beuerlein G. Multiple calcium-mediated effector mechanisms regulate chloride secretory responses in T84-cells. Am J Physiol 1989; 256(6 Pt 1): C1224. [Epub 1989/06/01].
- Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 2000; 62: 535. [Epub 2000/06/09].
- Khurana S, Nath SK, Levine SA, et al. Brush border phosphatidylinositol 3-kinase mediates epidermal growth factor stimulation of intestinal NaCl absorption and Na+/H+ exchange. J Biol Chem 1996; 271: 9919. [Epub 1996/04/26].
- Uribe JM, Keely SJ, Traynor-Kaplan AE, et al. Phosphatidylinositol 3-kinase mediates the inhibitory effect of epidermal growth factor on calcium-dependent chloride secretion. J Biol Chem 1996; 271: 26588. [Epub 1996/10/25].
- Barrett KE. Bowditch lecture. Integrated regulation of intestinal epithelial transport: intercellular and intracellular pathways. Am J Physiol 1997; 272(4 Pt 1): C1069. [Epub 1997/04/01].
- Donowitz M, Mohan S, Zhu CX, et al. NHE3 regulatory complexes. J Exp Biol 2009; 212(Pt 11): 1638.
- Kurashima K, Yu FH, Cabado AG, et al. Identification of sites required for down-regulation of Na+/H+ exchanger NHE3 activity by cAMP-dependent protein kinase. phosphorylation-dependent and -independent mechanisms. J Biol Chem 1997; 272: 28672.
- Honegger KJ, Capuano P, Winter C, et al. Regulation of sodium-proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC). Proc Natl Acad Sci U S A 2006; 103: 803.
- Weinman EJ, Minkoff C, Shenolikar S. Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am J Physiol Renal Physiol 2000; 279: F393.
- Cha B, Donowitz M. The epithelial brush border Na+/H+ exchanger NHE3 associates with the actin cytoskeleton by binding to ezrin directly and via PDZ domain-containing Na+/H+ exchanger regulatory factor (NHERF) proteins. Clin Exp Pharmacol Physiol 2008; 35: 863.
- Kim JH, Lee-Kwon W, Park JB, et al. Ca(2+)-dependent inhibition of Na+/H+ exchanger 3 (NHE3) requires an NHE3-E3KARP-alpha-actinin-4 complex for oligomerization and endocytosis. J Biol Chem 2002; 277: 23714.
- Gill RK, Saksena S, Tyagi S, et al. Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKC alpha in human intestinal epithelial cells. Gastroenterology 2005; 128: 962. [Epub 2005/04/13].
- Donowitz M, Cha B, Zachos NC, et al. NHERF family and NHE3 regulation. J Physiol 2005; 567(Pt 1): 3. [Epub 2005/05/21].
- Zizak M, Chen T, Bartonicek D, et al. Calmodulin kinase II constitutively binds, phosphorylates, and inhibits brush border Na+/H+ exchanger 3 (NHE3) by a NHERF2 protein-dependent process. J Biol Chem 2012; 287: 13442.
- Sultan A, Luo M, Yu Q, et al. Differential association of the Na+/H+ Exchanger Regulatory Factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3. Cell Physiol Biochem 2013; 32: 1386.
- Turner JR, Black ED. NHE3-dependent cytoplasmic alkalinization is triggered by Na(+)-glucose cotransport in intestinal epithelia. Am J Physiol Cell Physiol 2001; 281: C1533.
- Hu Z, Wang Y, Graham WV, et al. MAPKAPK-2 is a critical signaling intermediate in NHE3 activation following Na+-glucose cotransport. J Biol Chem 2006; 281: 24247.
- Lin R, Murtazina R, Cha B, et al. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process. Gastroenterology 2011; 140: 560.
- Donowitz M, Janecki A, Akhter S, et al. Short-term regulation of NHE3 by EGF and protein kinase C but not protein kinase A involves vesicle trafficking in epithelial cells and fibroblasts. Ann N Y Acad Sci 2000; 915: 30.
- Chappe V, Irvine T, Liao J, et al. Phosphorylation of CFTR by PKA promotes binding of the regulatory domain. EMBO J 2005; 24: 2730.
- Huang P, Trotter K, Boucher RC, et al. PKA holoenzyme is functionally coupled to CFTR by AKAPs. Am J Physiol Cell Physiol 2000; 278: C417. [Epub 2000/02/09].
- Vaandrager AB, Bot AG, Ruth P, et al. Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 2000; 118: 108. [Epub 1999/12/28].
- Lytle C, Forbush B 3rd. Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl. Am J Physiol 1996; 270(2 Pt 1): C437. [Epub 1996/02/11].
- Reynolds A, Parris A, Evans LA, et al. Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol 2007; 582(Pt 2): 507. [Epub 2007/05/05].
- Alzamora R, King JD Jr, Hallows KR. CFTR regulation by phosphorylation. Methods Mol Biol 2011; 741: 471.
- Chappe V, Hinkson DA, Howell LD, et al. Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 2004; 101: 390.
- Seavilleklein G, Amer N, Evagelidis A, et al. PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR. Am J Physiol Cell Physiol 2008; 295: C1366.
- Warhurst G, Higgs NB, Lees M, et al. Activation of protein kinase C attenuates prostaglandin E2 responses in a colonic cell line. Am J Physiol 1988; 255(1 Pt 1): G27. [Epub 1988/07/01].
- Tang J, Bouyer P, Mykoniatis A, et al. Activated PKC{delta} and PKC{epsilon} inhibit epithelial chloride secretion response to cAMP via inducing internalization of the Na+-K+-2Cl- cotransporter NKCC1. J Biol Chem 2010; 285: 34072.
- Rapetti-Mauss R, O′Mahony F, Sepulveda FV, et al. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium. J Physiol 2013; 591(Pt 11): 2813.
- Del Castillo IC, Fedor-Chaiken M, Song JC, et al. Dynamic regulation of Na(+)-K(+)-2Cl(-) cotransporter surface expression by PKC-{epsilon} in Cl(-)–secretory epithelia. Am J Physiol Cell Physiol 2005; 289: C1332. [Epub 2005/07/08].
- Li X, Zhang H, Cheong A, et al. Carbachol regulation of rabbit ileal brush border Na+-H+ exchanger 3 (NHE3) occurs through changes in NHE3 trafficking and complex formation and is Src dependent. J Physiol 2004; 556(Pt 3): 791.
- Billet A, Luo Y, Balghi H, et al. Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2013; 288: 21815.
- Cesaro L, Marin O, Venerando A, et al. Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508. Amino Acids 2013; 45: 1423.
- Eaton DC, Malik B, Bao HF, et al. Regulation of epithelial sodium channel trafficking by ubiquitination. Proc Am Thorac Soc 2010; 7: 54.
- Malik B, Price SR, Mitch WE, et al. Regulation of epithelial sodium channels by the ubiquitin-proteasome proteolytic pathway. Am J Physiol Renal Physiol 2006; 290: F1285. [Epub 2006/05/10].
- Zhou R, Patel SV, Snyder PM. Nedd4-2 catalyzes ubiquitination and degradation of cell surface ENaC. J Biol Chem 2007; 282: 20207. [Epub 2007/05/16].
- Butterworth MB, Edinger RS, Johnson JP, et al. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol 2005; 125: 81. [Epub 2004/12/30].
- Fisher RS, Grillo FG, Sariban-Sohraby S. Brefeldin A inhibition of apical Na+ channels in epithelia. Am J Physiol 1996; 270(1 Pt 1): C138. [Epub 1996/01/01].
- Bhalla V, Soundararajan R, Pao AC, et al. Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am J Physiol Renal Physiol 2006; 291: F714. [Epub 2006/05/25].
- Cheng J, Guggino W. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6. PLoS ONE 2013; 8: e68001.
- Rotin D, Staub O. Role of the ubiquitin system in regulating ion transport. Pflugers Arch 2011; 461: 1.
- Alzamora R, Gong F, Rondanino C, et al. AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 2010; 299: F1308.
- Lecuona E, Sun H, Vohwinkel C, et al. Ubiquitination participates in the lysosomal degradation of Na,K-ATPase in steady-state conditions. Am J Respir Cell Mol Biol 2009; 41: 671.
- Ohta A, Schumacher FR, Mehellou Y, et al. The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 2013; 451: 111.
- Yang L, Wang Y, Chen P, et al. Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) is required for the estradiol-dependent increase of phosphatase and tensin homolog (PTEN) protein expression. Endocrinology 2011; 152: 4537.
- Amasheh S, Epple HJ, Mankertz J, et al. Differential regulation of ENaC by aldosterone in rat early and late distal colon. Ann N Y Acad Sci 2000; 915: 92.
- Cafferata EG, Guerrico AM, Pivetta OH, et al. NF-kappaB activation is involved in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) by interleukin-1beta. J Biol Chem 2001; 276: 15441.
- O′Mahony F, Barrett KE, Keely SJ. Epidermal growth factor chronically enhances colonic epithelial secretory capacity by upregulating NKCC1 expression. Gastroenterology 2006; 130: A372.
- Mroz MS, Keely SJ. Epidermal growth factor chronically upregulates Ca(2+)-dependent Cl(-) conductance and TMEM16A expression in intestinal epithelial cells. J Physiol 2012; 590(Pt 8): 1907.
- Zheng W, Kuhlicke J, Jackel K, et al. Hypoxia inducible factor-1 (HIF-1)-mediated repression of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium. FASEB J 2009; 23: 204.
- Malakooti J, Saksena S, Gill RK, et al. Transcriptional regulation of the intestinal luminal Na(+) and Cl(-) transporters. Biochem J 2011; 435: 313.
- Kerschner JL, Harris A. Transcriptional networks driving enhancer function in the CFTR gene. Biochem J 2012; 446: 203.
- Taylor CT, Colgan SP. Hypoxia and gastrointestinal disease. J Mol Med 2007; 85: 1295.
- Ibla JC, Khoury J, Kong T, et al. Transcriptional repression of Na-K-2Cl cotransporter NKCC1 by hypoxia-inducible factor-1. Am J Physiol Cell Physiol 2006; 291: C282. [Epub 2006/03/31].
- Bartoszewski R, Rab A, Twitty G, et al. The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem 2008; 283: 12154.
- Selvakumar P, Owens TA, David JM, et al. Epigenetic silencing of Na,K-ATPase beta subunit gene by methylation in clear cell renal cell carcinoma. Epigenetics 2014; 9: ••.
- Lee HA, Hong SH, Kim JW, et al. Possible involvement of DNA methylation in NKCC1 gene expression during postnatal development and in response to ischemia. J Neurochem 2010; 114: 520.
- Tumer E, Broer A, Balkrishna S, et al. Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks. J Biol Chem 2013; 288: 33813.
- Ikehata M, Ueda K, Iwakawa S. Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines. Biol Pharm Bull 2012; 35: 301.
- Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215.
- Oglesby IK, Chotirmall SH, McElvaney NG, et al. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in DeltaF508 cystic fibrosis airway epithelium. J Immunol 2013; 190: 3354.
- Ramachandran S, Karp PH, Osterhaus SR, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol 2013; 49: 544.
- Mladinov D, Liu Y, Mattson DL, et al. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase beta1. Nucleic Acids Res 2013; 41: 1273.
- Tamarapu Parthasarathy P, Galam L, Huynh B, et al. MicroRNA 16 modulates epithelial sodium channel in human alveolar epithelial cells. Biochem Biophys Res Commun 2012; 426: 203.
- Vajanaphanich M, Schultz C, Tsien RY, et al. Cross-talk between calcium and cAMP-dependent intracellular signaling pathways. Implications for synergistic secretion in T84 colonic epithelial cells and rat pancreatic acinar cells. J Clin Invest 1995; 96: 386. [Epub 1995/07/01].
- Hoque KM, Woodward OM, van Rossum DB, et al. Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion. J Gen Physiol 2010; 135: 43.
- Kunzelmann K, Mehta A. CFTR: a hub for kinases and crosstalk of cAMP and Ca2. FEBS J 2013; 280: 4417. [Epub 2013/07/31].
- Keely SJ, Uribe JM, Barrett KE. Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J Biol Chem 1998; 273: 27111.
- Keely SJ, Barrett KE. p38 mitogen-activated protein kinase inhibits calcium-dependent chloride secretion in T84 colonic epithelial cells. Am J Physiol Cell Physiol 2003; 284: C339.
- Donnellan F, Keating N, Geoghegan P, et al. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 298: G37.
- Bertelsen LS, Barrett KE, Keely SJ. Gs protein-coupled receptor agonists induce transactivation of the epidermal growth factor receptor in T84 cells: implications for epithelial secretory responses. J Biol Chem 2004; 279: 6271.
- Carra GE, Ibanez JE, Saravi FD. Electrogenic transport, oxygen consumption, and sensitivity to acute hypoxia of human colonic epithelium. Int J Colorectal Dis 2011; 26: 1205.
- Sotak M, Polidarova L, Musilkova J, et al. Circadian regulation of electrolyte absorption in the rat colon. Am J Physiol Gastrointest Liver Physiol 2011; 301: G1066.
- Raybould HE, Cooke HJ, Christofi FL. Sensory mechanisms: transmitters, modulators and reflexes. Neurogastroenterol Motil 2004; 16(Suppl 1): 60. [Epub 2004/04/07].
- Keating N, Mroz MS, Scharl MM, et al. Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells. J Cell Mol Med 2009; 13(8B): 2293.
- Johnston I, Nolan J, Pattni SS, et al. New insights into bile acid malabsorption. Curr Gastroenterol Rep 2011; 13: 418.
- Camilleri M. Advances in understanding of bile acid diarrhea. Expert Rev Gastroenterol Hepatol 2014; 8: 49.
- Keely SJ, Scharl MM, Bertelsen LS, et al. Bile acid-induced secretion in polarized monolayers of T84 colonic epithelial cells: structure-activity relationships. Am J Physiol Gastrointest Liver Physiol 2007; 292: G290.
- Jones ML, Martoni CJ, Ganopolsky JG, et al. The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin Biol Ther 2014; 14: 467.
- Matthews JB, Hassan I, Meng S, et al. Na-K-2Cl cotransporter gene expression and function during enterocyte differentiation. Modulation of Cl- secretory capacity by butyrate. J Clin Invest 1998; 101: 2072. [Epub 1998/05/29].
- Zeissig S, Fromm A, Mankertz J, et al. Butyrate induces intestinal sodium absorption via Sp3-mediated transcriptional up-regulation of epithelial sodium channels. Gastroenterology 2007; 132: 236. [Epub 2007/01/24].
- Kopic S, Geibel JP. Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins 2010; 2: 2132.
- Sandle GI. Infective and inflammatory diarrhoea: mechanisms and opportunities for novel therapies. Curr Opin Pharmacol 2011; 11: 634.
- Marchelletta RR, Gareau MG, McCole DF, et al. Altered Expression and Localization of Ion Transporters Contribute to Diarrhea in Mice With Salmonella-Induced Enteritis. Gastroenterology 2013; 145: 1358.
- Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14: 660.
- Camilleri M, Nullens S, Nelsen T. Enteroendocrine and neuronal mechanisms in pathophysiology of acute infectious diarrhea. Dig Dis Sci 2012; 57: 19.
- Albiger B, Dahlberg S, Henriques-Normark B, et al. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J Intern Med 2007; 261: 511.
- Spitzer MD. Viral causes of diarrhea. Pediatr Rev 2002; 23: 257.
- Pierce KK, Kirkpatrick BD. Update on human infections caused by intestinal protozoa. Curr Opin Gastroenterol 2009; 25: 12.
- Alexander AN, Carey HV. Involvement of PI 3-kinase in IGF-I stimulation of jejunal Na+-K+-ATPase activity and nutrient absorption. Am J Physiol Gastrointest Liver Physiol 2001; 280: G222.
- Ward JB, Mroz MS, Keely SJ. The bile acid receptor, TGR5, regulates basal and cholinergic-induced secretory responses in rat colon. Neurogastroenterol Motil 2013; 25: 708.
- Keating N, Keely SJ. Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep 2009; 11: 375.
- Winter DC, Schneider MF, O'Sullivan GC, et al. Rapid effects of aldosterone on sodium-hydrogen exchange in isolated colonic crypts. J Membr Biol 1999; 170: 17. [Epub 1999/07/10].
- Maguire D, MacNamara B, Cuffe JE, et al. Rapid responses to aldosterone in human distal colon. Steroids 1999; 64: 51. [Epub 1999/05/14].
- Chow JY, Carlstrom K, Barrett KE. Growth hormone reduces chloride secretion in human colonic epithelial cells via EGF receptor and extracellular regulated kinase. Gastroenterology 2003; 125: 1114. [Epub 2003/10/01].
- Charoenphandhu N, Limlomwongse L, Krishnamra N. Prolactin directly enhanced Na+/K+- and Ca2+-ATPase activities in the duodenum of female rats. Can J Physiol Pharmacol 2006; 84: 555. [Epub 2006/08/12].
- Bowley KA, Morton MJ, Hunter M, et al. Non-genomic regulation of intermediate conductance potassium channels by aldosterone in human colonic crypt cells. Gut 2003; 52: 854. [Epub 2003/05/13].
- Santaolalla R, Abreu MT. Innate immunity in the small intestine. Curr Opin Gastroenterol 2012; 28: 124.
- Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 2012; 13: 684.
- Perdue MH, McKay DM. Integrative immunophysiology in the intestinal mucosa. Am J Physiol 1994; 267(2 Pt 1): G151. [Epub 1994/08/01].
- Beunk L, Verwoerd A, van Overveld FJ, et al. Role of mast cells in mucosal diseases: current concepts and strategies for treatment. Expert Rev Clin Immunol 2013; 9: 53.
- De Winter BY, van den Wijngaard RM, de Jonge WJ. Intestinal mast cells in gut inflammation and motility disturbances. Biochim Biophys Acta 2012; 1822: 66.
- Barrett KE, Metcalfe DD. The mucosal mast cell and its role in gastrointestinal allergic diseases. Clin Rev Allergy 1984; 2: 39. [Epub 1984/02/01].
- Yu LC, Perdue MH. Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol Rev 2001; 179: 61.
- Van Nassauw L, Adriaensen D, Timmermans JP. The bidirectional communication between neurons and mast cells within the gastrointestinal tract. Auton Neurosci 2007; 133: 91.
- Berin MC, McKay DM, Perdue MH. Immune-epithelial interactions in host defense. Am J Trop Med Hyg 1999; 60(4 Suppl): 16.
- Perdue MH, Masson S, Wershil BK, et al. Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell-deficient W/Wv mice by bone marrow transplantation. J Clin Invest 1991; 87: 687. [Epub 1991/02/01].
- Gelbmann CM, Schteingart CD, Thompson SM, et al. Mast cells and histamine contribute to bile acid-stimulated secretion in the mouse colon. J Clin Invest 1995; 95: 2831. [Epub 1995/06/01].
- Pothoulakis C, Lamont JT. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am J Physiol Gastrointest Liver Physiol 2001; 280: G178. [Epub 2001/02/24].
- Farhadi A, Forsyth C, Banan A, et al. Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry 2007; 71: 142.
- Konturek PC, Brzozowski T, Konturek SJ. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol 2011; 62: 591.
- Powell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999; 277(1 Pt 1): C1. [Epub 1999/07/17].
- Hinterleitner TA, Saada JI, Berschneider HM, et al. IL-1 stimulates intestinal myofibroblast COX gene expression and augments activation of Cl- secretion in T84 cells. Am J Physiol 1996; 271(4 Pt 1): C1262. [Epub 1996/10/01].
- Castells M. Mast cell mediators in allergic inflammation and mastocytosis. Immunol Allergy Clin North Am 2006; 26: 465.
- Stack WA, Keely SJ, O'Donoghue DP, et al. Immune regulation of human colonic electrolyte transport in vitro. Gut 1995; 36: 395.
- Skelly MM, O'Donoghue DP, Baird AW. Oxygen metabolites in immune- stimulated ion transport in rat colon: modulation by taurine. Digestion 2001; 63: 124.
- Barrett TA, Musch MW, Chang EB. Chemotactic peptide effects on intestinal electrolyte transport. Am J Physiol 1990; 259(6 Pt 1): G947. [Epub 1990/12/01].
- Gaginella TS, Kachur JF, Tamai H, et al. Reactive oxygen and nitrogen metabolites as mediators of secretory diarrhea. Gastroenterology 1995; 109: 2019. [Epub 1995/12/01].
- Chin AC, Parkos CA. Neutrophil transepithelial migration and epithelial barrier function in IBD: potential targets for inhibiting neutrophil trafficking. Ann N Y Acad Sci 2006; 1072: 276. [Epub 2006/10/24].
- Rossi O, Karczewski J, Stolte EH, et al. Vectorial secretion of interleukin-8 mediates autocrine signalling in intestinal epithelial cells via apically located CXCR1. BMC Res Notes 2013; 6: 431. [Epub 2013/10/30].
- Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 2006; 169: 1901.
- Musch MW, Clarke LL, Mamah D, et al. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J Clin Invest 2002; 110: 1739. [Epub 2002/12/05].
- McKay DM, Croitoru K, Perdue MH. T cell-monocyte interactions regulate epithelial physiology in a coculture model of inflammation. Am J Physiol 1996; 270(2 Pt 1): C418. [Epub 1996/02/01].
- Suenaert P, Maerten P, Van Assche G, et al. Effects of T cell-induced colonic inflammation on epithelial barrier function. Inflamm Bowel Dis 2010; 16: 1322.
- Su L, Shen L, Clayburgh DR, et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 2009; 136: 551.
- Rocha F, Musch MW, Lishanskiy L, et al. IFN-gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. Am J Physiol Cell Physiol 2001; 280: C1224. [Epub 2001/04/05].
- Qiu Y, Yang H. Effects of intraepithelial lymphocyte-derived cytokines on intestinal mucosal barrier function. J Interferon Cytokine Res 2013; 33: 551.
- Inagaki-Ohara K, Dewi FN, Hisaeda H, et al. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 2006; 74: 5292. [Epub 2006/08/24].
- Ouellette AJ. Defensin-mediated innate immunity in the small intestine. Best Pract Res Clin Anaesthesiol 2004; 18: 405. [Epub 2004/05/05].
- Mastroianni JR, Ouellette AJ. Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem 2009; 284: 27848.
- Goto Y, Ivanov II. Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol Cell Biol 2013; 91: 204.
- Shale M, Ghosh S. How intestinal epithelial cells tolerise dendritic cells and its relevance to inflammatory bowel disease. Gut 2009; 58: 1291.
- Canny G, Swidsinski A, McCormick BA. Interactions of intestinal epithelial cells with bacteria and immune cells: methods to characterize microflora and functional consequences. Methods Mol Biol 2006; 341: 17.
- Berin MC, Sampson HA. Mucosal immunology of food allergy. Curr Biol 2013; 23: R389.
- Shibahara T, Miyazaki K, Sato D, et al. Alteration of intestinal epithelial function by intraepithelial lymphocyte homing. J Gastroenterol 2005; 40: 878. [Epub 2005/10/08].
- Eckmann L, Kagnoff MF. Intestinal mucosal responses to microbial infection. Springer Semin Immunopathol 2005; 27: 181.
- Ou G, Baranov V, Lundmark E, et al. Contribution of intestinal epithelial cells to innate immunity of the human gut–studies on polarized monolayers of colon carcinoma cells. Scand J Immunol 2009; 69: 150.
- Powell DW, Pinchuk IV, Saada JI, et al. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol 2011; 73: 213.
- Blume ED, Taylor CT, Lennon PF, et al. Activated endothelial cells elicit paracrine induction of epithelial chloride secretion. 6-Keto-PGF1alpha is an epithelial secretagogue. J Clin Invest 1998; 102: 1161. [Epub 1998/09/17].
- Sharkey KA, Savidge TC. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 181: 94.
- Schemann M, Camilleri M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 2013; 144: 698.
- Wang YZ, Cooke HJ. H2 receptors mediate cyclical chloride secretion in guinea pig distal colon. Am J Physiol 1990; 258(6 Pt 1): G887. [Epub 1990/06/01].
- Bunnett NW. Neuro-humoral Signalling by Bile Acids in the Gastrointestinal Tract. J Physiol 2014; ••: ••.
- Cox HM. Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci 2007; 133: 76.
- Foong JP, Parry LJ, Bornstein JC. Activation of neuronal SST(1) and SST(2) receptors decreases neurogenic secretion in the guinea-pig jejunum. Neurogastroenterol Motil 2010; 22: 1209, e317.
-
Burnstock G.
Cotransmission in the autonomic nervous system.
Handb Clin Neurol
2013;
••:
23.
10.1016/B978-0-444-53491-0.00003-1 Google Scholar
- Hogan DL, Yao B, Steinbach JH, et al. The enteric nervous system modulates mammalian duodenal mucosal bicarbonate secretion. Gastroenterology 1993; 105: 410. [Epub 1993/08/01].
- Hayashi H, Suzuki T, Yamamoto T, et al. Cholinergic inhibition of electrogenic sodium absorption in the guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284: G617.
- Kuwahara A. Radowicz-Cooke HJ. Epithelial transport in guinea-pig proximal colon: influence of enteric neurones. J Physiol 1988; 395: 271. [Epub 1988/01/01].
- Xue J, Askwith C, Javed NH, et al. Autonomic nervous system and secretion across the intestinal mucosal surface. Auton Neurosci 2007; 133: 55.
- Raybould HE. Nutrient sensing in the gastrointestinal tract: possible role for nutrient transporters. J Physiol Biochem 2008; 64: 349.
- Wood JD. Enteric nervous system: sensory physiology, diarrhea and constipation. Curr Opin Gastroenterol 2010; 26: 102.
- Heredia DJ, Dickson EJ, Bayguinov PO, et al. Localized release of serotonin (5-hydroxytryptamine) by a fecal pellet regulates migrating motor complexes in murine colon. Gastroenterology 2009; 136: 1328.
- Cooke HJ, Sidhu M, Wang YZ. 5-HT activates neural reflexes regulating secretion in the guinea-pig colon. Neurogastroenterol Motil 1997; 9: 181.
- Lundgren O, Peregrin AT, Persson K, et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 2000; 287: 491. [Epub 2000/01/22].
- Alemi F, Poole DP, Chiu J, et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013; 144: 145.
- Konturek SJ, Konturek JW, Pawlik T, et al. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 2004; 55(1 Pt 2): 137.
- Soderholm JD, Perdue MH. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2001; 280: G7. [Epub 2000/12/21].
- Stasi C, Rosselli M, Bellini M, et al. Altered neuro-endocrine-immune pathways in the irritable bowel syndrome: the top-down and the bottom-up model. J Gastroenterol 2012; 47: 1177.
- Eklund S, Brunsson I, Jodal M, et al. Changes in cyclic 3′5′-adenosine monophosphate tissue concentration and net fluid transport in the cat's small intestine elicited by cholera toxin, arachidonic acid, vasoactive intestinal polypeptide and 5-hydroxytryptamine. Acta Physiol Scand 1987; 129: 115. [Epub 1987/01/01].
- Hubel KA. Intestinal nerves and ion transport: stimuli, reflexes, and responses. Am J Physiol 1985; 248(3 Pt 1): G261. [Epub 1985/03/01].
- Wood JD. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology 2004; 127: 635. [Epub 2004/08/10].
- Castro GA, Arntzen CJ. Immunophysiology of the gut: a research frontier for integrative studies of the common mucosal immune system. Am J Physiol 1993; 265(4 Pt 1): G599. [Epub 1993/10/01].
- Tillisch K, Mayer EA, Labus JS, et al. Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut 2005; 54: 1396.
- Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology 2013; 144: 36.
- Taylor CT, Keely SJ. The autonomic nervous system and inflammatory bowel disease. Auton Neurosci 2007; 133: 104. [Epub 2007/01/20].
- Yajima T, Inoue R, Matsumoto M, et al. Non-neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon. J Physiol 2011; 589(Pt 4): 953.
- Bader S, Klein J, Diener M. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium. Eur J Pharmacol 2014; ••: ••.
- Keely SJ. Epithelial acetylcholine–a new paradigm for cholinergic regulation of intestinal fluid and electrolyte transport. J Physiol 2011; 589(Pt 4): 771.
- Wlodarska M, Finlay BB. Host immune response to antibiotic perturbation of the microbiota. Mucosal Immunol 2010; 3: 100.
- Kaiser P, Hardt WD. Salmonella typhimurium diarrhea: switching the mucosal epithelium from homeostasis to defense. Curr Opin Immunol 2011; 23: 456.
- Jones RM, Luo L, Ardita CS, et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 2013; 32: 3017.
- Wells JM, Rossi O, Meijerink M, et al. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A 2011; 108(Suppl 1): 4607.
- Raheja G, Singh V, Ma K, et al. Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol 2010; 298: G395.
- Tomas J, Reygner J, Mayeur C, et al. Early colonizing Escherichia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state. ISME J 2014; ••: ••.
- Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011; 141: 769.
- Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 2003; 52: 988.
- Lomasney KW, Hyland NP. The application of Ussing chambers for determining the impact of microbes and probiotics on intestinal ion transport. Can J Physiol Pharmacol 2013; 91: 663.
- Saulnier DM, Ringel Y, Heyman MB, et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 2013; 4: 17.
- Neish AS. Mucosal immunity and the microbiome. Ann Am Thorac Soc 2014; 11(Suppl 1): S28.
- Larmonier CB, Laubitz D, Hill FM, et al. Reduced colonic microbial diversity is associated with colitis in NHE3-deficient mice. Am J Physiol Gastrointest Liver Physiol 2013; 305: G667.
- Vitetta L, Briskey D, Alford H, et al. Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacology 2014; ••: ••.
- Shanahan F, Quigley EM. Manipulation of the Microbiota for Treatment of IBS and IBD-Challenges and Controversies. Gastroenterology 2014; ••: ••.
- Walsh CJ, Guinane CM, O'Toole PW, et al. Beneficial modulation of the gut microbiota. FEBS Lett 2014; ••: ••.
- Lomasney KW, Cryan JF, Hyland NP. Converging effects of a Bifidobacterium and Lactobacillus probiotic strain on mouse intestinal physiology. Am J Physiol Gastrointest Liver Physiol 2014; 307: G241.
- Major G, Spiller R. Irritable bowel syndrome, inflammatory bowel disease and the microbiome. Curr Opin Endocrinol Diabetes Obes 2014; 21: 15.
- Tuohy KM, Fava F, Viola R. 'The way to a man's heart is through his gut microbiota′ – dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 2014; ••: 1.
- Delzenne NM, Neyrinck AM, Backhed F, et al. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011; 7: 639.
- Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 2011; 1243: 103.
- Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13: 701.
- Smith C, Berzins K, Rodrigues DM, et al. Probiotics Can Normalize the Gut-Brain Axis in Immunodeficient Mice. Gastroenterology 2013; 144: S895.
- Elrefae F, Elhassanien AF, Alghiaty HA. Congenital chloride diarrhea: a review of twelve Arabian children. Clinical Exp Gastroenterol 2013; 6: 71.
- Turnberg LA. Abnormalities in intestinal electrolyte transport in congenital chloridorrhoea. Gut 1971; 12: 544. [Epub 1971/07/01].
- Bieberdorf FA, Gorden P, Fordtran JS. Pathogenesis of congenital alkalosis with diarrhea. Implications for the physiology of normal ileal electrolyte absorption and secretion. J Clin Invest 1972; 51: 1958. [Epub 1972/08/01].
- Holmberg C, Perheentupa J, Launiala K. Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Invest 1975; 56: 302. [Epub 1975/08/01].
- Canani RB, Terrin G, Elce A, et al. Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea. Orphanet J Rare Dis 2013; 8: 194.
- Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 2004; 447: 549. [Epub 2003/07/08].
- Booth IW, Stange G, Murer H, et al. Defective jejunal brush-border Na+/H+ exchange: a cause of congenital secretory diarrhoea. Lancet 1985; 1: 1066. [Epub 1985/05/11].
- Muller T, Wijmenga C, Phillips AD, et al. Congenital sodium diarrhea is an autosomal recessive disorder of sodium/proton exchange but unrelated to known candidate genes. Gastroenterology 2000; 119: 1506.
- Fell JM, Miller MP, Finkel Y, et al. Congenital sodium diarrhea with a partial defect in jejunal brush border membrane sodium transport, normal rectal transport, and resolving diarrhea. J Pediatr Gastroenterol Nutr 1992; 15: 112. [Epub 1992/08/01].
- Collins JF, Xu H, Kiela PR, et al. Functional and molecular characterization of NHE3 expression during ontogeny in rat jejunal epithelium. Am J Physiol 1997; 273(6 Pt 1): C1937. [Epub 1998/01/22].
- Baum M, Martin MG, Booth IW, et al. Nucleotide sequence of the Na+/H+ exchanger-8 in patients with congenital sodium diarrhea. J Pediatr Gastroenterol Nutr 2011; 53: 474.
- Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995; 11: 76. [Epub 1995/09/01].
- Bertog M, Cuffe JE, Pradervand S, et al. Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle's syndrome. J Physiol 2008; 586: 459. [Epub 2007/11/17].
- Bosson D, Kuhnle U, Mees N, et al. Generalized unresponsiveness to mineralocorticoid hormones: familial recessive pseudohypoaldosteronism due to aldosterone-receptor deficiency. Acta Endocrinol Suppl (Copenh) 1986; 279: 376. [Epub 1986/01/01].
- Oberfield SE, Levine LS, Carey RM, et al. Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab 1979; 48: 228. [Epub 1979/02/01].
- Strautnieks SS, Thompson RJ, Gardiner RM, et al. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 1996; 13: 248. [Epub 1996/06/01].
- Greger R. Role of CFTR in the colon. Annu Rev Physiol 2000; 62: 467. [Epub 2000/06/09].
- McCole DF, Barrett KE. Decoding epithelial signals: critical role for the epidermal growth factor receptor in controlling intestinal transport function. Acta Physiol 2009; 195: 149.
- Berdiev BK, Qadri YJ, Benos DJ. Assessment of the CFTR and ENaC association. Mol Biosyst 2009; 5: 123.
- Odes HS, Smirnoff P, Guberman R, et al. Cystic fibrosis transmembrane conductance regulator and Na+ channel subunits mRNA transcripts, and Cl- efflux, show a different distribution in rat duodenum and colon. Acta Physiol Scand 2003; 178: 231.
- Zielenski J, Tsui LC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 1995; 29: 777. [Epub 1995/01/01].
-
Rowe SM,
Verkman AS.
Cystic fibrosis transmembrane regulator correctors and potentiators.
Cold Spring Harb Perspect Med
2013;
3:
••.
10.1101/cshperspect.a009761 Google Scholar
- O′Loughlin EV, Hunt DM, Gaskin KJ, et al. Abnormal epithelial transport in cystic fibrosis jejunum. Am J Physiol 1991; 260(5 Pt 1): G758. [Epub 1991/05/01].
- Quinton PM. Role of epithelial HCO3(-) transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 2010; 299: C1222.
- Gabriel SE, Brigman KN, Koller BH, et al. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 1994; 266: 107. [Epub 1994/10/07].
- Kuningas M, van Bodegom D, May L, et al. Common CFTR gene variants influence body composition and survival in rural Ghana. Hum Genet 2010; 127: 201.
- Poolman EM, Galvani AP. Evaluating candidate agents of selective pressure for cystic fibrosis. J R Soc Interface 2007; 4: 91.
- Pier GB, Grout M, Zaidi T, et al. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 1998; 393: 79. [Epub 1998/05/20].
- van de Vosse E, de Visser AW, Al-Attar S, et al. Distribution of CFTR variations in an Indonesian enteric fever cohort. Clin Infect Dis 2010; 50: 1231.
- Cutz E, Rhoads JM, Drumm B, et al. Microvillus inclusion disease: an inherited defect of brush-border assembly and differentiation. N Engl J Med 1989; 320: 646. [Epub 1989/03/09].
- Ameen NA, Salas PJ. Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium. Traffic 2000; 1: 76. [Epub 2001/02/24].
- Sherman PM, Mitchell DJ, Cutz E. Neonatal enteropathies: defining the causes of protracted diarrhea of infancy. J Pediatr Gastroenterol Nutr 2004; 38: 16. [Epub 2003/12/17].
- Muller T, Hess MW, Schiefermeier N, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet 2008; 40: 1163.
- Goulet O, Salomon J, Ruemmele F, et al. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis 2007; 2: 20. [Epub 2007/04/24].
- Sivagnanam M, Mueller JL, Lee H, et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology 2008; 135: 429. [Epub 2008/06/24].
- Mueller JL, McGeough MD, Pena CA, et al. Functional consequences of EpCam mutation in mice and men. Am J Physiol Gastrointest Liver Physiol 2014; 306: G278. [Epub 2013/12/18].
- Heinz-Erian P, Muller T, Krabichler B, et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet 2009; 84: 188.
- Salomon J, Goulet O, Canioni D, et al. Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet 2014; 133: 299. [Epub 2013/10/22].
- Fabre A, Charroux B, Martinez-Vinson C, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet 2012; 90: 689. [Epub 2012/03/27].
- Oelkers P, Kirby LC, Heubi JE, et al. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 1997; 99: 1880. [Epub 1997/04/15].
- Shneider BL. Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 2001; 32: 407. [Epub 2001/06/09].
- Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2095. [Epub 2012/12/19].
- van Heyningen S. The subunits of cholera toxin: structure, stoichiometry, and function. J Infect Dis 1976; 133(Suppl): 5. [Epub 1976/03/01].
- Guichard A, Cruz-Moreno B, Aguilar B, et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 2013; 14: 294. [Epub 2013/09/17].
- Swenson ES, Mann EA, Jump ML, et al. The guanylin/STa receptor is expressed in crypts and apical epithelium throughout the mouse intestine. Biochem Biophys Res Commun 1996; 225: 1009. [Epub 1996/08/23].
- Weiglmeier PR, Rosch P, Berkner H. Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins 2010; 2: 2213. [Epub 2010/09/01].
- Dubreuil JD. The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr Issues Mol Biol 2012; 14: 71. [Epub 2012/03/01].
- Gill RK, Borthakur A, Hodges K, et al. Mechanism underlying inhibition of intestinal apical Cl/OH exchange following infection with enteropathogenic E. coli. J Clin Invest 2007; 117: 428. [Epub 2007/01/27].
- Hodges K, Alto NM, Ramaswamy K, et al. The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell Microbiol 2008; 10: 1735. [Epub 2008/04/25].
- McCormick BA, Colgan SP, Delp-Archer C, et al. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol 1993; 123: 895. [Epub 1993/11/01].
- Gewirtz AT, Rao AS, Simon PO Jr, et al. Salmonella typhimurium induces epithelial IL-8 expression via Ca(2+)-mediated activation of the NF-kappaB pathway. J Clin Invest 2000; 105: 79. [Epub 2000/01/05].
- Canani RB, Terrin G. Recent progress in congenital diarrheal disorders. Curr Gastroenterol Rep 2011; 13: 257.
- Ciclitira PJ, Johnson MW, Dewar DH, et al. The pathogenesis of coeliac disease. Mol Aspects Med 2005; 26: 421. [Epub 2005/08/30].
- Drago S, El Asmar R, Di Pierro M, et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 2006; 41: 408. [Epub 2006/04/26].
- Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol 2012; 10: 1096. [Epub 2012/08/21].
- Tripathi A, Lammers KM, Goldblum S, et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci U S A 2009; 106: 16799. [Epub 2009/10/07].
- Fischer A, Gluth M, Weege F, et al. Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. Am J Physiol Gastrointest Liver Physiol 2014; 306: G218. [Epub 2013/12/07].
- Su L, Nalle SC, Shen L, et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 2013; 145: 407. [Epub 2013/04/27].
- Schulzke JD, Ploeger S, Amasheh M, et al. Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 2009; 1165: 294. [Epub 2009/06/23].
- Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 1998; 161: 5733. [Epub 1998/11/20].
- Valverde MA, Hardy SP, Sepulveda FV. Chloride channels: a state of flux. FASEB J 1995; 9: 509. [Epub 1995/04/01].
- Sundaram U, Wisel S, Fromkes JJ. Unique mechanism of inhibition of Na+-amino acid cotransport during chronic ileal inflammation. Am J Physiol 1998; 275(3 Pt 1): G483. [Epub 1998/09/02].
- Greig ER, Boot-Handford RP, Mani V, et al. Decreased expression of apical Na+ channels and basolateral Na+, K+-ATPase in ulcerative colitis. J Pathol 2004; 204: 84. [Epub 2004/08/13].
- Sullivan S, Alex P, Dassopoulos T, et al. Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD-associated diarrhea. Inflamm Bowel Dis 2009; 15: 261. [Epub 2008/10/24].
- Diaz-Granados N, Howe K, Lu J, et al. Dextran sulfate sodium-induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. Am J Pathol 2000; 156: 2169. [Epub 2000/06/15].
- Gudsoorkar VS, Quigley EM. Emerging treatments for chronic constipation. Expert Opin Emerg Drugs 2013; 18: 365. [Epub 2013/08/21].
- Gras-Miralles B, Cremonini F. A critical appraisal of lubiprostone in the treatment of chronic constipation in the elderly. Clin Interv Aging 2013; 8: 191. [Epub 2013/02/27].
- Layer P. Management of irritable bowel syndrome with constipation: a flexible approach to treating a complex condition with multiple symptoms. Expert Rev Gastroenterol Hepatol 2013; 7(5 Suppl 1): 9. [Epub 2013/07/24].
- Bryant AP, Busby RW, Bartolini WP, et al. Linaclotide is a potent and selective guanylate cyclase C agonist that elicits pharmacological effects locally in the gastrointestinal tract. Life Sci 2010; 86: 760. [Epub 2010/03/24].
- Chey WD, Camilleri M, Chang L, et al. A randomized placebo-controlled phase IIb trial of a3309, a bile acid transporter inhibitor, for chronic idiopathic constipation. Am J Gastroenterol 2011; 106: 1803. [Epub 2011/05/25].