Epigenetic Mechanisms in AHR Function
Chia-I Ko
Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
Search for more papers by this authorAlvaro Puga
Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
Search for more papers by this authorChia-I Ko
Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
Search for more papers by this authorAlvaro Puga
Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
Search for more papers by this authorRaimo Pohjanvirta
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Epigenetics, Cellular Memory, and Development
-
The AHR and its Role in Development
-
Conclusion
-
Acknowledgments
-
References
REFERENCES
- Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., and Bernstein, B. E. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553–560.
- Ringrose, L. and Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Review of Genetics, 38, 413–443.
- Mohn, F., Weber, M., Rebhan, M., Roloff, T. C., Richter, J., Stadler, M. B., Bibel, M., and Schubeler, D. (2008). Lineagespecific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Molecular Cell, 30, 755–766.
- Gal-Yam, E. N., Egger, G., Iniguez, L., Holster, H., Einarsson, S., Zhang, X., Lin, J. C., Liang, G., Jones, P. A., and Tanay, A. (2008). Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proceedings of the National Academy of Sciences of the United States of America, 105, 12979–12984.
- Margueron, R. and Reinberg, D. (2010). Chromatin structure and the inheritance of epigenetic information. Nature Reviews in Genetics, 11, 285–296.
- Rideout, W. M., III, Hochedlinger, K., Kyba, M., Daley, G. Q., and Jaenisch, R. (2002). Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell, 109, 17–27.
- Eggan, K., Akutsu, H., Loring, J., Jackson-Grusby, L., Klemm, M., Rideout, W. M., III, Yanagimachi, R., and Jaenisch, R. (2001). Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proceedings of the National Academy of Sciences of the United States of America, 98, 6209–6214.
- Ng, R. K. and Gurdon, J. B. (2005). Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proceedings of the National Academy of Sciences of the United States of America, 102, 1957–1962.
- Kohda, T., Inoue, K., Ogonuki, N., Miki, H., Naruse, M., Kaneko-Ishino, T., Ogura, A., and Ishino, F. (2005). Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biology of Reproduction, 73, 1302–1311.
- Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.
- Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B. E., Jaenisch, R., Lander, E. S., Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454, 49–55.
- Henikoff, S. (2000). Heterochromatin function in complex genomes. Biochimica et Biophysica Acta, 1470, O1–O8.
- Richards, E. J. and Elgin, S. C. (2002). Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell, 108, 489–500.
-
Trojer, P. and Reinberg, D. (2007). Facultative heterochromatin: is there a distinctive molecular signature? Molecular Cell, 28, 1–13.
10.1016/j.molcel.2007.09.011 Google Scholar
- Lee, H., Habas, R., and Abate-Shen, C. (2004). MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science, 304, 1675–1678.
- Muller, H. J. and Altenburg, E. (1930). The frequency of translocations produced by X-rays in Drosophila. Genetics, 15, 283–311.
- Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410, 120–124.
- Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.
- Schotta, G., Ebert, A., and Reuter, G. (2003). SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing. Genetica, 117, 149–158.
- Ferguson-Smith, A. C. and Surani, M. A. (2001). Imprinting and the epigenetic asymmetry between parental genomes. Science, 293, 1086–1089.
- Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., Strouboulis, J., and Wolffe, A. P. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19, 187–191.
- Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., Deplus, R., Fuks, F., Shinkai, Y., Cedar, H., and Bergman, Y. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Structural & Molecular Biology, 15, 1176–1183.
- Lehnertz, B., Ueda, Y., Derijck, A. A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., Chen, T., Li, E., Jenuwein, T., and Peters, A. H. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Current Biology, 13, 1192–1200.
- Heard, E. (2005). Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Current Opinions in Genetics and Development, 15, 482–489.
- Costanzi, C. and Pehrson, J. R. (1998). Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature, 393, 599–601.
- Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.
- Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., Bell, G. W., Otte, A. P., Vidal, M., Gifford, D. K., Young, R. A., and Jaenisch, R. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353.
- Schwartz, Y. B., Kahn, T. G., Nix, D. A., Li, X. Y., Bourgon, R., Biggin, M., and Pirrotta, V. (2006). Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genetics, 38, 700–705.
- Min, J., Zhang, Y., and Xu, R. M. (2003). Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes & Development, 17, 1823–1828.
- Levine, S. S., Weiss, A., Erdjument-Bromage, H., Shao, Z., Tempst, P., and Kingston, R. E. (2002). The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Molecular and Cellular Biology, 22, 6070–6078.
- Muller, J., Hart, C. M., Francis, N. J., Vargas, M. L., Sengupta, A., Wild, B., Miller, E. L., O'Connor, M. B., Kingston, R. E., and Simon, J. A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell, 111, 197–208.
- Muller, J. and Kassis, J. A. (2006). Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Current Opinions in Genetics and Development, 16, 476–484.
- Kahn, T. G., Schwartz, Y. B., Dellino, G. I., and Pirrotta, V. (2006). Polycomb complexes and the propagation of the methylation mark at the Drosophila ubx gene. Journal of Biological Chemistry, 281, 29064–29075.
- Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H., and Helin, K. (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes & Development, 20, 1123–1136.
- Caretti, G., Di, P. M., Micales, B., Lyons, G. E., and Sartorelli, V. (2004). The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes & Development, 18, 2627–2638.
- Endoh, M., Endo, T. A., Endoh, T., Fujimura, Y., Ohara, O., Toyoda, T., Otte, A. P., Okano, M., Brockdorff, N., Vidal, M., and Koseki, H. (2008). Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development, 135, 1513–1524.
- Ku, M., Koche, R. P., Rheinbay, E., Mendenhall, E. M., Endoh, M., Mikkelsen, T. S., Presser, A., Nusbaum, C., Xie, X., Chi, A. S., Adli, M., Kasif, S., Ptaszek, L. M., Cowan, C. A., Lander, E. S., Koseki, H., and Bernstein, B. E. (2008). Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genetics, 4, e1000242.
- Dellino, G. I., Schwartz, Y. B., Farkas, G., McCabe, D., Elgin, S. C., and Pirrotta, V. (2004). Polycomb silencing blocks transcription initiation. Molecular Cell, 13, 887–893.
- Pavri, R., Zhu, B., Li, G., Trojer, P., Mandal, S., Shilatifard, A., and Reinberg, D. (2006). Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell, 125, 703–717.
- Stock, J. K., Giadrossi, S., Casanova, M., Brookes, E., Vidal, M., Koseki, H., Brockdorff, N., Fisher, A. G., and Pombo, A. (2007). Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biology, 9, 1428–1435.
- Steward, M. M., Lee, J. S., O'Donovan, A., Wyatt, M., Bernstein, B. E., and Shilatifard, A. (2006). Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nature Structural & Molecular Biology, 13, 852–854.
- Guenther, M. G., Jenner, R. G., Chevalier, B., Nakamura, T., Croce, C. M., Canaani, E., and Young, R. A. (2005). Global and Hox-specific roles for the MLL1 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 102, 8603–8608.
- Poux, S., Horard, B., Sigrist, C. J., and Pirrotta, V. (2002). The Drosophila trithorax protein is a coactivator required to prevent re-establishment of polycomb silencing. Development, 129, 2483–2493.
- Klymenko, T. and Muller, J. (2004). The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Reproduction, 5, 373–377.
- Wysocka, J., Swigut, T., Xiao, H., Milne, T. A., Kwon, S. Y., Landry, J., Kauer, M., Tackett, A. J., Chait, B. T., Badenhorst, P., Wu, C., and Allis, C. D. (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature, 442, 86–90.
- De, S. F., Totaro, M. G., Prosperini, E., Notarbartolo, S., Testa, G., and Natoli, G. (2007). The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell, 130, 1083–1094.
- Lan, F., Bayliss, P. E., Rinn, J. L., Whetstine, J. R., Wang, J. K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., Roberts, T. M., Chang, H. Y., and Shi, Y. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature, 449, 689–694.
- Lee, M. G., Villa, R., Trojer, P., Norman, J., Yan, K. P., Reinberg, D., Di, C. L., and Shiekhattar, R. (2007). Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science, 318, 447–450.
- Agger, K., Cloos, P. A., Christensen, J., Pasini, D., Rose, S., Rappsilber, J., Issaeva, I., Canaani, E., Salcini, A. E., and Helin, K. (2007). UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature, 449, 731–734.
- Shen, X., Liu, Y., Hsu, Y. J., Fujiwara, Y., Kim, J., Mao, X., Yuan, G. C., and Orkin, S. H. (2008). EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Molecular Cell, 32, 491–502.
- Nicholson, J. M., Wood, C. M., Reynolds, C. D., Brown, A., Lambert, S. J., Chantalat, L., and Baldwin, J. P. (2004). Histone structures: targets for modifications by molecular assemblies. Annals of the New York Academy of Science, 1030, 644–655.
- Valls, E., Sanchez-Molina, S., and Martinez-Balbas, M. A. (2005). Role of histone modifications in marking and activating genes through mitosis. Journal of Biological Chemistry, 280, 42592–42600.
- Clayton, A. L. and Mahadevan, L. C. (2003). MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Letters, 546, 51–58.
- Mujtaba, S., Zeng, L., and Zhou, M. M. (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene, 26, 5521–5527.
- Sanchez, R. and Zhou, M. M. (2009). The role of human bromodomains in chromatin biology and gene transcription. Current Opinions in Drug Discovery & Developments, 12, 659–665.
- Hassan, A. H., Neely, K. E., and Workman, J. L. (2001). Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell, 104, 817–827.
- Li, S. and Shogren-Knaak, M. A. (2009). The Gcn5 bromo-domain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. Journal of Biological Chemistry, 284, 9411–9417.
- Chen, J., and Ghazawi, F. M., Li, Q. (2010). Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes. Epigenetics, 5, 509–515.
- Pampal, A. (2010). CHARGE: an association or a syndrome? International Journal of Pediatric Otorhinolaryngology, 74, 719–722.
- Cloos, P. A., Christensen, J., Agger, K., and Helin, K. (2008). Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes & Development, 22, 1115–1140.
- Reik, W., Santos, F., Mitsuya, K., Morgan, H., and Dean, W. (2003). Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philosophical Transactions of the Royal Society of London B, Biological Sciences, 358, 1403–1409.
- Morgan, H. D., Santos, F., Green, K., Dean, W., and Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14(Spec. No. 1) R47–R58.
- Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., KanekoIshino, T., Ogura, A., and Ishino, F. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129, 1807–1817.
- Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–1993.
- Hazzouri, M., Pivot-Pajot, C., Faure, A. K., Usson, Y., Pelletier, R., Sele, B., Khochbin, S., and Rousseaux, S. (2000). Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. European Journal of Cell Biology, 79, 950–960.
- Santos, F., Peters, A. H., Otte, A. P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Developmental Biology, 280, 225–236.
- Dahl, J. A., Reiner, A. H., Klungland, A., Wakayama, T., and Collas, P. (2010). Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS One, 5, e9150.
- Liu, L., Li, Y., and Tollefsbol, T. O. (2008). Gene–environment interactions and epigenetic basis of human diseases. Current Issues in Molecular Biology, 10, 25–36.
- Franklin, T. B. and Mansuy, I. M. (2010). Epigenetic inheritance in mammals: evidence for the impact of adverse environmental effects. Neurobiology of Disease, 39, 61–65.
- Nadeau, J. H. (2009). Transgenerational genetic effects on phenotypic variation and disease risk. Human Molecular Genetics, 18, R202–R210.
- Skinner, M. K., Manikkam, M., and Guerrero-Bosagna, C. (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends in Endocrinology and Metabolism, 21, 214–222.
- Guerrero-Bosagna, C. M. and Skinner, M. K. (2009). Epigenetic transgenerational effects of endocrine disruptors on male reproduction. Seminars in Reproductive Medicine, 27, 403–408.
- Palmer, J. R., Wise, L. A., Hatch, E. E., Troisi, R., Titus-Ernstoff, L., Strohsnitter, W., Kaufman, R., Herbst, A. L., Noller, K. L., Hyer, M., and Hoover, R. N. (2006). Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer and Epidemiology Biomarkers and Prevention, 15, 1509–1514.
- Titus-Ernstoff, L., Troisi, R., Hatch, E. E., Hyer, M., Wise, L. A., Palmer, J. R., Kaufman, R., Adam, E., Noller, K., Herbst, A. L., Strohsnitter, W., Cole, B. F., Hartge, P., and Hoover, R. N. (2008). Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation. Epidemiology, 19, 251–257.
- Bromer, J. G., Wu, J., Zhou, Y., and Taylor, H. S. (2009). Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology, 150, 3376–3382.
- Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308, 1466–1469.
- Thackaberry, E. A., Nunez, B. A., Ivnitski-Steele, I. D., Friggins, M., and Walker, M. K. (2005). Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on murine heart development: alteration in fetal and postnatal cardiac growth, and postnatal cardiac chronotropy. Toxicological Sciences, 88, 242–249.
- Aragon, A. C., Kopf, P. G., Campen, M. J., Huwe, J. K., and Walker, M. K. (2008). In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology. Toxicological Sciences, 101, 321–330.
- Susser, M. and Stein, Z. (1994). Timing in prenatal nutrition: a reprise of the Dutch Famine Study. Nutrition Reviews, 52, 84–94.
- Pembrey, M. E., Bygren, L. O., Kaati, G., Edvinsson, S., Northstone, K., Sjostrom, M., and Golding, J. (2006). Sexspecific, male-line transgenerational responses in humans. European Journal of Human Genetics, 14, 159–166.
- Dunn, G. A. and Bale, T. L. (2009). Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology, 150, 4999–5009.
- Zugerman, C. (1990). Chloracne. Clinical manifestations and etiology. Dermatological Clinic, 8, 209–213.
- Burbach, K. M., Poland, A., and Bradfield, C. A. (1992). Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 89, 8185–8189.
- Ema, M., Sogawa, K., Watanabe, N., Chujoh, Y., Matsushita, N., Gotoh, O., Funae, Y., and Fujii-Kuriyama, Y. (1992). cDNA cloning and structure of mouse putative Ah receptor. Biochemical and Biophysical Research Communications, 184, 246–253.
- Perdew, G. H. (1988). Association of the Ah receptor with the 90-kDa heat shock protein. Journal of Biological Chemistry, 263, 13802–13805.
- Carver, L. A. and Bradfield, C. A. (1997). Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. Journal of Biological Chemistry, 272, 11452–11456.
- Kazlauskas, A., Poellinger, L., and Pongratz, I. (1999). Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. Journal of Biological Chemistry, 274, 13519–13524.
- Lees, M. J. and Whitelaw, M. L. (1999). Multiple roles of ligand in transforming the dioxin receptor to an active basic helix–loop–helix/PAS transcription factor complex with the nuclear protein Arnt. Molecular and Cellular Biology, 19, 5811–5822.
- Fujisawa-Sehara, A., Sogawa, K., Yamane, M., and FujiiKuriyama, Y. (1987). Characterization of xenobiotic responsive elements upstream from the drug-metabolizing cyto-chrome P-450c gene: a similarity to glucocorticoid regulatory elements. Nucleic Acids Research, 15, 4179–4191.
- Hankinson, O. (2005). Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Archives in Biochemistry and Biophysics, 433, 379–386.
- Nebert, D. W., Dalton, T. P., Okey, A. B., and Gonzalez, F. J. (2004). Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. Journal of Biological Chemistry, 279, 23847–23850.
- Fernandez-Salguero, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M., and Gonzalez, F. J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicology and Applied Pharmacology, 140, 173–179.
- Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura, J., Fujii-Kuriyama, Y., and Ishikawa, T. (2000). Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 97, 779–782.
- Fernandez-Salguero, P., Pineau, T., Hilbert, D. M., McPhail, T., Lee, S. S., Kimura, S., Nebert, D. W., Rudikoff, S., Ward, J. M., and Gonzalez, F. J. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science, 268, 722–726.
- Fernandez-Salguero, P. M., Ward, J. M., Sundberg, J. P., and Gonzalez, F. J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Veterinary Pathology, 34, 605–614.
- Lahvis, G. P., Lindell, S. L., Thomas, R. S., McCuskey, R. S., Murphy, C., Glover, E., Bentz, M., Southard, J., and Bradfield, C. A. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 10442–10447.
- Emmons, R. B., Duncan, D., Estes, P. A., Kiefel, P., Mosher, J. T., Sonnenfeld, M., Ward, M. P., Duncan, I., and Crews, S. T. (1999). The spineless-aristapedia and tango bHLH–PAS proteins interact to control antennal and tarsal development in Drosophila. Development, 126, 3937–3945.
- Huang, X., Powell-Coffman, J. A., and Jin, Y. (2004). The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development, 131, 819–828.
- Gohlke, J. M., Stockton, P. S., Sieber, S., Foley, J., and Portier, C. J. (2009). AhR-mediated gene expression in the developing mouse telencephalon. Reproductive Toxicology, 28, 321–328.
- Tijet, N., Boutros, P. C., Moffat, I. D., Okey, A. B., Tuomisto, J., and Pohjanvirta, R. (2006). Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Molecular Pharmacology, 69, 140–153.
- Brunnberg, S., Andersson, P., Lindstam, M., Paulson, I., Poellinger, L., and Hanberg, A. (2006). The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure—effects in vital organs. Toxicology, 224, 191–201.
- Nohara, K., Suzuki, T., Ao, K., Murai, H., Miyamoto, Y., Inouye, K., Pan, X., Motohashi, H., Fujii-Kuriyama, Y., Yamamoto, M., and Tohyama, C. (2009). Constitutively active aryl hydrocarbon receptor expressed in T cells increases immunization-induced IFN-γ production in mice but does not suppress Th2-cytokine production or antibody production. International Immunology, 21, 769–777.
- Tauchi, M., Hida, A., Negishi, T., Katsuoka, F., Noda, S., Mimura, J., Hosoya, T., Yanaka, A., Aburatani, H., FujiiKuriyama, Y., Motohashi, H., and Yamamoto, M. (2005). Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Molecular and Cellular Biology, 25, 9360–9368.
- Andersson, P., McGuire, J., Rubio, C., Gradin, K., Whitelaw, M. L., Pettersson, S., Hanberg, A., and Poellinger, L. (2002). A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proceedings of the National Academy of Sciences of the United States of America, 99, 9990–9995.
- Moennikes, O., Loeppen, S., Buchmann, A., Andersson, P., Ittrich, C., Poellinger, L., and Schwarz, M. (2004). A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Research, 64, 4707–4710.
- Wejheden, C., Brunnberg, S., Larsson, S., Lind, P. M., Anders-son, G., and Hanberg, A. (2010). Transgenic mice with a constitutively active aryl hydrocarbon receptor display a gender-specific bone phenotype. Toxicological Sciences, 114, 48–58.
- Barouki, R., Coumoul, X., and Fernandez-Salguero, P. M. (2007). The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Letters, 581, 3608–3615.
- Gasiewicz, T. A., Henry, E. C., and Collins, L. L. (2008). Expression and activity of aryl hydrocarbon receptors in development and cancer. Critical Reviews in Eukaryotic Gene Expression, 18, 279–321.
- Harstad, E. B., Guite, C. A., Thomae, T. L., and Bradfield, C. A. (2006). Liver deformation in Ahr-null mice: evidence for aberrant hepatic perfusion in early development. Molecular Pharmacology, 69, 1534–1541.
- Walisser, J. A., Bunger, M. K., Glover, E., and Bradfield, C. A. (2004). Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 16677–16682.
- McMillan, B. J. and Bradfield, C. A. (2007). The aryl hydro-carbon receptor is activated by modified low-density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 104, 1412–1417.
- Andreola, F., Hayhurst, G. P., Luo, G., Ferguson, S. S., Gonzalez, F. J., Goldstein, J. A., and De Luca, L. M. (2004). Mouse liver CYP2C39 is a novel retinoic acid 4-hydroxylase. Its downregulation offers a molecular basis for liver retinoid accumulation and fibrosis in aryl hydrocarbon receptor-null mice. Journal of Biological Chemistry, 279, 3434–3438.
- Mulero-Navarro, S., Carvajal-Gonzalez, J. M., Herranz, M., Ballestar, E., Fraga, M. F., Ropero, S., Esteller, M., and Fernandez-Salguero, P. M. (2006). The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis, 27, 1099–1104.
- Peng, L., Mayhew, C. N., Schnekenburger, M., Knudsen, E. S., and Puga, A. (2008). Repression of Ah receptor and induction of transforming growth factor-beta genes in DEN-induced mouse liver tumors. Toxicology, 246, 242–247.
- Fritz, W. A., Lin, T. M., Safe, S., Moore, R. W., and Peterson, R. E. (2009). The selective aryl hydrocarbon receptor modulator 6-methyl-1,3,8-trichlorodibenzofuran inhibits prostate tumor metastasis in TRAMP mice. Biochemical Pharmacology, 77, 1151–1160.
- Fan, Y., Boivin, G. P., Knudsen, E. S., Nebert, D. W., Xia, Y., and Puga, A. (2010). The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Research, 70, 212–220.
- Vasquez, A., Atallah-Yunes, N., Smith, F. C., You, X., Chase, S. E., Silverstone, A. E., and Vikstrom, K. L. (2003). A role for the aryl hydrocarbon receptor in cardiac physiology and function as demonstrated by AhR knockout mice. Cardiovascular Toxicology, 3, 153–163.
- Lund, A. K., Goens, M. B., Kanagy, N. L., and Walker, M. K. (2003). Cardiac hypertrophy in aryl hydrocarbon receptor null mice is correlated with elevated angiotensin II, endothelin-1, and mean arterial blood pressure. Toxicology and Applied Pharmacology, 193, 177–187.
- Thackaberry, E. A., Bedrick, E. J., Goens, M. B., Danielson, L., Lund, A. K., Gabaldon, D., Smith, S. M., and Walker, M. K. (2003). Insulin regulation in AhR-null mice: embryonic cardiac enlargement, neonatal macrosomia, and altered insulin regulation and response in pregnant and aging AhR-null females. Toxicological Sciences, 76, 407–417.
- Baba, T., Mimura, J., Nakamura, N., Harada, N., Yamamoto, M., Morohashi, K., and Fujii-Kuriyama, Y. (2005). Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female reproduction. Molecular and Cellular Biology, 25, 10040–10051.
- Barnett, K. R., Tomic, D., Gupta, R. K., Miller, K. P., Mea-chum, S., Paulose, T., and Flaws, J. A. (2007). The aryl hydrocarbon receptor affects mouse ovarian follicle growth via mechanisms involving estradiol regulation and responsiveness. Biology of Reproduction, 76, 1062–1070.
- Abbott, B. D., Schmid, J. E., Pitt, J. A., Buckalew, A. R., Wood, C. R., Held, G. A., and Diliberto, J. J. (1999). Adverse reproductive outcomes in the transgenic Ah receptor-deficient mouse. Toxicology and Applied Pharmacology, 155, 62–70.
- Aarnio, V., Storvik, M., Lehtonen, M., Asikainen, S., Reisner, K., Callaway, J., Rudgalvyte, M., Lakso, M., and Wong, G. (2010). Fatty acid composition and gene expression profiles are altered in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans. Comparative Biochemistry and Physiology, Part C, 151, 318–324.
- Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C., and Bradfield, C. A. (1996). Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proceedings of the National Academy of Sciences of the United States of America, 93, 6731–6736.
- Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y., and Kishimoto, T. (2008). Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 9721–9726.
- Carvajal-Gonzalez, J. M., Roman, A. C., Cerezo-Guisado, M. I., Rico-Leo, E. M., Martin-Partido, G., and FernandezSalguero, P. M. (2009). Loss of dioxin-receptor expression accelerates wound healing in vivo by a mechanism involving TGFβ. Journal of Cell Science, 122, 1823–1833.
- Nohara, K., Pan, X., Tsukumo, S., Hida, A., Ito, T., Nagai, H., Inouye, K., Motohashi, H., Yamamoto, M., Fujii-Kuriyama, Y., and Tohyama, C. (2005). Constitutively active aryl hydro-carbon receptor expressed specifically in T-lineage cells causes thymus involution and suppresses the immunization-induced increase in splenocytes. Journal of Immunology, 174, 2770–2777.
- Diry, M., Tomkiewicz, C., Koehle, C., Coumoul, X., Bock, K. W., Barouki, R., and Transy, C. (2006). Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene, 25, 5570–5574.
- Bertazzi, A., Pesatori, A. C., Consonni, D., Tironi, A., Landi, M. T., and Zocchetti, C. (1993). Cancer incidence in a population accidentally exposed to 2,3,7,8-tetrachlorodibenzo-para-dioxin. Epidemiology, 4, 398–406.
- Steenland, K., Piacitelli, L., Deddens, J., Fingerhut, M., and Chang, L. I. (1999). Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of the National Cancer Institute, 91, 779–786.
- Schecter, A., Birnbaum, L., Ryan, J. J., and Constable, J. D. (2006). Dioxins: an overview. Environmental Research, 101, 419–428.
- Panteleyev, A. A. and Bickers, D. R. (2006). Dioxin-induced chloracne—reconstructing the cellular and molecular mechanisms of a classic environmental disease. Experimental Dermatology, 15, 705–730.
- Loertscher, J. A., Lin, T. M., Peterson, R. E., and Allen-Hoffmann, B. L. (2002). In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxincausesacceleratedterminaldifferentiationin fetal mouse skin. Toxicological Sciences, 68, 465–472.
- Poland, A. and Knutson, J. C. (1982). 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annual Review of Pharmacology and Toxicology, 22, 517–554.
- Birnbaum, L. S. (1995). Developmental effects of dioxins. Environmental Health Perspectives, 103(Suppl. 7), 89–94.
- Kerkvliet, N. I. (1995). Immunological effects of chlorinated dibenzo-p-dioxins. Environmental Health Perspectives, 103 (Suppl. 9), 47–53.
- Ito, T., Inouye, K., Fujimaki, H., Tohyama, C., and Nohara, K. (2002). Mechanism of TCDD-induced suppression of antibody production: effect on T cell-derived cytokine production in the primary immune reaction of mice. Toxicological Sciences, 70, 46–54.
- Laiosa, M. D., Wyman, A., Murante, F. G., Fiore, N. C., Staples, J. E., Gasiewicz, T. A., and Silverstone, A. E. (2003). Cell proliferation arrest within intrathymic lymphocyte progenitor cells causes thymic atrophy mediated by the aryl hydrocarbon receptor. Journal of Immunology, 171, 4582–4591.
- Funatake, C. J., Dearstyne, E. A., Steppan, L. B., Shepherd, D. M., Spanjaard, E. S., Marshak-Rothstein, A., and Kerkvliet, N. I. (2004). Early consequences of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on the activation and survival of antigen-specific T cells. Toxicological Sciences, 82, 129–142.
- Marshall, N. B., Vorachek, W. R., Steppan, L. B., Mourich, D. V., and Kerkvliet, N. I. (2008). Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Immunology, 181, 2382–2391.
- Veldhoen, M., Hirota, K., Westendorf, A. M., Buer, J., Dumoutier, L., Renauld, J. C., and Stockinger, B. (2008). The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature, 453, 106–109.
- Dalton, T. P., Kerzee, J. K., Wang, B., Miller, M., Dieter, M. Z., Lorenz, J. N., Shertzer, H. G., Nerbert, D. W., and Puga, A. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovascular Toxicology, 1, 285–298.
- Bock, K. W. and Kohle, C. (2009). The mammalian aryl hydrocarbon (Ah) receptor: from mediator of dioxin toxicity toward physiological functions in skin and liver. Biological Chemistry, 390, 1225–1235.
- Kawajiri, K. and Fujii-Kuriyama, Y. (2007). Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Archives of Biochemistry and Biophysics, 464, 207–212.
- Hillegass, J. M., Murphy, K. A., Villano, C. M., and White, L. A. (2006). The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease. Biological Chemistry, 387, 1159–1173.
- Massague, J. and Gomis, R. R. (2006). The logic of TGFβ signaling. FEBS Letters, 580, 2811–2820.
- Neptune, E. R., Frischmeyer, P. A., Arking, D. E., Myers, L., Bunton, T. E., Gayraud, B., Ramirez, F., Sakai, L. Y., and Dietz, H. C. (2003). Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nature Genetics, 33, 407–411.
- ten Dijke, P. and Hill, C. S. (2004). New insights into TGF-beta-Smad signalling. Trends in Biochemical Sciences, 29, 265–273.
- Siegel, P. M. and Massague, J. (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nature Reviews in Cancer, 3, 807–821.
- Annes, J. P., Munger, J. S., and Rifkin, D. B. (2003). Making sense of latent TGFβ activation. Journal of Cell Science, 116, 217–224.
- Saharinen, J., Hyytiainen, M., Taipale, J., and Keski-Oja, J. (1999). Latent transforming growth factor-beta binding proteins (LTBPs)—structural extracellular matrix proteins for targeting TGF-beta action. Cytokine and Growth Factor Reviews, 10, 99–117.
- Todorovic, V., Frendewey, D., Gutstein, D. E., Chen, Y., Freyer, L., Finnegan, E., Liu, F., Murphy, A., Valenzuela, D., Yancopoulos, G., and Rifkin, D. B. (2007). Long form of latent TGF-beta binding protein 1 (Ltbp1L) is essential for cardiac outflow tract septation and remodeling. Development, 134, 3723–3732.
- Dabovic, B., Chen, Y., Colarossi, C., Zambuto, L., Obata, H., and Rifkin, D. B. (2002). Bone defects in latent TGF-beta binding protein (Ltbp)-3 null mice: a role for Ltbp in TGF-beta presentation. Journal of Endocrinology, 175, 129–141.
- Sterner-Kock, A., Thorey, I. S., Koli, K., Wempe, F., Otte, J., Bangsow, T., Kuhlmeier, K., Kirchner, T., Jin, S., Keski-Oja, J., and von Melchner, H. (2002). Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes & Development, 16, 2264–2273.
- Elizondo, G., Fernandez-Salguero, P., Sheikh, M. S., Kim, G. Y., Fornace, A. J., Lee, K. S., and Gonzalez, F. J. (2000). Altered cell cycle control at the G(2)/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Molecular Pharmacology, 57, 1056–1063.
- Chang, X., Fan, Y., Karyala, S., Schwemberger, S., Tomlinson, C. R., Sartor, M. A., and Puga, A. (2007). Ligand-independent regulation of transforming growth factor β1 expression and cell cycle progression by the aryl hydrocarbon receptor. Molecular and Cellular Biology, 27, 6127–6139.
- Santiago-Josefat, B., Mulero-Navarro, S., Dallas, S. L., and Fernandez-Salguero, P. M. (2004). Overexpression of latent transforming growth factor-beta binding protein 1 (LTBP-1) in dioxin receptor-null mouse embryo fibroblasts. Journal of Cell Science, 117, 849–859.
- Gomez-Duran, A., Ballestar, E., Carvajal-Gonzalez, J. M., Marlowe, J. L., Puga, A., Esteller, M., and Fernandez-Salguero, P. M. (2008). Recruitment of CREB1 and histone deacetylase 2 (HDAC2) to the mouse Ltbp-1 promoter regulates its constitutive expression in a dioxin receptor-dependent manner. Journal of Molecular Biology, 380, 1–16.
- Guo, J., Sartor, M., Karyala, S., Medvedovic, M., Kann, S., Puga, A., Ryan, P., and Tomlinson, C. R. (2004). Expression of genes in the TGF-beta signaling pathway is significantly deregulated in smooth muscle cells from aorta of aryl hydro-carbon receptor knockout mice. Toxicology and Applied Pharmacology, 194, 79–89.
- Brouchet, L., Krust, A., Dupont, S., Chambon, P., Bayard, F., and Arnal, J. F. (2001). Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation, 103, 423–428.
- Haslam, S.Z. and Woodward, T.L. (2001). Reciprocalregulation of extracellular matrixproteins and ovarian steroidactivityinthe mammary gland. Breast Cancer Research, 3, 365–372.
- Cox, D. A. and Helvering, L. M. (2006). Extracellular matrix integrity: a possible mechanism for differential clinical effects among selective estrogen receptor modulators and estrogens? Molecular and Cellular Endocrinology, 247, 53–59.
- Safe, S., Wormke, M., and Samudio, I. (2000). Mechanisms of inhibitory aryl hydrocarbon receptor-estrogen receptor crosstalk in human breast cancer cells. Journal of Mammary Gland Biology and Neoplasia, 5, 295–306.
- Beischlag, T. V. and Perdew, G. H. (2005). ERα–AHR–ARNT protein–protein interactions mediate estradiol-dependent transrepression of dioxin-inducible gene transcription. Journal of Biological Chemistry, 280, 21607–21611.
- Hockings, J. K., Thorne, P. A., Kemp, M. Q., Morgan, S. S., Selmin, O., and Romagnolo, D. F. (2006). The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Research, 66, 2224–2232.
- Ohtake, F., Takeyama, K., Matsumoto, T., Kitagawa, H., Yamamoto, Y., Nohara, K., Tohyama, C., Krust, A., Mimura, J., Chambon, P., Yanagisawa, J., Fujii-Kuriyama, Y., and Kato, S. (2003). Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature, 423, 545–550.
- Bocchinfuso, W. P. and Korach, K. S. (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. Journal of Mammary Gland Biology and Neoplasia, 2, 323–334.
- Hushka, L. J., Williams, J. S., and Greenlee, W. F. (1998). Characterization of 2,3,7,8-tetrachlorodibenzofuran-dependent suppression and AH receptor pathway gene expression in the developing mouse mammary gland. Toxicology and Applied Pharmacology, 152, 200–210.
- Vezina, C. M., Lin, T. M., and Peterson, R. E. (2009). AHR signaling in prostate growth, morphogenesis, and disease. Biochemical Pharmacology, 77, 566–576.
- Mathew, L. K., Sengupta, S. S., Ladu, J., Andreasen, E. A., and Tanguay, R. L. (2008). Crosstalk between AHR and Wnt signaling through R-Spondin1 impairs tissue regeneration in zebrafish. FASEB Journal, 22, 3087–3096.
- Vuori, K. A., Nordlund, E., Kallio, J., Salakoski, T., and Nikinmaa, M. (2008). Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry. Aquatic Toxicology, 87, 19–27.
- Tian, Y. (2009). Ah receptor and NF-κB interplay on the stage of epigenome. Biochemical Pharmacology, 77, 670–680.
- Holladay, S. D., Sharova, L. V., Punareewattana, K., Hrubec, T. C., Gogal, R. M., Jr., Prater, M. R., and Sharov, A. A. (2002). Maternal immune stimulation in mice decreases fetal malformations caused by teratogens. International Immunopharmacology, 2, 325–332.
- Abbott, B. D. (1995). Review of the interaction between TCDD and glucocorticoids in embryonic palate. Toxicology, 105, 365–373.
- Tian, Y., Ke, S., Denison, M. S., Rabson, A. B., and Gallo, M. A. (1999). Ah receptor and NF-κB interactions, a potential mechanism for dioxin toxicity. Journal of Biological Chemistry, 274, 510–515.
- Kim, D. W., Gazourian, L., Quadri, S. A., Romieu-Mourez, R., Sherr, D. H., and Sonenshein, G. E. (2000). The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Onco-gene, 19, 5498–5506.
- Sheppard, K. A., Rose, D. W., Haque, Z. K., Kurokawa, R., McInerney, E., Westin, S., Thanos, D., Rosenfeld, M. G., Glass, C. K., and Collins, T. (1999). Transcriptional activation by NF-κB requires multiple coactivators. Molecular and Cellular Biology, 19, 6367–6378.
- Ke, S., Rabson, A. B., Germino, J. F., Gallo, M. A., and Tian, Y. (2001). Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-alpha and lipopolysaccharide. Journal of Biological Chemistry, 276, 39638–39644.
- Tian, Y., Ke, S., Chen, M., and Sheng, T. (2003). Interactions between the aryl hydrocarbon receptor and P-TEFb. Sequential recruitment of transcription factors and differential phosphorylation of C-terminal domain of RNA polymerase II at cyp1a1 promoter. Journal of Biological Chemistry, 278, 44041–44048.
- Hahn, M. E. (2002). Aryl hydrocarbon receptors: diversity and evolution. Chemico-Biological Interactions, 141, 131–160.
- Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S., and Hankinson, O. (1995). Identification of functional domains of the aryl hydrocarbon receptor. Journal of Biological Chemistry, 270, 29270–29278.
- Kumar, M. B., Ramadoss, P., Reen, R. K., Vanden Heuvel, J. P., and Perdew, G. H. (2001). The Q-rich subdomain of the human Ah receptor transactivation domain is required for dioxin-mediated transcriptional activity. Journal of Biological Chemistry, 276, 42302–42310.
- Watt, K., Jess, T. J., Kelly, S. M., Price, N. C., and McEwan, I. J. (2005). Induced alpha-helix structure in the aryl hydrocarbon receptor transactivation domain modulates protein–protein interactions. Biochemistry, 44, 734–743.
- Chapman-Smith, A. and Whitelaw, M. L. (2006). Novel DNA binding by a basic helix–loop–helix protein. The role of the dioxin receptor PAS domain. Journal of Biological Chemistry, 281, 12535–12545.
- Coumailleau, P., Poellinger, L., Gustafsson, J. A., and White-law, M. L. (1995). Definition of a minimal domain of the dioxin receptor that is associated with Hsp90 and maintains wild type ligand binding affinity and specificity. Journal of Biological Chemistry, 270, 25291–25300.
- Kudo, K., Takeuchi, T., Murakami, Y., Ebina, M., and Kikuchi, H. (2009). Characterization of the region of the aryl hydro-carbon receptor required for ligand dependency of transactivation using chimeric receptor between Drosophila and Mus musculus. Biochimica et Biophysica Acta, 1789, 477–486.
- Poland, A., Palen, D., and Glover, E. (1994). Analysis of the four alleles of the murine aryl hydrocarbon receptor. Molecular Pharmacology, 46, 915–921.
- Chang, C., Smith, D. R., Prasad, V. S., Sidman, C. L., Nebert, D. W., and Puga, A. (1993). Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics, 3, 312–321.
- Fitzgerald, C. T., Nebert, D. W., and Puga, A. (1998). Regulation of mouse Ah receptor (Ahr) gene basal expression by members of the Sp family of transcription factors. DNA and Cellular Biology, 17, 811–822.
- Eguchi, H., Hayashi, S., Watanabe, J., Gotoh, O., and Kawajiri, K. (1994). Molecular cloning of the human AH receptor gene promoter. Biochemical and Biophysical Research Communications, 203, 615–622.
- Schmidt, J. V., Carver, L. A., and Bradfield, C. A. (1993). Molecular characterization of the murine Ahr gene. Organization, promoter analysis, and chromosomal assignment. Journal of Biological Chemistry, 268, 22203–22209.
- Harper, P. A., Riddick, D. S., and Okey, A. B. (2006). Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochemical Pharmacology, 72, 267–279.
- Peters, J. M. and Wiley, L. M. (1995). Evidence that murine preimplantation embryos express aryl hydrocarbon receptor. Toxicology and Applied Pharmacology, 134, 214–221.
- Wu, Q., Ohsako, S., Baba, T., Miyamoto, K., and Tohyama, C. (2002). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on preimplantation mouse embryos. Toxicology, 174, 119–129.
- Jain, S., Maltepe, E., Lu, M. M., Simon, C., and Bradfield, C. A. (1998). Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mechanisms of Development, 73, 117–123.
- Abbott, B. D., Birnbaum, L. S., and Perdew, G. H. (1995). Developmental expression of two members of a new class of transcription factors: I. Expression of aryl hydrocarbon receptor in the C57BL/6N mouse embryo. Developmental Dynamics, 204, 133–143.
- Wu, Q., Ohsako, S., Ishimura, R., Suzuki, J. S., and Tohyama, C. (2004). Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biology of Reproduction, 70, 1790–1797.
- Campbell, S. J., Henderson, C. J., Anthony, D. C., Davidson, D., Clark, A. J., and Wolf, C. R. (2005). The murine Cyp1a1 gene is expressed in a restricted spatial and temporal pattern during embryonic development. Journal of Biological Chemistry, 280, 5828–5835.
- Garrison, P. M. and Denison, M. S. (2000). Analysis of the murine AhR gene promoter. Journal of Biochemical and Molecular Toxicology, 14, 1–10.
- Cui, Y. J., Yeager, R. L., Zhong, X. B., and Klaassen, C. D. (2009). Ontogenic expression of hepatic Ahr mRNA is associated with histone H3K4 di-methylation during mouse liver development. Toxicological Letters, 189, 184–190.
- Shen, E. S. and Whitlock, J. P., Jr., (1989). The potential role of DNA methylation in the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Biological Chemistry, 264, 17754–17758.
- Takahashi, Y., Suzuki, C., and Kamataki, T. (1998). Silencing of CYP1A1 expression in rabbits by DNA methylation. Biochemical and Biophysical Research Communications, 247, 383–386.
- Tokizane, T., Shiina, H., Igawa, M., Enokida, H., Urakami, S., Kawakami, T., Ogishima, T., Okino, S. T., Li, L. C., Tanaka, Y., Nonomura, N., Okuyama, A., and Dahiya, R. (2005). Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clinics in Cancer Research, 11, 5793–5801.
- Habano, W., Gamo, T., Sugai, T., Otsuka, K., Wakabayashi, G., and Ozawa, S. (2009). CYP1B1, but not CYP1A1, is downregulated by promoter methylation in colorectal cancers. International Journal of Oncology, 34, 1085–1091.
- Taylor, R. T., Wang, F., Hsu, E. L., and Hankinson, O. (2009). Roles of coactivator proteins in dioxin induction of CYP1A1 and CYP1B1 in human breast cancer cells. Toxicological Sciences, 107, 1–8.
- Beedanagari, S. R., Taylor, R. T., Bui, P., Wang, F., Nickerson, D. W., and Hankinson, O. (2010). Role of epigenetic mechanisms in differential regulation of the dioxin-inducible human Cyp1a1 and Cyp1b1 genes. Molecular Pharmacology, 78, 608–616.
- Beedanagari, S. R., Taylor, R. T., and Hankinson, O. (2010). Differential regulation of the dioxin-induced Cyp1a1 and Cyp1b1 genes in mouse hepatoma and fibroblast cell lines. Toxicological Letters, 194, 26–33.
- Suzuki, T. and Nohara, K. (2007). Regulatory factors involved in species-specific modulation of arylhydrocarbon receptor (AhR)-dependent gene expression in humans and mice. Journal of Biochemistry, 142, 443–452.
- Nguyen, T. A., Hoivik, D., Lee, J. E., and Safe, S. (1999). Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Archives of Biochemistry and Biophysics, 367, 250–257.
- Beischlag, T. V., Wang, S., Rose, D. W., Torchia, J., ReiszPorszasz, S., Muhammad, K., Nelson, W. E., Probst, M. R., Rosenfeld, M. G., and Hankinson, O. (2002). Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Molecular and Cellular Biology, 22, 4319–4333.
- Wang, S. and Hankinson, O. (2002). Functional involvement of the Brahma/SWI2-related gene 1 protein in cytochrome P4501A1 transcription mediated by the aryl hydrocarbon receptor complex. Journal of Biological Chemistry, 277, 11821–11827.
- Wang, S., Ge, K., Roeder, R. G., and Hankinson, O. (2004). Role of mediator in transcriptional activation by the aryl hydrocarbon receptor. Journal of Biological Chemistry, 279, 13593–13600.
- Hestermann, E. V. and Brown, M. (2003). Agonist and chemopreventative ligands induce differential transcriptional cofactor recruitment by aryl hydrocarbon receptor. Molecular and Cellular Biology, 23, 7920–7925.
- Schnekenburger, M., Peng, L., and Puga, A. (2007). HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated transactivation. Biochi-mica et Biophysica Acta, 1769, 569–578.
- Wei, Y. D., Tepperman, K., Huang, M. Y., Sartor, M. A., and Puga, A. (2004). Chromium inhibits transcription from poly-cyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. Journal of Biological Chemistry, 279, 4110–4119.
- Schnekenburger, M., Talaska, G., and Puga, A. (2007). Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Molecular and Cellular Biology, 27, 7089–7101.
- Ray, S. S. and Swanson, H. I. (2004). Dioxin-induced immortalization of normal human keratinocytes and silencing of p53 and p16INK4a. Journal of Biological Chemistry, 279, 27187–27193.
- Desaulniers, D., Xiao, G. H., Leingartner, K., Chu, I., Musicki, B., and Tsang, B. K. (2005). Comparisons of brain, uterus, and liver mRNA expression for cytochrome p450s, DNA methyltransferase-1, and catechol-o-methyltransferase in prepubertal female Sprague-Dawley rats exposed to a mixture of aryl hydrocarbon receptor agonists. Toxicological Sciences, 86, 175–184.
- Maier, M. S., Legare, M. E., and Hanneman, W. H. (2007). The aryl hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl induces distinct patterns of gene expression between hepatoma and glioma cells: chromatin remodeling as a mechanism for selective effects. Neurotoxicology, 28, 594–612.
- Oikawa, K., Yoshida, K., Takanashi, M., Tanabe, H., Kiyuna, T., Ogura, M., Saito, A., Umezawa, A., and Kuroda, M. (2008). Dioxin interferes in chromosomal positioning through the aryl hydrocarbon receptor. Biochemical and Biophysical Research Communications, 374, 361–364.
- Sartor, M. A., Schnekenburger, M., Marlowe, J. L., Reichard, J. F., Wang, Y., Fan, Y., Ma, C., Karyala, S., Halbleib, D., Liu, X., Medvedovic, M., and Puga, A. (2009). Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. Environmental Health Perspectives, 117, 1139–1146.
- Pansoy, A., Ahmed, S., Valen, E., Sandelin, A., and Matthews, J. (2010). 3-Methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters. Toxicological Sciences, 117, 90–100.