Chapter 4
Compound Activities in Times of Systems Biology
David E. Patterson,
David E. Patterson
Vistamont Consultancy, Berkeley, California, USA
Search for more papers by this authorDavid E. Patterson,
David E. Patterson
Vistamont Consultancy, Berkeley, California, USA
Search for more papers by this authorBook Editor(s):Rajarshi Guha,
Andreas Bender,
Rajarshi Guha
NIH Chemical Genomics Center, Rockville, Maryland, USA
Search for more papers by this authorAndreas Bender
Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
Search for more papers by this authorFirst published: 14 November 2011
Summary
This chapter contains sections titled:
-
Introduction
-
Current Emergence of Designed Multiple Ligands
-
Compound Expression Spectra as Descriptors
-
QSAR Applied to Systems Biology Expression Spectra
-
Future Directions
-
References
REFERENCES
- Hansch, C. A quantitative approach to biochemical structure–activity relationships. Acc. Chem. Res. 1969, 2, 232–239.
- Hansch, C.; Hoekman, D.; Leo, A.; Weininger, D.; Selassie, C. D. Chembioinformatics: comparative QSAR at the interface between chemistry and biology. Chem. Rev. 2002, 102, 783–812.
- Debnath, A. K. Quantitative structure–activity relationship (QSAR) paradigm: Hansch era to new millennium. Mini Rev. Med. Chem. 2001, 1, 187–195.
-
Selassie, C. D.; Mekapati, S. B.; Verma, R. P. QSAR: then and now. Curr. Top. Med. Chem. 2002, 12, 1357–1379.
10.2174/1568026023392823 Google Scholar
- Franz, S. Drug discovery: playing dirty. Nature 2005, 437, 942–943.
- Handl, H. L.; Vagner, J.; Han, H.; Mash, E.; Hruby, V. J.; Gillies, R. J. Hitting multiple targets with multimeric ligands. Expert Opin. Ther. Targets 2004, 8, 565–586.
- Keiser, M. J.; Roth, B. L.; Armbruster, B. N.; Ernsberger, P.; Irwin, J. J.; Shoichet, B. K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206.
- Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; Weinberger, L. E. Neighborhood behavior: a useful concept for validation of molecular diversity descriptors. J. Med. Chem. 1996, 39, 3049–3059.
- Morphy, R.; Rankovic, Z. Designed multiple ligands, an emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523–6543.
- Cianchetta, G.; Li, Y.; Kang, J.; Rampe, D.; Fravolini, A., Cruciani, G.; Vaz, R. J. Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers. J. Med. Chem. 2002, 45, 3844–3853.
- Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 2006, 5, 993–996.
- Hopkins, A. L.; Mason, J. S.; Overington, J. P. Can we rationally design promiscuous drugs ? Curr. Opin. Struct. Biol. 2006, 16, 127–136.
- Bender, A.; Young, D. W.; Jenkins, J. L.; Serrano, M.; Mikhailov, D.; Clemons, P. A.; Davies, J. W. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. Comb. Chem. High Throughput Screen. 2007, 8, 719–731.
- Yang, K.; Bai, H.; Quyang, Q.; Lai, L.; Tang, C. Finding multiple target optimal intervention in disease-related molecular network. Mol. Syst. Biol. 2008, 4, 228.
- Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690.
- Frank, I.; Friedman, J. A statistical view of some chemometrics regression tools. Technometrics 1993, 35, 109–148.
- Nicolaou, C. A.; Brown, N.; Pattichis, C. S. Molecular optimization using computational multi-objective methods. Curr. Opin. Drug Discov. Dev. 2007, 10, 316–324.
- Shepphird, J. K.; Clark, R. D. A marriage made in torsional space: using GALAHAD models to drive pharmacophore multiplet searches. J. Comput.-Aided Mol. Des. 2006, 20, 763–771.
- Lamb, J.; Crawford, E. D.; Peck, D.; Modell, J. W.; Blat, I. C.; Wrobel, M. J.; Lerner, J.; Brunet, J. P.; Subramanian, A.; Ross, K. N.; et al. The connectivity map: using gene expression signatures to connect small molecules, genes and disease. Science 2006, 29, 1929–1935.
- Butcher, E. C.; Berg, E. L.; Kunkel, E. J. Systems biology in drug discovery. Nat. Biotechnol. 2004, 22, 1253–1259.
- Kunkel, E. J.; Dea, M.; Ebens, A.; Hytopoulos, E.; Melrose, J.; Nguyen, D.; Ota, K. S.; Plavec, I.; Wang, Y.; Watson, S. R.; Butcher, E. C.; Berg, E. L. An integrative biology approach for analysis of drug action in models of human vascular inflammation. FASEB J. 2004, 18, 1279–1281.
- Patterson, D. E.; Kunkel, E. J.; Berg, E. L. QSAR Applied in Systems Biology. Oral presentation at the 234th American Chemical Society National Meeting, Boston, Aug. 19–23, 2007.
- Berg, E. L.; Kunkel, E. J.; Hytopoulos, E.; Plavec, I. Characterization of compound mechanisms and secondary activities by BioMAP analysis. J. Pharmacol. Toxicol. Methods 2006, 53, 67–74.
- Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA): 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967.
- Kim, K. H. List of CoMFA References 1993–1997. In 3D QSAR in Drug Design: Recent Advances, H. Kubinyi; G. Folkers; Y. C. Martin, Eds. Kluwer/ESCOM, New York, 1998, pp. 317–338.
- Cramer, R. D.; Jilek, R. J.; Andrews-Cramer, K. M. Dbtop: topomer similarity searching of conventional structure databases. J. Mol. Graph. Model. 2002, 20, 447–462.
- Cramer, R. D.; Clark, R. D.; Patterson, D. E.; Ferguson, A. M. Bioisosterism as a molecular diversity descriptor: steric fields of single “topomeric” conformers. J. Med. Chem. 1996, 39, 3060–3069.
- Cramer, R. D.; Poss, M. A.; Hermsmeier, M. A.; Caulfield, T. J.; Kowala, M. C.; Valentine, M. T. Prospective identification of biologically active structures by topomer shape similarity searching. J. Med. Chem. 1999, 42, 3919–3933.
- Sontag, E. D. Some new directions in control theory inspired by systems biology. Syst. Biol. 2004, 1, 9–18.
- Shmulevich, I.; Gluhovsky, I.; Hashimoto, R.; Dougherty, E. R.; Zhang, W. Steady-state analysis of genetic regulatory networks modeled by probabilistic Boolean networks. Comp. Funct. Genom. 2003, 4, 601–608.
- González-Díaz, H.; González-Díaz, Y.; Santana, L.; Ubeira, F. M.; Uriarte, E. Proteomics, networks and connectivity indices. Proteomics 2008, 8, 750–778.
- Lill, M. A. Multi-dimensional QSAR in drug discovery. Drug Discov. Today 2007, 12, 1013–1017.
- Ortiz, A. R.; Gomez-Puertas, P.; Leo-Macias, A.; Lopez-Romero, P.; Lopez-Viñas, E.; Morreale, A.; Murcia, M.; Wang, K. Computational approaches to model ligand selectivity in drug design. Curr. Top. Med. Chem. 2006, 6, 41–55.
- Vedani, A.; Dobler, M. Multi-dimensional QSAR in drug research: predicting binding affinities, toxicity and pharmacokinetic parameters. Prog. Drug Res. 2000, 55, 105–135.