Chapter 48
Carboxylesterases and Lipases from Metagenomes
Jennifer Chow, Ulrich Krauss,
Karl-Erich Jaeger,
Wolfgang R. Streit,
Ulrich Krauss
Heinrich Heine University Duesseldorf, Juelich, Germany
Search for more papers by this authorKarl-Erich Jaeger
Heinrich-Heine-University Duesseldorf, Juelich, Germany
Search for more papers by this authorJennifer Chow, Ulrich Krauss,
Karl-Erich Jaeger,
Wolfgang R. Streit,
Ulrich Krauss
Heinrich Heine University Duesseldorf, Juelich, Germany
Search for more papers by this authorKarl-Erich Jaeger
Heinrich-Heine-University Duesseldorf, Juelich, Germany
Search for more papers by this authorBook Editor(s):Frans J. de Bruijn,
Frans J. de Bruijn
Laboratory of Plant Micro-organism Interaction, CNRS-INRA, Castanet Tolosan, France
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Biotechnological Relevance
-
Classification of Bacterial and Archaeal Carboxylesterases and Lipases
-
Functional Metagenome Screening Methods
-
Metagenome-Derived Carboxylesterases and Lipases and their Biochemical Properties
-
Further Perspectives and Research Needs
-
Computer Programs
-
References
COMPUTER PROGRAMS
- Benson DA, Karsch-Mizrachi I, et al. 2008. GenBank. Nucleic Acids Res. 36 (Database issue): D25–D30 (http://www.ncbi.nlm.nih.gov/).
- Letunic I, Bork P. 2007. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23(1): 127–128 (http://itol.embl.de/).
- Nicholas K, Nicholas HJ, Deerfield D. 1997. GeneDoc: Analysis and visualization of genetic variation. EMB-NEWS 4: 14 (http://www.nrbsc.org/gfx/genedoc/).
- Notredame C, Higgins DG, et al. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1): 205–217 (http://tcoffee.vital-it.ch/cgibin/Tcoffee/tcoffee_cgi/index.cgi).
- Stamatakis A, Hoover P, et al. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57(5): 758–771 (http://phylobench.vital-it.ch/raxmlbb/).
- Zmasek CM, Eddy Sr. 2001. ATV: Display and manipulation of annotated phylogenetic trees. Bioinformatics 17(4): 383–384. (http://www.genetics.wustl.edu/eddy/forester).
- REFERENCES
- Arpigny J, Jaeger KE. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177–183.
- Beisson F, Tiss A, et al. 2000. Methods for lipase detection and assay: a critical review. Eur. J. Lipid Sci. Technol. 2000: 133–153.
- Benson DA, Karsch-Mizrachi I, et al. 2008. GenBank. Nucleic Acids Res. 36 (Database issue): D25–D30.
- Byun JS, Rhee JK, et al. 2007. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct. Biol. 7: 47.
- Chahinian H, Ali YB, et al. 2005. Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: Comparison with non-lipolytic and lipolytic carboxylesterases. Biochim. Biophys. Acta 1738(1–3): 29–36.
- De Diego T, Lozano P, et al. 2009. On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. J. Biotechnol. 140(3–4): 234–241.
- de Pascale D, Cusano AM, et al. 2008. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12(3): 311–323.
- Dijkstra BW, Streit WR, Jaeger KE. Manuscript in preparation.
- Elend C, Schmeisser C, et al. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72(5): 3637–3645.
- Elend C, Schmeisser C, et al. 2007. Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J. Biotechnol. 130(4): 370–377.
- Ferrer M, Golyshina OV, et al. 2005. Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem. Biol. 12(8): 895–904.
- Gupta R, Gupta N, et al. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763–781.
- Hardeman F, Sjoling S. 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59: 524–534.
- Hausmann S, Jaeger KE. 2010. InTimmis KN, ed. Lipolytic Enzymes from Bacteria. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer-Verlag, p. 2–28.
- Henne A, Schmitz RA, et al. 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66(7): 3113–3116.
- Jeon JH, Kim JT, et al. 2009. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl. Microbiol. Biotechnol. 81(5): 865–874.
- Jones DT, Taylor WR, et al. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8(3): 275–282.
- Klibanov AM. 2001. Improving enzymes by using them in organic solvents. Nature 409(6817): 241–246.
- Kobayashi S, Uyama H. 2001. In vitro biosynthesis of polyesters. Adv. Biochem. Engi./Biotechnol. 71: 241–262.
- Koeller KM, Wong CH. 2001. Enzymes for chemical synthesis. Nature 409(6817): 232–240.
- Kouker G, Jaeger KE. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53(1): 211–213.
- Kwon HJ, Haruki M, et al. 2002. Role of repetitive nine-residue sequence motifs in secretion, enzymatic activity, and protein conformation of a family I.3 lipase. J. Biosci. Bioeng. 93(2): 157–164.
- Letunic I, Bork P. 2007. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23(1): 127–8.
- Liu K, Wang J, et al. 2009. Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem. Biophys. Res. Commun. 385(4): 605–611.
- Loveless B, Saier MH Jr. 1997. A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol. Membr. Biol. 14(3): 113–123.
- Lutz S, Bornscheuer UT. 2009. Protein Engineering Handbook. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
- Meier R, Drepper T, et al. 2007. A calcium-gated lid and a large beta-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens. J. Biol. Chem. 282(43): 31477–31483.
- Miller RB, Karn RC. 1980. A rapid spectrophotometric method for the determination of esterase activity. J. Biochem. Biophys. Methods 3(6): 345–354.
- Nakamura M, Kametani I, et al. 2003. Identification of Propionibacterium acnes by polymerase chain reaction for amplification of 16S ribosomal RNA and lipase genes. Anaerobe 9(1): 5–10.
- Nicholas K, Nicholas HJ, Deerfield D. 1997. GeneDoc: Analysis and visualization of genetic variation. EMBNEWS 4: 14.
- Nishizawa M, Shimizu M, et al. 1995. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Appl. Environ. Micro-biol. 61(9): 3208–3215.
- Notredame C, Higgins DG, et al. 2000. T-coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1): 205–217.
- Nthangeni MB, Patterton H, et al. 2001. Over-expression and properties of a purified recombinant Bacillus licheniformis lipase: A comparative report on Bacillus lipases. Enzyme Microb. Technol. 28(7–8): 705–712.
- Ollis DL, Cheah E, et al. 1992. The alpha/beta hydrolase fold. Protein Eng. 5(3): 197–211.
- Oterholm A, Ordal ZJ, et al. 1968. Glycerol ester hydrolase activity of lactic acid bacteria. Appl. Microbiol. 16(3): 524–527.
- Panda T, Gowrishankar B. 2005. Production and applications of esterases. Appl. Microbiol. Biotechnol. 67: 160–169.
- Petersen EI, Valinger G, et al. 2001. A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J. Biotechnol. 89(1): 11–25.
- Pohn B, Gerlach J, et al. 2007. Micro-colony array based high throughput platform for enzyme library screening. J. Biotechnol. 129(1): 162–170.
- Rashamuse K, Magomani V, et al. 2009. A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous beta-lactamase activity on nitrocefin. Appl. Microbiol. Biotechnol. 83(3): 491–500.
- Reetz MT. 2002. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6(2): 145–150.
- Rhee JK, Ahn DG, et al. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71(2): 817–825.
- Robles-Medina A, Gonzalez-Moreno P, et al. 2009. Biocatalysis: towards ever greener biodiesel production. Biotechnol. Adv. 27: 398–408.
- Rosenau F, Tommassen J, et al. 2004. Lipase-specific foldases. ChemBioChem 5(2): 152–161.
- Rosenstein R, Gotz F. 2000. Staphylococcal lipases: Biochemical and molecular characterization. Biochimie 82(11): 1005–1014.
- Schmeisser C, Steele H, et al. 2007. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 75: 955–962.
- Schmidt M, Bornscheuer UT. 2005. High-throughput assays for lipases and esterases. Biomol. Eng. 22(1–3): 51–56.
- Shibata H, Kato H, et al. 1998. Calcium ion-dependent reactivation of a Pseudomonas lipase by its specific modulating protein, LipB. J. Biochem. 123(1): 136–141.
- Shirai K, Jackson RL. 1982. Lipoprotein lipase-catalyzed hydrolysis of p-nitrophenyl butyrate. Interfacial activation by phospholipid vesicles. J. Biol. Chem. 257(3): 1253–1258.
- Siddiqui K, Cavicchioli R. 2006. Cold-adapted enzymes. Annu. Rev. Biochemi. 75: 403–433.
- Simon C, Daniel R. 2009. Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol. 85(2): 265–276.
- Stamatakis A, Hoover P, et al. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57(5): 758–771.
- Steele HL, Jaeger KE, et al. 2009. Advances in recovery of novel biocatalysts from metagenomes. J. Mol. Microbiol. Biotechnol. 16: 25–37.
- Tuffin M, Anderson D, et al. 2009. Metagenomic gene discovery: How far have we moved into novel sequence space? Biotechnol. J. 4: 1671–1683.
- Tyndall JD, Sinchaikul S, et al. 2002. Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. J. Mol. Biol. 323(5): 859–869.
- Upton C, Buckley JT. 1995. A new family of lipolytic enzymes? Trends Biochem. Sci. 20(5): 178–179.
- van Pouderoyen G, Eggert T, et al. 2001. The crystal structure of Bacillus subtilis lipase: A minimal alpha/beta hydrolase fold enzyme. J. Mol. Biol. 309(1): 215–226.
- Voget S, Leggewie C, et al. 2003. Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69(10): 6235–6242.
- Wu C, Sun B. 2009. Identification of novel esterase from metagenomic library of Yangtze river. J. Microbiol. Biotechnol. 19(2): 187–193.
- Zhang T, Han WJ, et al. 2009. Gene cloning and characterization of a novel esterase from activated sludge metagenome. Microb. Cell Fact. 8(1): 67.
- Zhu X, Larsen NA, et al. 2003. Observation of an arsenic adduct in an acetyl esterase crystal structure. J. Biol. Chem. 278(3): 2008–2014.
- Zmasek CM, Eddy Sr. 2001. ATV: Display and manipulation of annotated phylogenetic trees. Bioinformatics. 17(4): 383–384.