Robotic Rehabilitation Therapy
Hermano I. Krebs
Massachusetts Institute of Technology, Mechanical Engineering Department, Cambridge, Massachusetts
Weill Medical College of Cornell University, Department Neurology and Neuroscience, Burke Medical Research Institute, White Plains, New York
Search for more papers by this authorNeville Hogan
Massachusetts Institute of Technology, Mechanical Engineering Department, Cambridge, Massachusetts
Search for more papers by this authorHermano I. Krebs
Massachusetts Institute of Technology, Mechanical Engineering Department, Cambridge, Massachusetts
Weill Medical College of Cornell University, Department Neurology and Neuroscience, Burke Medical Research Institute, White Plains, New York
Search for more papers by this authorNeville Hogan
Massachusetts Institute of Technology, Mechanical Engineering Department, Cambridge, Massachusetts
Search for more papers by this authorAbstract
The demand for rehabilitation services is growing apace with the graying of the population, with the number of senior citizens 65 years of age and older projected to increase by 88% in the coming years. With this increase in the number of senior citizens comes increased incidence of age-related pathologies including cerebral vascular accident (stroke). This situation creates both a need and an opportunity to deploy technologies such as robotics to assist recovery. In this chapter, the authors focus on the use of robotics to aid recovery after stroke, but the knowledge and know-how may apply similarly to other diseases and afflictions. The authors focus solely on robots that support and enhance the productivity of clinicians in their efforts to facilitate a disabled individual's recovery. An overview of existing rehabilitation robots for the upper and lower extremity, of technology limitations, of design choices, and of clinical results is presented. The focus of the remainder of the chapter is on clinical results and on the biology of neuro-recovery. This new class of interactive robotic devices, together with the understanding of its potentials and limitations, are poised to strongly influence how rehabilitation medicine will be practiced in the twenty-first century.
Bibliography
- 1American Heart Association, Heart Disease and Stroke Statistics – 2003 update.
- 2World Health Organization. (2001). ICF: International classification of functioning, disability and health. (online). Available: http://www3.who.int/icf/onlinebrowser/icf.cfm.
- 3H. I. Krebs, B. T. Volpe, M. L. Aisen, and N. Hogan, Robotic applications in neuromotor rehabilitation. Topics in Spinal Cord Injury Rehabil. 1999; 5(3): 50–63.
10.1310/745K-AH73-NCP1-R6CK Google Scholar
- 4H. I. Krebs, N. Hogan, W. Durfee, and H. Herr, Rehabilitation robotics, orthotics, and prosthetics, Chapter 48, In: M. E. Selzer, S. Clarke, L. G. Cohen, P. W. Duncan, and F. H. Gage, eds., Textbook of Neural Repair and Rehabilitation. Cambridge: Cambridge University Press, 2005.
- 5R. F. Erlandson, Applications of robotic/mechatronic systems in special education, rehabilitation therapy, and vocational training: a paradigm shift. IEEE Trans. Rehab. Eng. 1995; 3: 22–34.
- 6R. F. Erlandson, P. de Bear, K. Kristy, M. Dilkers, and S. Wu., A robotic system to provide movement therapy. Proc. 5th Int. Robot Conf. pp. Detroit, Michigan, 1990: 7–15.
- 7S. Maxwell, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1990.
- 8T. Rahman, W. Sample, R. Seliktar, M. Alexander, and M. Scavina, A body-powered functional upper limb orthosis. VA J. Rehabil. Res. Develop. 2000; 37(6): 675–680.
- 9A. S. Merians, D. Jack, R. Boian, M. Tremaine, G. C. Burdea, S. Adamovich, M. Recce, and H. Poizner, Virtual reality-augmented rehabilitation for patients following stroke. Phys. Ther. 2002; 82(9): 898–915.
- 10P. S. Lum, D. J. Reinkensmeyer, and S. Lehman, Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Trans. Rehab. Eng. 1993; 1: 185–191.
10.1109/86.279267 Google Scholar
- 11P. S. Lum, S. L. Lehman, and D. J. Reinkensmeyer, The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patients. IEEE Trans. Rehab. Eng. 1995; 3: 166–174.
10.1109/86.392371 Google Scholar
- 12P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002; 83: 952–959.
- 13C. G. Burgar, P. S. Lum, P. C. Shor, and H. F. Machiel Van der Loos, Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J. Rehabil. Res. Develop. 2000; 37: 663–673.
- 14D. J. Reinkensmeyer, N. Hogan, H. I. Krebs, S. L. Lehman, and P. S. Lum, Rehabilitators, robots, and guides: new tools for neurological rehabilitation. In: J. M. Winters and P. E. Crago, eds., Biomechanics and Neural Control of Movement. New York: Springer-Verlag, 2000.
- 15D. A. Lawrence, Impedance control stability properties in common implementations. Proc. IEEE Int. Conf. Robotics & Automation 1988: 1185–1191.
- 16N. Hogan and S. P. Buerger, Impedance and interaction control. In: T. Kurfess, ed., Robotics and Automation Handbook. New York: CRC Press, 2005.
- 17S. P. Buerger, J. J. Palazzolo, H. I. Krebs, and N. Hogan, Rehabilitation robotics: adapting robot behavior to suit patient needs and abilities. ACC-American Control Conference, 2004: 3239–3244.
- 18N. Hogan, H. I. Krebs, A. Sharon, and J. Charnnarong, Interactive Robot Therapist. U.S. Patent 5,466,213, November 14, 1995.
- 19N. Hogan, Impedance control: an approach to manipulation. J. Dyn. Syst. Measure Control 1985; 107: 1–24.
- 20D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, A. McKenna-Cole, B. D. Schmit, and W. Z. Rymer, Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 2000; 37: 653–662.
- 21J. Furusho, K. Koyanagi, Y. Imada, Y. Fujii, K. Nakanishi, K. Domen, K. Miyakoshi, U. Ryu, S. Takenaka, and A. Inoue, A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing. ICORR 2005, in press.
- 22J. Furusho, C. Li, Y. Yamaguchi, S. Kimura, K. Nakayama, T. Katuragi, T. Oguri, U. Ryu, and S. Suzuki, A 6-DOF rehabilitation machine for upper limbs including wrists using ER actuators. 2005 International Exposition Aichi Prefecture, in press.
- 23L. Finch and H. Barbeau, Hemiplegic gait: new treatment strategies. Physioth. Can. 1986; 38: 36–40.
- 24H. Barbeau and S. Rossignol, Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987; 412(1): 84–95.
- 25H. Barbeau and M. Visintin, Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch. Phys. Med. Rehabil. 2003; 84(10): 1458–1465.
- 26V. Dietz, M. Wirz, and L. Jensen, Locomotion in patients with spinal cord injuries. Phy. Ther. 1997; 77(5): 508–516.
- 27B. H. Dobkin, S. Harkema, P. Requejo, and V. R. Edgerton, Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J. Neurol. Rehabil. 1995; 9: 183–190.
- 28S. Hesse, D. Uhlenbrock, C. Werner, and A. Bardeleben, A mechanized gait trainer for restoring gait in nonambulatory subjects. Arch. Phys. Med. Rehabil. 2000; 8(9): 1158–1161.
- 29S. Henning, F. Piorko, R. Bernhardt, J. Krüger, and S. Hesse, Synthesis of perturbations for gait rehabilitation robots. ICORR 2005, in press.
- 30G. Colombo, M. Joerg, R. Schreier, and V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000; 37(6): 693–700.
- 31M.L. Aisen, H.I. Krebs, N. Hogan, F. McDowell, and B.T. Volpe, The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch. Neurol. 1997; 54: 443–446.
- 32H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 1998; 6: 75–87.
- 33H. I. Krebs, B. T. Volpe, M. L. Aisen, and N. Hogan, Increasing productivity and quality of care: robot-aided neurorehabilitation. VA J. Rehabil. Res. Develop. 2000; 37(6): 639–652.
- 34B. T. Volpe, H. I. Krebs, N. Hogan, L. Edelsteinn, C. M. Diels, and M. L. Aisen, Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 1999; 53: 1874–1876.
- 35B. T. Volpe, H. I. Krebs, N. Hogan, O. L. Edelstein, C. Diels, and M. Aisen, A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 2000; 54: 1938–1944.
- 36B. T. Volpe, H. I. Krebs, and N. Hogan, Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr. Opin. Neurol. 2001; 14: 745–752.
- 37M. L. Aisen, D. Sevilla, G. Gibson, H. Kutt, A. Blau, L. Edelstein, J. Hatch, and J. Blass, 3,4-diaminopyridine as a treatment for amyotrophic lateral sclerosis. J. Neurol. Sci. 1995; 129: 21–24.
- 38M. Ferraro, J. H. Demaio, J. Krol, C. Trudell, L. Edelstein, P. Christos, J. England, S. Fasoli, M. L. Aisen, H. I. Krebs, N. Hogan, and B. T. Volpe, Assessing the motor status score: a scale for the evaluation of upper limb motor outcomes in patients after stroke. Neurorehabil. Neural Repair 2002; 16(3): 301–307.
10.1177/154596830201600306 Google Scholar
- 39A. R. Fugl-Meyer, L. Jaasko, I. Leyman, S. Olsson, and S. Steglind, The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975; 7: 13–31.
- 40H. I. Krebs, B. T. Volpe, M. Ferraro, S. Fasoli, J. Palazzolo, B. Rohrer, L. Edelstein, L. and N. Hogan, Robot aided neurorehabilitation: from evidence based to science based rehabilitation. Topics Stroke Rehabil. Clin. Applications New Technol. 2002; 8(4): 54–70.
- 41H. S. Jorgensen, H. Nakayama, H. O. Raaschou, H. Vive-Larsen, M. Stoier, and T. S. Olsen, Outcome and time course of recovery in stroke. Part I: Outcome. Part II: Time course of recovery. The Copenhagen stroke study. Arch. Phys. Med. Rehabil. 1995; 76: 399–412.
- 42L. Kahn, M. Averbuch, W. Z. Rymer, and D. J. Reinkensmeyer, Comparison of robot assisted reaching to free reaching in promoting recovery from chronic stroke. In: M. Mokhtari, ed., Integration of Assistive Technology in the Information Age. Amsterdam, The Netherlands: IOS Press, 2001, pp. 39–44.
- 43P. C. Shor, P. S. Lum, C. G. Burgar, H. F. M. Van der Loos, M. Majmundar, and R. Yap, The effect of robot aided therapy on upper extremity joint passive range of motion and pain. In: M. Mokhtari, ed., Integration of Assistive Technology in the Information Age. Amsterdam, The Netherlands: IOS Press, 2001, pp. 79–83.
- 44M. Ferraro, J. J. Palazzolo, J. Krol, H. I. Krebs, N. Hogan, and B. T. Volpe, Robot aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 2003; 61: 1604–1607.
- 45S. D. Fasoli, H. I. Krebs, J. Stein, W. R. Frontera, and N. Hogan, Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 2003; 84: 477–482.
- 46S. D. Fasoli, H. I. Krebs, J. Stein, W. R. Frontera, R. Hughes, and N. Hogan, Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch. Phys. Med. Rehabil. 2004; 85: 1106–1111.
- 47J. Stein, H. I. Krebs, W. R. Frontera, S. E. Fasoli, R. Hughes, and N. Hogan, Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am. J. Phys. Med. Rehabil. 2004; 83(9): 720–728.
- 48J. L. Patton and F. A., Mussa-Ivaldi, Robot-assisted adaptive araining: custom force fields for teaching movement patterns. IEEE Trans. Biomed. Eng. 1004; 51(4): 636–646.
- 49H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. T. Volpe, and N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots 2003; 15: 7–20.
- 50H. I. Krebs, B. T. Volpe, D. Lynch, and N. Hogan, Stroke rehabilitation: an argument in favor of a robotic gym. ICORR 2005, in press.
- 51H. I. Krebs, J. Celestino, D. Williams, M. Ferraro, B. T. Volpe, and N. Hogan, A wrist extension to MIT-Manus. In: Z. Bien and D. Stefanov, eds., Advances in Human-Friendly Robotic Technologies for Movement Assistance/Movement Restoration for People with Disabilities. New York: Springer-Verlag, 2004.
- 52H. I. Krebs, M. Ferraro, S. P. Buerger, M. J. Newbery, A. Makiyama, M. Sandmann, D. Lynch, B.T. Volpe, and N. Hogan, Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J. NeuroEng. Rehabili. 2004; 1: 5.
- 53H. I. Krebs, B. T. Volpe, L. Lenninhan, S. Fasoli, D. Lynch, L. Dominick, and N. Hogan, Notes on rehabilitation robotics and stroke. In: F. Lofaso, A. Roby-Brami, and J. F. Ravaud, eds., Technological Innovations and Handicap. Paris, France: Frison Roche, 2004, pp. 177–194.
- 54M. F. Levin, Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 1996; 119: 281–293.
- 55M. F. Levin, R. W. Selles, M. H. G. Verheul, and O. G. Meijer, Deficits in the coordination of agonist and antagonist muscles in stroke patients: implications for normal motor control. Brain Res. 2000; 853: 352–369.
- 56P. M. van Vliet and A. Turton, Directions in retraining reaching. Crit. Rev. Phys. Rehabil. Med. 2001; 13: 313–338.
- 57J. S. Sabari, Optimizing motor control using the Carr and Shepherd approach. In: C. A. Trombly and M. V. Radomski, eds., Occupational Therapy for Physical Dysfunction, 5th ed. Philadelphing, PA: Lippincott Williams & Wilkins, 2002.
- 58J. F. Kalaska, S. H. Scott, Cisek, and L. E. Sergio, Cortical control of reaching movements. Curr. Opin. Neurobiol. 1997; 7: 849–859.
- 59M. S. A. Graziano and C. G. Gross, Spatial maps for the control of movement. Curr. Biol. 1998; 8: 195–201.
- 60M. Jeannerod, The Neural and Behavioral Organization of Goal-Directed Movements. Oxford: Clarendon, 1990.
- 61R. B. Muir, and R. N. Lemon, Corticospinal neurons with a special role in precision grip. Brain Res. 1983; 261: 312–316.
- 62R. N. Lemon, G. W. H. Mantel, and R. B. Muir, Corticospinal facilitation of hand muscles during voluntary movements in the conscious monkey. J. Physiol. 1986; 381: 497–527.
- 63A. Shumway-Cook and M. H. Woollacott, Motor Control: Theory and Practical Applications, 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2001.
- 64S. K. Charles, H. I. Krebs, B. T. Volpe, D. Lynch, and N. Hogan, Wrist rehabilitation following stroke: initial clinical results. ICORR 2005, in press.
- 65H. I. Krebs, M. L. Aisen, B. T. Volpe, and N. Hogan, Quantization of continuous arm movements in humans with brain injury. Proc. Nat.l Acad. Sci. USA 1999; 96: 4645–4649.
- 66R. S. Woodworth, Accuracy of voluntary movement, Ph.D. thesis, Columbia University, New York, 1899.
- 67T. E. Milner, A model for the generation of movements requiring endpoint precision. Neuroscience 1992; 49(2): 487–496.
- 68K. Novak, L. Miller, and J. Houk, The use of overlapping submovements in the control of rapid hand movements. Exp. Brain Res. 2002; 144(3): 351–364.
- 69P. Morasso and F. A. Mussa-Ivaldi, Trajectory formation in handwriting: a computational model. Biol. Cybern. 1982; 45: 131–142 FA.
- 70T. Flash and E. Henis, Arm trajectory modifications during reaching towards visual targets. J. Cogn. Neurosci. 1991; 3: 220–230.
- 71N. E. Berthier, Learning to reach: a mathematical model. Dev. Psychol. 1996; 32: 811–823.
- 72E. Burdet and T.E. Milner, Quantization of human motions and learning of accurate movements. Biol. Cybern. 1998; 78: 307–318.
- 73J. A. Doeringer and N. Hogan, Serial processing in human movement production. Neural Network 1998; 11: 1345–1356.
- 74N. Hogan, J. A. Doeringer, and H. I. Krebs, Arm movement control is both continuous and ciscrete. Cognitive Studies Bull. Jap. Cognitive Sci. Soc. 1999; 6(3): 254–273.
- 75M. A. Smith, J. Brandt, and R. Shadmehr, Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature 2000; 403: 544–549.
- 76C. Von Hofsten and K. Lindhagen, Observations on the development of reaching for moving objects. J. Experiment. Child Psychol. 1979; 28: 158–173.
- 77C. Von Hofsten, Predictive reaching for moving objects by human infants. J. Experiment. Child Psychol. 1980; 30: 369–382.
- 78B. Rohrer, S. Fasoli, H.I. Krebs, R. Hughes, B.T. Volpe, W. Frontera, J. Stein, and N. Hogan, Movement smoothness changes during stroke recovery. J. Neurosci. 2002; 22(18): 8297–8304.
- 79B. Rohrer, S. Fasoli, H. I. Krebs, B. Volpe, W. R. Frontera, J. Stein, and N. Hogan, Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control 2004; 8: 472–483.
- 80A. R. Luft, S. McCombe-Waller, J. Whitall, L. W. Forrester, R. Macko, J. D. Sorkin, J. B. Schulz, A. P. Goldberg, and D. F. Hanley, Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 2004; 292(15): 1853–1861.
- 81J. Whitall, S. McCombe-Waller, K. H. Silver, and R. F. Macko, Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 2000; 31: 2390–2395.
- 82J. Carr and R. Shepherd, Neurological Rehabilitation: Optimizing Motor Performance. Oxford: Butterworth Heinemann, 1998.
- 83J. Bass-Haugen, V. Mathiowetz, and N. Flinn, Optimizing motor behavior using the occupational therapy task-oriented approach. In: C. A. Trombly and M. V. Radomski, eds., Occupational Therapy for Physical Dysfunction, 5th ed. Baltimore, MD: Lippincott Williams & Wilkins, 2002, pp. 481–500.
- 84R. Dickstein, S. Hocherman, T. Pillar, and R. Shaham, Stroke rehabilitation—Three exercise therapy approaches. Phys. Ther. 1986; 66: 1233–1238.
- 85M. K. Logigian, M. A. Samuel, and J. F. Falconer, Clinical exercise trial for stroke patients. Arch. Phys. Med. Rehab. 1983; 64: 364–367.
- 86J. P. A. Dewald and R. F. Beer, Evidence for abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve 2001; 24: 273–283.
- 87J. P. A. Dewald, V. Sheshadri, M. L. Dawson, and R.F. Beer, Upper-limb discoordination in hemiparetic stroke: implications for neurorehabilation. Topics Stroke Rehabil. 2001; 8: 1–11.
- 88J. P. Dewald, P. S. Pope, J. D. Given, T. S. Buchanan, and W. Z. Rymer, Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 1995; 118: 495–510.
- 89W. Muellbacher, C. Richards, U. Ziemann, G. Wittenberg, D. Weltz, B. Boroojerdi, L. Cohen, and M. Hallett, Improving hand function in chronic stroke. Arch. Neurol. 2002; 59: 1278–1282.
- 90C. A. Trombly, Conceptual foundations for practice. In: C. A. Trombly and M. V. Radomski, eds., Occupational Therapy for Physical Dysfunction, 5th ed. Baltimore, MD: Lippincott Williams & Wilkins, 2002, pp. 1–15.
- 91I. Miyai, T. Suzuki, A. Mikami, K. Kubota, and B. T. Volpe, Patients with capsular infarct and Wallerian degeneration show persistent regional premotor cortex activation on functional magnetic resonance imagin. J. Stroke Cerebrovasc. Dis. 2002; 10: 210–216.
10.1053/jscd.2001.30731 Google Scholar
- 92I. Miyai, A. D. Blau, M. J. Reding, and B. T. Volpe, Patients with stroke confined to the basal ganglia have diminished response to rehabilitation efforts: implications for basal ganglia - cortical interactions. Neurology 1996; 48: 95–101.