Tissue-Engineered Cartilage
Michael R. Pagnotto
University of Pittsburgh, Department of Orthopaedic Surgery, Cartilage Restoration Laboratory, Pittsburgh, Pennsylvania
Search for more papers by this authorConstance R. Chu
University of Pittsburgh, Department of Orthopaedic Surgery, Cartilage Restoration Laboratory, Pittsburgh, Pennsylvania
Search for more papers by this authorMichael R. Pagnotto
University of Pittsburgh, Department of Orthopaedic Surgery, Cartilage Restoration Laboratory, Pittsburgh, Pennsylvania
Search for more papers by this authorConstance R. Chu
University of Pittsburgh, Department of Orthopaedic Surgery, Cartilage Restoration Laboratory, Pittsburgh, Pennsylvania
Search for more papers by this authorAbstract
The goal of cartilage tissue engineering is to recreate functional articular cartilage. The tissue must be able to fill chondral defects while maintaining the unique biomechanical characteristics that make articular cartilage functional. The goal may be accomplished either by inducing native repair cells to regenerate or through ex vivo techniques where cells are obtained from a patient and use to develop cartilage or pre-cartilaginous constructs in the laboratory and then the constructs are surgically implanted back into the patient. As this chapter will demonstrate, extensive research continues to examine nearly every facet of cartilage tissue engineering.
Bibliography
- 1WHO Technical Report on the Burden of Musculoskeletal Conditions 2003. Available: http://www.who.int/ncd/cra, 2003.
- 2CDC: Arthrits prevalence and activity limitations, United States 1990. MMWR, 1994; 43(24):433–438.
- 3CDC: Prevalence and impact of chronic joint symptoms, seven states, 1996. MMWR, 1998; 47(17):345–351.
- 4E. Yelin and L. F. Callahan, The economic cost and social and psychological impact of musculoskeletal conditions. National Arthritis Data Work Groups. Arthritis Rheum. 1995; 38(10): 1351–1362.
- 5C. M. Callahan, B. G. Drake, D. A. Heck, and R. S. Dittus, Patient outcomes following tricompartmental total knee replacement. A meta-analysis. Jama 1994; 271(17): 1349–1357.
- 6J. A. Buckwalter, H. J. Mankin, and A. J. Grodzinsky, Articular cartilage and osteoarthritis. Instr. Course Lect. 2005; 54: 465–480.
- 7J. S. Temenoff and A. G. Mikos, Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000; 21(5): 431–140.
- 8C. R. Chu, Chondral and Osteochondral Injuries: Mechanisms of Injury and Repair Responses. Operative Techniques in Orthopaedics 2001; 11(2): 70–75.
10.1016/S1048-6666(01)80014-8 Google Scholar
- 9P. J. Roughley and E. R. Lee, Cartilage proteoglycans: structure and potential functions. Microsc. Res. Tech. 1994; 28(5): 385–397.
- 10J. S. Hou, V. C. Mow, W. M. Lai, and M.H. Holmes, An analysis of the squeeze-film lubrication mechanism for articular cartilage. J. Biomech. 1992; 25(3): 247–259.
- 11A. D. Pearle, R. F. Warren, and S. A. Rodeo, Basic science of articular cartilage and osteoarthritis. Clin. Sports Med. 2005; 24(1): 1–12.
- 12T. Macirowski, S. Tepic, and R. W. Mann, Cartilage stresses in the human hip joint. J. Biomech. Eng. 116(1): 10–18.
- 13S. W. O'Driscoll, The healing and regeneration of articular cartilage. J. Bone Joint Surg. Am. 1998; 80(12): 1795–1812.
- 14R. D. Altman, J. Kates, L. E. Chun, D. D. Dean, and D. Eyre, Preliminary observations of chondral abrasion in a canine model. Ann Rheum Dis. 1992; 51(9): 1056–1062.
- 15T. Minas, The role of cartilage repair techniques, including chondrocyte transplantation, in focal chondral knee damage. Instr. Course Lect. 1999; 48: 629–643.
- 16N. Mitchell and N. Shepard, The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J. Bone Joint Surg. Am. 1976; 58(2): 230–233.
- 17J. A. Rand, Role of arthroscopy in osteoarthritis of the knee. Arthroscopy 1991; 7(4): 358–363.
- 18F. Shapiro, S. Koide, and M. J. Glimcher, Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 1993; 75(4): 532–553.
- 19H. M. van Beuningen, P. M. van der Kraan, O. J. Arntz, and W. B. van den Berg, Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab. Invest. 1994; 71(2): 279–290.
- 20M. Brittberg, L. Peterson, E. Sjogren-Jansson, T. Tallheden, and A. Lindahl, Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J. Bone Joint Surg. Am. 2003; 85-A Suppl 3: 109–115.
- 21M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994; 331(14): 889–895.
- 22T. Minas, Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am. J. Orthop. 1998; 27(11): 739–744.
- 23J. B. Richardson, B. Caterson, E. H. Evans, B. A. Ashton, and S. Roberts, Repair of human articular cartilage after implantation of autologous chondrocytes. J. Bone Joint Surg. Br. 1999; 81(6): 1064–1068.
- 24L. E. Freed, I. Martin, and G. Vunjak-Novakovic, Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin. Orthop. Relat. Res. 1999; 367 (Suppl): S46–58.
- 25B. C. Heng, T. Cao, and E. H. Lee, Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem. Cells 2004; 22(7): 1152–1167, 2004.
- 26M. V. Risbud and M. Sittinger, Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol. 2002; 20(8): 351–356.
- 27A. G. Mikos, L. V. McIntire, J. M. Anderson, and J. E. Babensee, Host response to tissue engineered devices. Adv. Drug Deliv. Rev. 1998; 33(1–2): 111–139.
- 28L. Lu, X. Zhu, R. G. Valenzuela, B. L. Currier, and M. J. Yaszemski, Biodegradable polymer scaffolds for cartilage tissue engineering. Clin. Orthop. Relat. Res. (391 Suppl):S251–S270, 2001.
- 29J. F. Guo, G. W. Jourdian, and D. K. MacCallum, Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res. 1989; 19(2–4): 277–297.
- 30H. J. Hauselmann, M. B. Aydelotte, B. L. Schumacher, K. E. Kuettner, S. H. Gitelis, and E. J. Thonar, Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 1992; 12(2): 116–129.
- 31H. J. Hauselmann, R. J. Fernandes, S. S. Mok, T. M. Schmid, J. A. Block, M. B. Aydelotte, K. E. Kuettner, and E. J. Thonar. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J. Cell Sci. 1994; 107 (Pt 1): 17–27.
- 32H. L. Ma, S. C. Hung, S. Y. Lin, Y. L. Chen, and W. H. Lo, Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J. Biomed. Mater. Res. A 2003; 64(2): 273–281.
- 33B. Sharma and J. H. Elisseeff, Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 2004; 32(1): 148–159.
- 34P. X. Ma, B. Schloo, D. Mooney, and R. Langer, Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J. Biomed. Mater Res. 1995; 29(12): 1587–1595.
- 35D. A. Grande, C. Halberstadt, G. Naughton, R. Schwartz, and R. Manji, Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater Res. 1997; 34(2): 211–220.
10.1002/(SICI)1097-4636(199702)34:2<211::AID-JBM10>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 36L. E. Freed, D. A. Grande, Z. Lingbin, J. Emmanual, J. C. Marquis, and R. Langer, Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 1994; 28(8): 891–899.
- 37C. R. Chu, R. D. Coutts, M. Yoshioka, F. L. Harwood, A. Z. Monosov, and D. Amiel, Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J. Biomed. Mater Res. 1995; 29(9): 1147–1154.
- 38C. R. Chu, J. S. Dounchis, M. Yoshioka, R. L. Sah, R. D. Coutts, and D. Amiel, Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clin. Orthop. Relat. Res. 1997; (340):220–229.
- 39A. J. Defail, C. R. Chu, N. Izzo, and K. G. Marra, Controlled release of bioactive TGF-beta(1) from microspheres embedded within biodegradable hydrogels. Biomaterials 2005.
- 40L. Lu, G. N. Stamatas, and A. G. Mikos, Controlled release of transforming growth factor beta1 from biodegradable polymer microparticles. J. Biomed. Mater Res. 2000; 50(3): 440–451.
10.1002/(SICI)1097-4636(20000605)50:3<440::AID-JBM19>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 41S. J. Peter, L. Lu, D. J. Kim, G. N. Stamatas, M. J. Miller, M. J. Yaszemski, and A. G. Mikos, Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J. Biomed. Mater Res. 2000; 50(3): 452–462.
10.1002/(SICI)1097-4636(20000605)50:3<452::AID-JBM20>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 42F. Guilak, B. C. Meyer, A. Ratcliffe, and V. C. Mow, The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage 1994; 2(2): 91–101.
- 43Y. J. Kim, A. J. Grodzinsky, and A. H. Plaas, Compression of cartilage results in differential effects on biosynthetic pathways for aggrecan, link protein, and hyaluronan. Arch Biochem Biophys. 1996; 328(2): 331–340.
- 44L. J. Bonassar, A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel, The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 2001; 19(1): 11–17.
- 45T. Davisson, S. Kunig, A. Chen, R. Sah, and A. Ratcliffe, Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 2002; 20(4): 842–848.
- 46J. D. Kisiday, M. Jin, M. A. DiMicco, B. Kurz, and A. J. Grodzinsky, Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J. Biomech. 2004; 37(5): 595–604.
- 47R. L. Sah, Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy, Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 1989; 7(5): 619–636.
- 48T. Ikenoue, M. C. Trindade, M. S. Lee, E. Y. Lin, D. J. Schurman, S. B. Goodman, and R. L. Smith, Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J. Orthop. Res. 2003; 21(1): 110–116.
- 49S. Mizuno, T. Tateishi, T. Ushida, and J. Glowacki, Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J. Cell Physiol. 2002; 193(3): 319–327.
- 50R. L. Smith. et al., Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J. Rehabil. Res. Dev. 2000; 37(2): 153–161.
- 51L. E. Freed and G. Vunjak-Novakovic, Spaceflight bioreactor studies of cells and tissues. Adv. Space Biol. Med. 2002; 8: 177–195.
- 52I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, L. E. Freed, and G. Vunjak-Novakovic, Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 2000; 37(1–2): 141–147.
- 53L. E. Freed, A. P. Hollander, I. Martin, J. R. Barry, R. Langer, and G. Vunjak-Novakovic, Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 1998; 240(1): 58–65.
- 54C. T. Brighton and R. B. Heppenstall, Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits. J. Bone Joint Surg. Am. 1971 53(4): 719–728.
- 55C. L. Murphy and J. M. Polak, Control of human articular chondrocyte differentiation by reduced oxygen tension. J. Cell Physiol. 2004; 199(3): 451–459.
- 56C. L. Murphy and A. Sambanis, Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 2001; 7(6): 791–803.
- 57S. Saini and T. M. Wick, Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor. Tissue Eng. 2004; 10(5–6): 825–832.
- 58J. C. Robins, N. Akeno, A. Mukherjee, R. R. Dalal, B. J. Aronow, P. Koopman, and T. L. Clemens, Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 2005; 37(3): 313–322.
- 59P. U. Brucker, N. J. Izzo, and C. R. Chu, Tonic activation of hypoxia-inducible factor 1alpha in avascular articular cartilage and implications for metabolic homeostasis. Arthritis Rheum. 2005; 52(10): 3181–3191.
- 60K. Kawamura, C. R. Chu, S. Sobajima, P. D. Robbins, F. H. Fu, N. J. Izzo, and C. Niyibizi, Adenoviral-mediated transfer of TGF-beta1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures. Exp Hematol. 2005; 33(8): 865–872.
- 61Z. Mi, S. C. Ghivizzani, E. Lechman, J. C. Glorioso, C. H. Evans, and P. D. Robbins, Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Res. Ther. 2003; 5(3): R132–R139.
- 62S. B. Trippel, Growth factor actions on articular cartilage. J. Rheumatol. Suppl. 1995; 43: 129–132.
- 63P. Smith, F. D. Shuler, H. I. Georgescu, S. C. Ghivizzani, B. Johnstone, C. Niyibizi, P. D. Robbins, and C. H. Evans, Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum. 2000; 43(5): 1156–1164.
- 64S. B. Trippel, S. C. Ghivizzani, and A. J. Nixon, Gene-based approaches for the repair of articular cartilage. Gene. Ther. 2004; 11(4): 351–359.
- 65E. M. Schwarz, The adeno-associated virus vector for orthopaedic gene therapy. Clin. Orthop. Relat. Res. 2000; (379 Suppl):S31–S39.
- 66H. Madry, M. Cucchiarini, E. F. Terwilliger, and S. B. Trippel, Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum. Gene. Ther. 2003; 14(4): 393–402.
- 67K. Gelse, Q. J. Jiang, T. Aigner, T. Ritter, K. Wagner, E. Poschl, K. von der Mark, and H. Schneider, Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer. Arthritis. Rheum. 2001; 44(8): 1943–1953.
- 68V. M. Baragi, et al., Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage 1997; 5(4): 275–282.
- 69T. Ikeda. et al., Ex vivo gene delivery using an adenovirus vector in treatment for cartilage defects. J. Rheumatol. 2000; 27(4): 990–996.
- 70R. Kang, T. Marui, S. C. Ghivizzani, I. M. Nita, H. I. Georgescu, J. K. Suh, P. D. Robbins, and C. H. Evans, Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage 1997; 5(2): 139–143.
- 71C. Hidaka, L. R. Goodrich, C. T. Chen, R. F. Warren, R. G. Crystal, and A. J. Nixon, Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J. Orthop. Res. 2003; 21(4): 573–583.
- 72G. D. Palmer, A. Steinert, A. Pascher, E. Gouze, J. N. Gouze, O. Betz, B. Johnstone, C. H. Evans, and S. C. Ghivizzani, Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol. Ther. 2005; 12(2): 219–228.
- 73K. Gelse, K. von der Mark, T. Aigner, J. Park, and H. Schneider, Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum. 2003; 48(2): 430–441.
- 74D. D. Frisbie, S. C. Ghivizzani, P. D. Robbins, C. H. Evans, and C. W. McIlwraith, Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther. 2002; 9(1): 12–20.
- 75J. P. Pelletier, J. P. Caron, C. Evans, P. D. Robbins, H. I. Georgescu, D. Jovanovic, J. C. Fernandes, and J. Martel-Pelletier, In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum. 1997; 40(6): 1012–1019.